
Secrets in Source Code: Reducing False Positives
Using Machine Learning

Aakanksha Saha
Software Engineer

Microsoft
Redmond, USA

aasaha@microsoft.com

Tamara Denning
School of Computing

University of Utah
Salt Lake City, USA
tdenning@cs.utah.edu

Vivek Srikumar
School of Computing

University of Utah
Salt Lake City, USA
svivek@cs.utah.edu

Sneha Kumar Kasera
School of Computing

University of Utah
Salt Lake City, Utah
kasera@cs.utah.edu

Abstract—Private and public git repositories often contain
unintentional sensitive information in the source code. Many tools
have been developed to scan repositories looking for potential
secrets and credentials committed in the code base, inadvertently
or intentionally, for taking corrective action once these secrets
and credentials are found. However, most of these existing works
either target a specific type of secret or generate a large number
of false positives. Our research aims to create a generalized
framework to detect all kinds of secrets – which includes API
keys, asymmetric private keys, client secrets, generic passwords
– using an extensive regular expression list. We then apply
machine learning models to intelligently distinguish between a
real secret from a false positive. The combination of regular
expression based approach and machine learning allows for the
identification of different types of secrets, specifically generic
passwords which are ignored by existing works, and subsequent
reduction of possible false positives. We also evaluate our machine
learning model using a precision-recall curve that can be used
by an operator to find the optimal trade-off between the number
of false positives and false negatives depending on their specific
application. Using a Voting Classifier (combination of Logistic
Regression, Naı̈ve Bayes and SVM) we are able to reduce the
number of false positives considerably.

Index Terms—Automated software tool, hard-coded secrets,
source code, security

I. INTRODUCTION

Secrets, that include sensitive information such as creden-
tials, private keys and passwords, have continually grown in
number; as more services are being deployed that require
authentication, more secrets are being generated. Worrisomely,
developers are taking the insecure shortcut of hard-coding se-
crets in source code and configuration files. Moreover, once a
secret is checked into a source control system, such as GitHub
or BitBucket, it is nearly impossible to delete it entirely [1].
Unauthorized developers and malicious users can steal this
sensitive information and cause severe financial and personal
damage. In 2014, an Uber employee accidentally uploaded
his credentials to GitHub, which resulted in the Uber database
hack of 50,000 Uber drivers in 2014 [2]. Similarly, Amazon
found 10,000 AWS keys accidentally left in the source code
by Amazon developers and uploaded to GitHub [3]. These
secret access keys were misused by malicious impersonators to
run intensive compute jobs, which were billed to the victims.
Thus, publishing secrets on public or private repositories can
have severe repercussions, and should be avoided. However,

this idealized goal has been hard to achieve. Instead, many
tools have been developed to scan repositories looking for
potential secrets and credentials committed in the code base,
inadvertently or intentionally, for taking corrective action once
these secrets and credentials are found.

Most of these tools [4]–[7] use regular expression search,
entropy checks or a combination of both to identify potential
secrets. There are a few existing works [8], [9] that have
achieved high accuracy in detecting secret keys in public
repositories. However, these works are specifically aimed
towards private keys (e.g., an RSA private key) and API
keys, and none of these included generic passwords in their
scan. Another serious limitation of the existing tools is that
they generate a high number of false positives because loose
regular expressions, used in the tools, match invalid entries [8],
[10]. These false positives reduce the reliance on the existing
tools resulting in extensive manual, time-consuming, effort to
actually identify the false positives. Therefore, there is a strong
need for developing generic approaches to include all types of
secrets and not just private or API keys, and that significantly
reduce the false positives in identification of the secrets.

We develop a generalized framework using regular expres-
sions to detect different types of secret, including generic
passwords and then apply machine learning to reduce false
positives. Specifically, we first develop a generic tool to detect
different types of secrets such as API keys, AWS keys, OAuth
client secrets, and generic passwords. Next, we design 24 rele-
vant features for potential secrets extracted from 300 different
repositories (≈ 28 million files), and create a labeled dataset
containing 5000 examples. Then, we use a Voting Classifier,
an ensemble of Logistic Regression, Naı̈ve Bayes and SVM,
to significantly reduce false positives while keeping the secret
detection rate high. We test our Voting Classifier on a test
dataset consisting of 2180 examples and achieve a precision
of 84%. We also evaluate our model using a precision-recall
curve that allows a user to tune to the optimal balance between
the number of false positives and false negatives depending
on their application needs. To the best of our knowledge,
no existing work combines regular expressions with machine
learning to identify different types of secrets (API keys, RSA
private keys, generic passwords, connection strings) found on
public forums and subsequently, reduces false positives.

2020 12th International Conference on Communication Systems & Networks (COMSNETS)

978-1-7281-3187-0/20/$31.00 ©2020 IEEE 168Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 13,2022 at 12:04:35 UTC from IEEE Xplore. Restrictions apply.

II. PROBLEM SETTING

In this section, we formally define secrets, along with their
matching regular expressions or regex. We also discuss the
problem of false positives in detecting secrets using regular
expressions. Finally, we tabulate some of the popular open-
source tools, their search criteria in finding confidential infor-
mation and their adopted methods for reducing false positives.

A. Secrets and their matching regex

Secrets, by definition, should be known only by few. In
this work, secrets refer to all the credentials, private keys,
configuration files or passwords that a user needs to deploy
software across environments. The following is a list of
common types of secrets found in the source code and the
configuration files of the git repository.

API Keys: Application Programming Interface keys provide
project authorization by identifying the app or the project that’s
making a call to the API [11]. For example, AWS API keys are
the access keys used to make programmatic calls to Amazon
web services. A possible matching regular expression we use
to identify these is as follows: ‘AKIA[0-9][A-Z]{16}’.

OAuth Client Secret and Client ID: These secrets are
generated when the developer registers to an application. The
client id is a public identifier for apps. For example: GitHub
Client ID would look similar to 6779ef20e75817b79602. The
client secret is a secret known only to the application and the
authorization server. For each registered application, one needs
to store the public client id and the private client secret also
known as OAuth secret [12].

Access token: An access token is an opaque string that
identifies a user, an app, or a Page and can be used by the app
to make API calls. These tokens provide temporary, secure
access to APIs [13].

SSH/SSL/RSA Private Keys: These private keys are gen-
erally used in case of SSL certificates for authentication to
a remote server. The generic regular expression that matches
these private keys is: ‘—–BEGIN RSA PRIVATE KEY—–*.’

Generic passwords: These are the common username pass-
word pairs that grant access to applications and databases. One
possible regular expression match we use for passwords is as
follows: ‘.*[P][A][S][S][W][O][R][D].*[:=](.*)’.

Entropy-based search Apart from regular expression-based
secret detection tools, [4] and [5] employ an entropy-based
search. In particular, Shannon entropy is a good estimator
of randomness in a string [14], [8], [15]. Machine generated
secrets having high randomness, such as API keys and private
keys, have high entropy while user-created generic passwords
tend to have low entropy.

False positives The naive method of regular expressions
and the entropy based approach result in high numbers of
false positives as strings detected by these methods are not
guaranteed to be a secret [8]. We scan 300 GitHub source
code repositories and manually analyze the output to
observe the following common types of false positives (only
three of these have been observed in [10]):

1) File path or an environment variable (Ex: secret =
$HOME/path/)

2) Function calls (Ex: password =: getPassword())
3) Variables (Ex: password = ui.password)
4) CSS selectors (button[value=“test password”])
5) Sample/Test files, containing test secrets
6) Example keys in Readme (password = “test 12345”)
7) Placeholders of Passwords

(//proxy user:proxy password@)
8) Example keys in commented code section (#

apikey:‘xxxxxxxxxx’)
9) Variable initialization with word ‘password’ in it

(rpcpassword = retypePassword)
It is crucial for a secret detector tool to remove false

positives as much as possible and report only potential secrets
with high accuracy. The list of false positives can possibly
be identified as such by a human observer. However, in some
cases, it is very hard to know the ground truth, whether the
secrets are really meaningful secrets, without actually trying
them. We discuss concerns related to ethics and ground truth
of a secret in Section VIII.

Numerous open source tools have been created to detect
and identify sensitive information on GitHub. In Table I, we
assess some of the popular open source tools and existing
works in finding confidential information on public forums
and their adopted methods of reducing false positives. The
existing works mentioned in Table I focus only on secrets that
could be discovered with a high probability of validity and
sensitivity. These works do not attempt to examine generic
passwords as they do not have a distinct structure and it is
difficult to detect passwords with high accuracy. Moreover,
the open source tools mentioned in Table I are prone to a
large number of false positives or require customized manual
patterns to skip false positives [6], [5].

Another proprietary tool named Cred Scan, created by
Microsoft, uses a regular expression-based approach to scan
for sensitive contents within the source code files [16]. GitRob
[17] popular among organizations scans for potentially sensi-
tive files pushed to public repositories. Instead of scanning for
hard-coded secrets in source code this tool looks for sensitive
file extensions, including .pem, .pkcs12, .cscfg.

In contrast to these related works, we aim to collect all
kinds of secrets starting from API keys, private keys to generic
passwords where entropy, dictionary words or any pattern-
based filtering will not prove effective and therefore, we
propose to use machine learning to intelligently distinguish a
real secret from a false positive. We believe our methodology,
which is a combination of regular expression based approach
and machine learning, significantly enhances the state-of-the-
art. We acknowledge the use of filters such as entropy, words
and file types in prior work [4], [5], [8], [9] as features in our
labeled dataset for using machine learning.

III. APPROACH

In this section, we describe the components of our general
framework for reducing false positives while finding secrets

2020 12th International Conference on Communication Systems & Networks (COMSNETS)

169Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 13,2022 at 12:04:35 UTC from IEEE Xplore. Restrictions apply.

TABLE I
ANALYSIS OF RELATED TOOLS

Tools Features Regular expressions Use of Entropy Mechanism for Excluding
false positives

Results

Truffle Hog
[4]

Searches through
commit history and
git branches

Predefined customisable
list

High entropy strings
greater than 20 characters

None NA

Repo Supervi-
sor [5]

Detects secrets in pull
requests

Measures high entropy
strings

Shannon entropy higher
than 4

Filters for URLS, file
paths, CSS selectors,
email addresses, multiple
words with spaces, object
keys, strings with certain
prefixes and strings
having dictionary words

NA

Git Secrets [6] Scans for sensitive in-
formation while com-
mitting to git

User supplied regex 55 User supplied patterns and
regex

NA

Meli et al. [8] Scans files on GitHub Regex for private key files
and 11 distinctive API key
formats

Reject strings with en-
tropy more than 3 stan-
dard deviations from the
mean of all candidate
strings containing valid
secrets

Dictionary words filter
and Pattern filter

99.29% accuracy on
GitHub search

Sinha et al. [9] Sample set of 84
projects on GitHub

Regex for API keys (Face-
book and Amazon)

Entropy filter used by
password strength estima-
tor

Program slicing and User
ID + secret key proximity

Precision 91% and
Recall 100% on
Amazon API key
leaks

in source code. The first step is to collect URLs of the git
repositories and retrieve the candidate files that we use to clone
and scan for hard-coded secrets The scanning of secrets (API
keys, private keys, RSA keys, passwords) is done using basic
pattern and keyword matching and the output is generated in
a JSON format. The raw JSON data is then converted to a
clean labeled featurized dataset. This dataset is divided into
training, test, and development sets. Lastly, different machine
learning algorithms are applied and trained on the training
dataset, final evaluation is done on the test dataset, and the
development dataset is used for error analysis.

A. URL Collection

To test and compare the performance of different machine
learning algorithms in identifying a false positive reported by
a secret detector tool, the initial step is to build a dataset con-
taining thousands of examples of secrets and false positives.
For building this dataset, we first gather the candidate files
that are likely to contain secrets. We use the git Rest API
[18] to collect a list of URLs with candidate files. The Rest
API allows searching for specific terms in the source code.
Among the millions of repositories, we are only interested
in finding those that have hard-coded secrets/passwords. We
write a Python script to perform an API query with search
terms such as ‘RSA PRIVATE KEY,’ ‘AWS Credential,’ ‘pass-
word,’ ‘secret,’ ‘API key’ to retrieve a list of git URLs. Ex-
ample query: “https://api.github.com/search/code?q=“Search
terms”&page=5”. Our script returns a list of around 300 git
URLs for further cloning and scanning.

There are a few restrictions on how searches are performed
on the GitAPI: Only the default branch is considered, and only
files smaller than 384 KB are searchable. These restrictions are

irrelevant to us as we want to collect different types of secrets
hard-coded in the source code repository and are not interested
in any particular repository or file sizes.

B. Cloning and Scanning

Once the URLs are collected and saved in a text file, the next
step is to get data for our training examples by scanning the
source code files of the git repository. We first write a multi-
threaded Python program to clone the git repositories. This
step is required because Git does not allow complex regular
expression search on its source code remotely. Our program
takes the URL list as an argument, sorts the URLs uniquely
and uses GitPython [19] module to download the files in all
the branches of the repository to a local system.

After cloning the repositories, another multi-threaded
python program, that we write, scans the source code searching
for potential secrets. Each line in the file is matched against
a list of regular expressions. We save the secret value along
with file name, repository name, and the line on which secret is
contained in a JSON file. On scanning around 300 repositories
(approx million files), we find that 250 of these repositories
generate non-empty JSON files containing both real secrets
and false positives. Table II shows the list of secrets and their
matching regular expressions that are unique to our research
to detect generic passwords. Regular expressions in Table II
along with the list of regular expressions in [4] are used for our
scanning process giving us a total of 32 regular expressions.

C. Feature Designing and Labeling

To use machine learning algorithms, we need a labeled
dataset which has inputs that are defined by features to guide
the decision-making process. The list of potential secrets
obtained in the previous step is further manually analyzed to

2020 12th International Conference on Communication Systems & Networks (COMSNETS)

170Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 13,2022 at 12:04:35 UTC from IEEE Xplore. Restrictions apply.

TABLE II
LIST OF REGULAR EXPRESSIONS FOR GENERIC SECRETS

Secret Target Regular Expression

Generic AppSecret [a | A][p |P][p |P][s |S][e |E][c |C][r |R][e |E][t |T].*[’ |”]([0-9a-zA-Z]{32,45})[’ |”]
Generic Password .*[p |P][a |A][s |S][s |S][w |W][o |O][r |R][d |D].*[:=](.*)
Password in URL //[\\s:]+:[\\s:]+@
Other passwords (Password |pass |passwd |session password |login password |password) \s*[:=](\s*[ˆ\r\n]+)
Tokens (API tokens |api tokens |tokens |Tokens)\s*[:=](\s*[ˆ\r \n][a-f0-9]{16})
Generic Access Token [a | A][c |C][c |C][s |S][e |E][s |S][s |S][t |T][o |O][k |K][e |E][n |N].*[:=](.*)
Other secrets (client secret |access secret |customer secret |app secret)\s*[:=](\s*[ˆ\r\n]+)

assign features. To define the attributes of the potential
secrets returned in the scanning phase, we perform a
manual analysis of the source code to understand the
context and the properties of the extracted strings.

Our complete list of features is given in Appendix A.1.
In this list, the first 12 features are unique and new to
this paper. These features identify if the lines with potential
secret extracted are some programming language construct
(function calls, variables, comments) or some test/example
secrets dumped in the documentation/README files. Other
features such as file extensions and entropy are similar to those
in previous works. We convert the entropy value (integer) into
binary features by dividing it into separate bins (e.g., Is the
entropy between 0-1 and so on).

For all the possible secrets the features as mentioned above
are assigned “Yes”(1) or “No”(0) values and a final CSV file is
generated containing 5000 examples. Once the dataset (CSV
file with features) is created, it is labeled manually. If the string
extracted is a real secret/password, the string is labeled as ‘S’
(secret); on the other hand, false positives are labeled as ‘N’
(Not a secret). Our labeled dataset consisting of 5000 examples
with 24 features is ready to be released and we do not include
the secret value, the file name and the repository name in our
dataset as explained under ethical conduct in Section VIII.

D. Algorithms

Our goal is to ascertain whether a potential secret is truly
sensitive, or merely a false positive that only accidentally
matches a high recall regular expression. For a potential secret
s, we can frame this decision as a predicate IsSensitive(s)
that takes the value true for all s that are sensitive. With such
a predicate, we may be able to filter automatically harvested
lists of potential secrets. With restricted domains (e.g., only
RSA private keys), we may be able to manually define the
predicate via simple pattern matching mechanisms. However,
as mentioned earlier, this approach does not generalize: for
example, we can not enumerate every possible pattern that
defines IsSensitive for a potential secret in the source code.
In this work, we ask: Instead of manual enumeration to define
the decision rule IsSensitive, can we discover it from data?

Specifically, we focus on the supervised setting using the
labeled dataset of potential secrets that are annotated as being
false positives or not. Each potential secret is converted to a
list of features using as described in Section III-C, which we
will refer to as the attribute vector φ(s) for a potential secret s.

At a high level, our learning goal is to use a featurized dataset
D consisting of vectors of the form φ(s) to discover a decision
rule IsSensitive(s). Note that different learning algorithms
can use the same dataset D to produce different decision rules
(i.e., classifiers). In this work, we perform a comparative study
of six different learning algorithms and a meta-algorithm that
integrates the predictions of other classifiers. We now provide
the overview of all the algorithms we use.

Decision Tree: Decision Tree [20] is a classification tech-
nique that has a tree-like structure, where each internal node
denotes a test on an attribute, each branch represents an
outcome of the test, and each leaf node (terminal node) holds a
class label. The idea of a decision tree is to divide the dataset
into smaller datasets based on the descriptive features until
one reaches a small enough set that only contains data points
that fall under one label.

Random Forests: Random Forests [21] is another supervised
learning algorithm. It builds multiple decision trees and merges
them to get a more accurate and stable prediction.

Logistic Regression: Logistic Regression [22] is a statistical
machine learning algorithm that classifies the data by consid-
ering outcome variables on extreme ends and tries to make a
logarithmic line that distinguishes between them.

Naı̈ve Bayes: The Naı̈ve Bayes algorithm [23] makes a
prediction by calculating probabilities of the instance belong-
ing to each class and selects the class value with the highest
probability.

Support Vector Machines: A Support Vector Machine
(SVM) [24] is a discriminative classifier formally defined
by a separating hyperplane. In other words, given labeled
training data (supervised learning), the algorithm outputs an
optimal hyperplane which categorizes new examples. In two
dimensional space this hyperplane is a line dividing a plane
in two parts where in each class lay in either side.

K-Nearest Neighbor: KNN algorithm [25] is another clas-
sification algorithm that is based on feature similarity. While
predicting a label we select the ‘k’ entries in our database
which are closest to the new sample and conduct a majority
vote among the ‘k’ entries to decide the classification label
for the new entry.

Voting Classifier: Voting Classifier [26] is a meta-classifier
for combining similar or conceptually different machine learn-
ing classifiers for classification. In this work, the Soft-Voting
Classifier is initialized using three exemplary classifiers Lo-

2020 12th International Conference on Communication Systems & Networks (COMSNETS)

171Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 13,2022 at 12:04:35 UTC from IEEE Xplore. Restrictions apply.

gistic Regression, Naı̈ve Bayes, and SVM with equal weights
of [1,1,1].

IV. IMPLEMENTATION

To test the performance of different machine learning al-
gorithms, we use the libraries from scikit-learn [24] on our
labeled dataset, one algorithm at a time. We perform our
cross validation in Python using the Spyder development
environment, and we use Pandas [27] to read and convert our
labeled dataset to dataframes for running our experiments.

A. Experimentation

To apply the learning framework, we first perform series
of tests to investigate the factors that affect the response
(prediction of a label) of the experiments. These factors not
only include the choice of the learning algorithms, but also
the input features and the parameters of the algorithms. The
goal here is to find the optimal configuration of factors that
give the best performance [28].

For our experiments, we divide our dataset containing 5000
examples with 24 features into three parts: the training, test
and development sets. The training set, with 2465 (2100
false positives and 365 true positives) samples, is used for
cross-validation to select the best algorithms and the hyper-
parameters, and also to train the classifiers using the best
settings. The test set, containing 2180 examples, is used for
the final evaluation reported in Section V. We separate 355
examples as the development set for manual error analysis
which we explain in detail in Section VII. We ensure that the
training/development/test splits have approximately the same
percentage of each target class as the full set of examples using
stratified sampling. This is different from random sampling
because in our case the label ‘S’(1) is in minority class so
stratified sampling ensures equal distribution of ‘S’(1) in the
training and test dataset.

B. Cross validation on training set

Each learning algorithm is associated with a collection of
hyperparameters, that must be chosen appropriately to ensure
good predictive performance. To obtain an unbiased estimate
of the performance for each hyperparameter setting, and
thereby find the best hyperparameters for each algorithm, we
use K-fold cross-validation. K-fold cross-validation divides
a dataset randomly into K equal-sized parts. By holding out
one of these K parts and combining the remaining K − 1
parts, we get a training-validation pair. For a particular choice
of hyperparameters, we can train a model on the training
subset of this pair and evaluate it using the validation subset.
Repeating this process by holding out each of the K parts,
and averaging the performance across the different validation
subsets, we get an estimate of how good the choice of
hyperparameters is for a particular full training set.

In our work, we have a binary classification problem where
the we seek to obtain the IsSensitive predicate described
earlier. In particular, the learned classifier predicts a simple

yes (‘secret’) or no (‘false positive’) response. We employed 4-
fold cross validation for hyperparameter selection. Specifically,
we divide the 2465 training examples into 4-equal sized sets,
and a stratified split is performed on each set. We measured
the precision, recall, and F1 and Fβ scores averaged over k-
trials for different algorithms and hyperparameter combina-
tion. These metrics are described in detail in Section V. Table
III shows the best performance of each classifier in terms of
precision, recall, F1 score, and Fβ score on the training dataset
where β = 2. F2 (β = 2) score weighs recall higher than
precision (by placing more emphasis on false negatives). In
our work, the cost of misclassifying one secret is very high,
and therefore, to ensure that we identify all the valid secrets
we give more importance to recall by setting β = 2.

We achieve the optimal performance with a Voting Clas-
sifier that integrates the predictions of Logistic Regression
(lr), Naı̈ve Bayes(nb) and SVM using a weight of [1,1,1],
respectively.

V. RESULTS

In this section, we first describe the evaluation metrics that
we use to measure the performance of different classification
models in reducing the number of false positives reported by
a secret detector tool. Next, we tabulate the initial results we
obtain by running the trained Voting Classifier on the test
dataset. In our dataset consisting of 2465 training examples,
we observe that only 365 instances (≈ 15%) are real secrets.
Therefore, in this scenario, accuracy (fraction of predictions
our model gets right) is not the best performance measure. To
fully evaluate the effectiveness of our model in predicting a
secret as a false positive, we measure precision, recall and F1

score which are described below in detail.

A. Performance Metrics

1) Precision: Precision tells us how precise/accurate a
model is; out of those predicted by a model as positive,
how many of them are actual positives [29]. Thus,

Precision =
TruePositive(tp)

tp+ FalsePositive(fp)

2) Recall: Recall is the fraction of relevant instances that
have been retrieved over the total amount of relevant
instances. While recall expresses the ability to find all
relevant instances in a dataset, precision expresses the
proportion of the data points a model says was relevant
and were relevant [29].

Recall =
TruePositive(tp)

tp+ FalseNegative(fn)

3) F1 score: The F1 score is the harmonic mean of
precision and recall. F1 scores are usually lower than
accuracy measures as they embed precision and recall
into their computation. The F1 score is needed to seek
a balance between precision and recall if there is an
uneven distribution of labels [29].

F1 =
2 ∗ precision ∗ recall
precision+ recall

2020 12th International Conference on Communication Systems & Networks (COMSNETS)

172Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 13,2022 at 12:04:35 UTC from IEEE Xplore. Restrictions apply.

TABLE III
CROSS-VALIDATION RESULTS ON TRAINING SET HAVING 2465 EXAMPLES WITH 365 REAL SECRETS

Classifier Average Precision Average Recall Average F1 score Average Fβ score (β = 2)

Decision Tree 0.78 0.75 0.76 0.76
Random Forests 0.78 0.73 0.75 0.74
Nearest Neighbor 0.78 0.78 0.78 0.78
Logistic Regression 0.81 0.75 0.77 0.76
SVM 0.79 0.73 0.75 0.74
Naı̈ve Bayes 0.33 0.94 0.49 0.68
Voting Classifier (lr, nb, svm) 0.739 0.80 0.76 0.785

TABLE IV
CLASSIFICATION REPORT [30] ON RUNNING THE VOTING CLASSIFIER ON

THE TEST SET.

Label Precision Recall F1 score # support/examples

0 (N) 0.98 0.98 0.98 1894
1 (S) 0.84 0.89 0.87 286

avg/total 0.97 0.96 0.96 2180

4) Fβ score: The F1 score is symmetric with respect to
precision and recall. We may assign recall to be β times
as important as precision (for some β). This gives us a
generalization of the F1 score, where we can control the
relative importance of precision and recall based on our
application [24].

Fβ =
(1 + β) ∗ precision ∗ recall
β ∗ precision+ recall

In our case, we assign β = 2 thus, prioritizing recall
over precision.

5) Confusion matrix: It is a tabular representation for binary
classification problem having four different outcomes:
true positive, false positive, true negative, and false
negative [24], [29]. It is useful for quickly calculating
the number of mislabeled data points. The two quantities
of our interest are the number of false positives, and the
number of false negatives. We wish to see both of these
quantities close to 0.

B. Results from test dataset

Table IV shows the result of running the Voting Classifier
on our test dataset consisting of 2180 examples, of which 286
belongs to the class of real secrets (S), and the rest are false
positives. It gives the measure of precision, recall and F1 score
for each target class. Label 0 represents the false positive class
and Label 1 represents the real secret class. The last row is the
weighted average of all the metrics, where the support values
are the number of examples belonging to each label.

A Soft-Voting Classifier with weights of [1, 1, 1] for Logistic
Regression, Naı̈ve Bayes and SVM results in an Fβ score of
88.1% and an F1 score of 86.7% (Label 1). Table V tabulates
the number of misclassified instances in each target class. Our
classifier misclassifies 47 out of 1894 false positives as secrets
and 31 out of 286 true positives as false positive.

TABLE V
NUMBER OF MISCLASSIFIED LABELS REPORTED BY VOTING CLASSIFIER

Classifier Misclassified
instances of
N (1894)

Misclassified
instances of
S (286)

Soft Voting Classifier - Logistic
Regression, Naı̈ve Bayes, SVM
with weights [1,1,1]

47 31

TABLE VI
CLASSIFICATION REPORT [30] ON RUNNING THE VOTING CLASSIFIER ON
A DATASET CONTAINING 361 POTENTIAL SECRETS (EXCLUDING GENERIC

PASSWORDS)

Label Precision Recall F1 score # support/examples

0 (N) 100 75 86 126
1 (S) 88 100 94 235

avg/total 92 91 91 361

C. Comparison with existing work

Table IV shows the result of applying a learned model
on a dataset consisting both API/private keys and generic
passwords. We keep our model simple from a computational
complexity perspective and from the results we can observe
that machine learning can help in drastically reducing false
positives, while detecting different kinds of secrets. Given that
existing works focus on specific type of secrets, we divide
our dataset based on the type of secrets. Table VI shows the
classification report [30] of running the Soft-Voting Classifier
on a dataset containing 361 examples of only API keys, asym-
metric private keys, and client secrets. These results are similar
and comparable to other existing works [8] and [9]. Table VII
shows a detailed comparison between existing works and our
machine learning model in terms of precision, recall and the
type of secrets detected. We find that a combination of the
regular expression approach and machine learning classifiers
(Logistic Regression, Naı̈ve Bayes and SVM) can achieve a
precision of 84% and a recall of 89%, while detecting different
kinds of secrets.

VI. EVALUATION OF OUR CLASSIFICATION MODEL

In this section, we evaluate our classification model using a
precision-recall curve that summarizes the trade-off between
precision and recall for a predictive model using different
probability thresholds [24]. The precision-recall plot uses
recall on the x-axis and precision on the y-axis, and the

2020 12th International Conference on Communication Systems & Networks (COMSNETS)

173Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 13,2022 at 12:04:35 UTC from IEEE Xplore. Restrictions apply.

TABLE VII
COMPARISON WITH RELATED WORK

Technique Secret types detected Precision Recall F1 score

Voting Classifier API keys, client secrets, private
keys

88 100 94

Voting Classifier API keys, client secrets, private
keys, generic passwords

84 89 87

Sinha et al. [9](Regular expression + Entropy) Amazon AWS API keys 91 100 NA
Sinha et al. [9](Regular expression + Entropy) Facebook API keys 73 100 NA

Meli et al. [8] (Regular expression + Entropy, patterns, dictionary words filter) API keys, client secrets, private
keys

99.29 NA NA

curve is created by connecting all precision-recall points of
a classifier at different thresholds.

As the recall increases, the precision decreases. In our case,
the range of the probability threshold is 0.008 to 0.97. The
extreme right end of the curve with high recall and low
precision guarantees an operator to have the least amount of
false negatives. In our case, by selecting a low threshold value
the user or the operator can reduce the chances of missing any
potential secrets. If one wants to reduce false positives signif-
icantly, they can increase the threshold value and move to the
upper left end of the curve achieving high precision. Therefore,
with this precision-recall curve and threshold tuning, the user
can pick the appropriate balance between precision and recall
for their application by selecting a corresponding threshold
depending on the dataset.

Fig. 1. Precision Recall Curve for target class 1 (Secrets)

Case Study

We now present an interesting case study that we discovered
in the course of our research. On tuning the precision-recall
curve shown in Figure 1 at a threshold of 0.4 (we classify a
‘potential secret’ as ‘True positive’ for a predicted probability
> 0.4), we achieve a precision of 59% and a recall of
97%. On analyzing the confusion matrix we find 190 false
positives out of 1894 and 10 false negatives out of 286. This
implies that 10 passwords are misclassified as false positives.
On further analyzing the misclassified passwords, we identify

them to be from the pool of generic passwords. Low entropy
generic passwords in test files such as ‘s3cr3t’ and low entropy
secrets with the English word ‘password’ in it are misclassified
as being not sensitive. This example demonstrates that we
need better features to represent generic passwords and more
training examples to make our machine learning model robust.

VII. ERROR ANALYSIS

As mentioned in Section IV-A, we keep aside ≈ 350 exam-
ples as the development set on which we perform error analysis
and identify the mislabeled entries. On manually analyzing the
mislabeled entries, we make the following observations:

1) Secrets having a $ symbol at the start
and having dots are misclassified as false
positives. For example: password hash =′

$2y$13$nJ1WDlBaGcbCdbNC5.5l4.sgy′ is
misclassified as a false positive.

2) False positives stored in a ‘test’ file having a high
entropy (range of 3 to 4) are wrongly classified as
passwords. These are the placeholders in the ‘test’ file
but are not secrets.

3) Test keys having ‘BEGIN PRIVATE KEY’ tags are
misclassified as passwords but are sample keys stored
in a test folder.

4) High entropy strings, which are placeholders in a config-
uration file (.yml extension), are misidentified as a real
secret. For example: CLIENT SECRET: {{cf-client-
secret-development}}

5) Real passwords having low entropy (less than 3) are
misclassified as false positives. For example, String
password = ‘pencil’ or ‘root’.

6) Strings such as ‘AKIAIOSFODNN7EXAMPLE’ which
are example keys but have the same format as an AWS
API key are misclassified as real secrets.

7) Passwords or secrets placed in a configuration or prop-
erties file are correctly identified as a real secret.

8) API keys, hash codes, and RSA keys which have high
entropy are correctly identified as true positives.

From our analysis, we observe that false positives which are
function calls or variables or example keys in Readme files are
correctly classified. Any real secrets placed in configuration,
settings or properties file and private keys placed in a file
with .key or .pem extensions are appropriately identified as
secrets. However, any placeholders in a configuration file or

2020 12th International Conference on Communication Systems & Networks (COMSNETS)

174Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 13,2022 at 12:04:35 UTC from IEEE Xplore. Restrictions apply.

test/example file having a high entropy and example API keys
with high entropy are almost always misclassified as real
secrets. Moreover, any outliers such as hashcodes having $
sign or dots in it, and low entropy generic passwords are
incorrectly classified as false positives. Our potential error
analysis provides future directions in designing better feature
set for generic passwords and outliers.

VIII. ETHICAL CONDUCT

In our research, we collect approximately 700 secrets by
scanning 300 git repositories (≈ 28 million files), but we do
not attempt to use any of the exposed secrets to verify the
validity of the secret. We understand that some secrets may
be non-sensitive, stale, or just invalid. Without actually testing
such secrets, it is not possible to know with certainty that a
secret is valid or exploitable [8]. We never try to use the leaked
secrets on any platform thus, avoiding any ethical issues, such
as obtaining any personal or sensitive information. Also, in
our dataset, we do not include the secret value, file name, and
repository name to avoid further leaking of secrets that can
hurt the repository owners and developers.

IX. CONCLUSION

We built a generalized framework to detect different types
of secrets and leveraged machine learning models to reduce
false positives generated by secret detector tools. Using a
Voting Classifier (combination of Logistic Regression, Naı̈ve
Bayes and SVM) we were able to reduce the number of false
positives considerably. Users can also fine-tune the machine
learning model by setting a different probability threshold to
optimize the model based on their application requirements.
As future work, we will design more representative features for
the group of generic passwords to reduce misclassifications.

REFERENCES

[1] “Removing sensitive data from a repository - github help,” help.github.
com/articles/removing-sensitive-data-from-a-repository/.

[2] K. Collins, “Developers keep leaving secret keys to corporate data out
in the open for anyone to take,” qz.com/674520/, May 2016.

[3] S. Knight, “10,000 AWS secret access keys carelessly left in code
uploaded to GitHub,” www.techspot.com/news, March 2014.

[4] D. Ayrey, “Trufflehog,” github.com/dxa4481/truffleHog, November 2018.
[5] Auth0, “Repo-Supervisor,” github.com/auth0/repo-supervisor, June

2017.
[6] AWS-Labs, “git-secrets,” github.com/awslabs/git-secrets, Dec 2015.
[7] UKHomeOffice, “repo-security-scanner,” github.com/UKHomeOffice/

repo-security-scanner, Feb 2017.
[8] M. Meli et al., “How bad can it git? characterizing secret leakage in

public github repositories,” in NDSS, 2019.
[9] V. S. Sinha et al., “Detecting and mitigating secret-key leaks in source

code repositories,” in 12th Working Conference on MSR, 2015.
[10] radekk, “Detecting secrets in source code,” auth0.engineering/, June

2017.
[11] G. developers, “API keys,” cloud.google.com/endpoints/docs/openapi/

when-why-api-key, 2019.
[12] Okta, “The Client ID and Secret,” www.oauth.com/oauth2-servers/

client-registration/client-id-secret/, July 2018.
[13] Facebook, “Access Tokens,” developers.facebook.com/docs/

facebook-login/access-tokens/, 2019.
[14] C. E. Shannon, “Prediction and entropy of printed english,” Bell Labs

Tech J., vol. 30, no. 1, 1951.

[15] A. D. Diego, “Automatic extraction of api keys from android applica-
tions,” Ph.D. dissertation, UNIVERSITA DEGLI STUDI DI ‘ ROMA
“TOR VERGATA”, 2017.

[16] Microsoft, “Getting started with Credential Scanner (CredScan),”
secdevtools.azurewebsites.net/helpcredscan.html, 2019.

[17] M. Henriksen, “gitrob,” github.com/michenriksen/gitrob, June 2018.
[18] GitHub-Developer, “REST API v3,” developer.github.com/v3/search/,

2019.
[19] GitPython, pypi.org/project/GitPython/, 2018.
[20] P. Gupta, “Decision Trees in Machine Learning,” towardsdatascience.

com/decision-trees-in-machine-learning-641b9c4e8052, May 2017.
[21] T. Yiu, “Understanding Random Forest,” towardsdatascience.com/

understanding-random-forest-58381e0602d2, June 2019.
[22] J. Brownlee, “Logistic Regression for Machine Learning,”

machinelearningmastery.com/, April 2016.
[23] D. Soni, “Introduction to Naive Bayes Classification,”

towardsdatascience.com/, May 2018.
[24] F. Pedregosa and et al., “Scikit-learn: Machine learning in Python,”

JMLR, vol. 12, 2011.
[25] A. Bronshtein, “A Quick Introduction to K-Nearest Neighbors Algo-

rithm,” medium.com/@adi.bronshtein/, April 2017.
[26] S. Raschka, “EnsembleVoteClassifier,” rasbt.github.io/mlxtend/user\

guide/classifier/EnsembleVoteClassifier/, 2014.
[27] Pandas, “Python Data Analysis Library,” pandas.pydata.org/, July 2019.
[28] E. Alpaydin, Design and Analysis of Machine Learning Experiments.

MIT Press, 2010.
[29] W. Koehrsen, “Beyond Accuracy: Precision and Recall,”

towardsdatascience.com/, March 2018.
[30] yellowbrick, “Classification Report yellowbrick 0.9.1 documentation,”

www.scikit-yb.org/en/latest/api/classifier/, 2016.

APPENDIX

A. List of features
We use the following binary features as input to our training and

test dataset.
1) Does potential secret have parentheses? (Possible function call)
2) Does potential secret have brackets? (Possible variable decla-

ration)
3) Does potential secret have periods? (Possible function call)
4) Does potential secret begins with a $ sign ? (Possible variable)
5) Does potential secret have the word ‘Password’ in it? (Possible

variable initialization)
6) Does potential secret have spaces? (Possible sentence/loops)
7) Does line with potential secret have HTML tags? (HTML file)
8) Does line with potential secret start with #,*, /*? (Possible

comment)
9) Does potential secret have an arrow in it? (Possible pointer

variable)
10) Does File or directory path have sub-string “test” or “example”

in its name? (Possible test secret)
11) Does potential secret have words like null/nil/undefined/

None/true/false in it? (Possible programming language initial-
ization)

12) Is potential secret a numerical value?
13) Entropy bins (To estimate the randomness of the potential

secret); Is entropy in range of [0,1) or [1,2) or [2,3) or [3,4)
or greater than 4?

14) The type of file in which potential secret is present; Is it in
a configuration file or in a configuration folder? (.confg, .cfg,
.yml file extension)?

15) Is it in a Settings file (Example: default.settings, settings.c)?
16) Is it in a Properties file (.properties file extension)?
17) Is it in a README file? (.rdoc, .rst, .md extension or

README.txt)?
18) Is it in a language file?
19) Does it have —–BEGIN PRIVATE KEY TAG—–?
20) Does file contain .pem, .key, .crt extension? (Possible private

key files/ certificates)

2020 12th International Conference on Communication Systems & Networks (COMSNETS)

175Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 13,2022 at 12:04:35 UTC from IEEE Xplore. Restrictions apply.

