
A Voting-Based Blockchain Interoperability Oracle
Michael Sober∗†, Giulia Scaffino∗‡, Christof Spanring§, Stefan Schulte∗†

∗Christian Doppler Laboratory for Blockchain Technologies for the Internet of Things
†Institute of Data Engineering, TU Hamburg, Hamburg, Germany

{michael.sober, stefan.schulte}@tuhh.de
‡Institute of Logic and Computation, TU Wien, Vienna, Austria

giulia.scaffino@tuwien.ac.at
§Pantos GmbH, Vienna, Austria
christof.spanring@bitpanda.com

Abstract—Today’s blockchain landscape is severely fragmented
as more and more heterogeneous blockchain platforms have been
developed in recent years. These blockchain platforms are not
able to interact with each other or with the outside world since
only little emphasis is placed on the interoperability between
them. Already proposed solutions for blockchain interoperability
such as naive relay or oracle solutions are usually not broadly
applicable since they are either too expensive to operate or very
resource-intensive.

For that reason, we propose a blockchain interoperability
oracle that follows a voting-based approach based on threshold
signatures. The oracle nodes generate a distributed private key
to execute an off-chain aggregation mechanism to collectively
respond to requests. Compared to state-of-the-art relay schemes,
our approach does not incur any ongoing costs and since the
on-chain component only needs to verify a single signature, we
can achieve remarkable cost savings compared to conventional
oracle solutions.

Index Terms—blockchain interoperability, blockchain oracles,
threshold signature, smart contracts

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

I. INTRODUCTION

In recent years, blockchain technology has become increas-
ingly important not only as the underlying technology for
cryptocurrencies [1] but also in many other application areas
including supply chain management [2], healthcare [3], and
others. This has led to the development of more and more
heterogeneous blockchain platforms [4], [5]. These are often
tailored to specific requirements, as there is not one blockchain
that is capable of fulfilling the (often) disjunctive needs of
different application areas.

Research and industry tend to not consider the interoper-
ability between different blockchain platforms, turning these
platforms into self-contained systems [4]. As a result, these
platforms are not able to collaborate to benefit from novel
features and properties of other or newly developed blockchain
platforms. The problem of weak interoperability does not only
exist within the world of blockchains but generally with sys-
tems that are outside the blockchain platform’s boundaries. As
an example, we can use the smart contract and decentralized
application platform Ethereum [6]. Smart contracts running
in the Ethereum Virtual Machine (EVM) cannot interact with
the outside world, which means that a smart contract is only
able to read and modify the state of the hosting blockchain.

For many applications, however, it is important to be able
to obtain data from the outside world. One can imagine, for
example, a decentralized application that needs flight data from
an airline to determine if a user has the right to compensation
in case a flight is delayed or a cross-chain token transfer that
requires the knowledge of whether the tokens were burned on
the original blockchain. This problem is also known as the
blockchain oracle problem [7].

Many attempts have been made to achieve interoperability
between different blockchain platforms [5] and to solve the
oracle problem [7], [8]. One possible approach to achieve
interoperability between two blockchain platforms is the use
of blockchain relays [9]. Such relays are usually provided
as smart contracts running on a “target blockchain”, i.e., the
blockchain which needs data from a “source blockchain”. With
blockchain relays, the state of one blockchain is replicated
within another blockchain, which enables callers of the relay
contract to verify the existence of a transaction on the source
blockchain.

Bitcoin and Ethereum use Merkle trees to store transactions
in a block, whereby the root of the Merkle tree is stored in the
block header. Therefore, a relay contract can use Simplified
Payment Verification (SPV) which utilizes Merkle proofs to
check whether a transaction is included in a block of a source
blockchain [9]. Since block header validation is done by a
smart contract on-chain, no trusted intermediary is needed to
relay the block headers. However, this has the disadvantage
that such relays also have considerable costs, since on-chain
verification is very expensive and blocks have to be relayed
continuously, even if they are perhaps not needed at all.

Another approach is to make use of blockchain oracles to
get information from the outside world. Blockchain oracles
are bridges between blockchain platforms and external data
sources. The task of a blockchain oracle is to query data from
external data sources and then to pass the data items to a smart
contract. The problem here is to ensure the authenticity and
integrity of the data because we have to trust the oracle that
it behaves honestly [8].

One can differentiate between oracles that are based on a
centralized or a decentralized approach [7]. Centralized oracles
represent a single point of failure since trust in a single oracle
node is required. Following the decentralized model, there is

ar
X

iv
:2

11
1.

10
09

1v
1

 [
cs

.C
R

]
 1

9
N

ov
 2

02
1

no single point of failure and the trust assumption moves from
one oracle node to multiple oracle nodes. Many decentralized
oracles follow a voting-based approach to provide data, i.e.,
the votes are aggregated to determine the overall result.
Unfortunately, the aggregation mechanism can become very
expensive, if carried out on-chain.

To make a step towards blockchain interoperability and
overcome the issues of current relay schemes and oracle solu-
tions, we investigate the application of Boneh-Lynn-Shacham
(BLS) threshold signatures to create an off-chain aggrega-
tion mechanism to reduce the operating costs of the oracle.
Further, we examine the use of Distributed Key Generation
(DKG) protocols to generate distributed private keys which
are necessary for the creation of the threshold signatures while
also preserving the decentralized nature of the blockchain.
We provide the system design of a voting-based blockchain
interoperability oracle that makes use of the aforementioned
concepts and enables clients to verify that a transaction is
included in another blockchain. Further, we deliver a prototyp-
ical implementation and show the applicability of our proposed
solution by conducting a security and cost analysis.

The remainder of this paper is organized as follows: In
Section II, we introduce some basic concepts needed in our
approach. Subsequently, we present the design of the oracle in
Section III. We follow up with implementation details of the
prototype in Section IV and evaluate our solution in Section V.
Afterward, we discuss related work in Section VI. Finally,
Section VII concludes the paper.

II. BACKGROUND

In the course of this section, we explain the basics of
BLS signatures, followed by a short description of Verifiable
Secret Sharing (VSS) which leads us to a discussion of DKG
protocols.

A. BLS Signatures

The BLS signature scheme [10] is based on elliptic curve
pairings (e : G1 × G2 → GT) respectively bilinear maps.
Using BLS, a public key PK is generated by multiplying
the selected private key SK with the generator G of a cyclic
group. To create a signature σ one has to hash the message
m on the curve H(m). This can be accomplished by using
a hashing algorithm like the Secure Hash Algorithm (SHA)-
256, whereby the resulting hash is used as the x-coordinate of
a point on the curve.

If it is not possible to find such a point using this x-
coordinate, it can simply be incremented until a valid point
is found. This is an essential difference from other signature
schemes in which the hash can be used directly. After that, the
signature can be calculated by multiplying the point with the
private key. To verify the signature, it comes down to checking
the bilinear pairings as can be seen in Eq. 1.

e(σ,G) = e(H(m), PK) (1)

This signature scheme has the advantage that it allows
to generate particularly short signatures. Another very im-
portant aspect especially for this work is that it is possible
to create threshold signatures [11] using a secret sharing
scheme (see Section II-B), whereby multiple participants share
a distributed private key and t out of n signature shares are
required to create a valid signature.

Also, it enables the aggregation of multiple signatures [12],
whereby we only need to verify two elliptic curve pairings to
verify the aggregate signature. This is particularly interesting
in the area of blockchain technology. For example, one could
instead of verifying every single signature of the transactions
in a block, only verify a single aggregate signature.

B. Verifiable Secret Sharing

With the help of a secret sharing scheme, it is possible to
divide a secret S into n shares whereby each party gets a
different share of S, but at least t shares need to be known to
recover S. Otherwise, it is not possible to get any knowledge
about S. These schemes are also known as (t, n) threshold
schemes.

One of the first secret sharing schemes has been proposed
by Shamir [13] in 1979. Using Shamir’s scheme, a dealer picks
a polynomial f(x) (see Eq. 2) of degree t − 1 whereby the
constant term a0 of the polynomial is equal to S and the
coefficients are chosen randomly.

f(x) = a0 + a1x+ · · ·+ at−1x
t−1 (2)

The secret can be shared with n different parties by evaluat-
ing the polynomial at the positions xn = 1..n and distributing
the values for f(xn) along with xn to the respective parties.
Since every polynomial of degree t−1 is defined by exactly t
points, we can make use of polynomial interpolation (e.g.,
using the Lagrange interpolation formula) to recover the
original polynomial and to evaluate it at position 0 to get the
secret.

One problem with this, however, is that Shamir’s scheme
does not take into account that a dealer could distribute
incorrect or inconsistent shares. Furthermore, the shareholders
could also return incorrect shares. We cannot assume that
the dealer and the shareholders are trustworthy, which is
why we need secret sharing schemes that also take this
kind of behavior into consideration, as is the case with VSS
schemes. By using such schemes, each party can verify that
it has received the correct information from the dealer and
that shareholders submitted the correct shares. Hereby, we
limit ourselves mainly to non-interactive VSS schemes, in
which only the dealer sends messages and no communication
between the other participants is necessary. This reduces the
communication overhead.

One commonly used example of such a scheme is Feldman’s
VSS [14]. Feldman’s VSS is based on Shamir’s secret sharing
scheme but additionally makes use of homomorphic encryp-
tion to commit to the secret and coefficients of the random
polynomial. The commitments are broadcast while the shares

are distributed through private channels. Each party can use
the commitments to verify the validity of its share, due to the
homomorphic property of the used encryption scheme.

A problem with this approach is that the commitment to
the secret also leaks information about the secret. This is
where Pedersen’s VSS [15], another very well-known scheme,
constitutes a more secure solution. Like Feldman’s VSS, it is
also based on Shamir’s secret sharing scheme, but it makes
use of a different commitment scheme that ensures that no
information about the secret is leaked unless one can find a
solution to the discrete logarithm problem.

C. Distributed Key Generation

In the previous section, we discussed VSS, whereby such
schemes ensure that a dealer distributes the secret correctly
and the shareholders cannot provide incorrect shares of the
secret. However, the dealer yet has to be trusted as it still
knows the secret. This is, among other things, a big concern
in the area of threshold cryptography, where we want that
only certain subsets of t ≤ n participants can jointly encrypt
data or create a signature. Since the dealer knows about the
distributed private key, it has the opportunity to encrypt data
or to create signatures without the consent of at least t out of
n participants.

To avoid this, a DKG protocol that allows the generation
of distributed private keys without the dependency on any
trusted third party can be used. In such protocols, no party
owns the private key and the private key is never reconstructed.
Many such protocols have been proposed over time [16]–[19],
whereby we limit ourselves to the first proposed DKG protocol
by Pedersen [16] to describe the basic concept.

In Pedersen’s DKG protocol, every participant acts as a
dealer during one of the n parallel executions of Feldman’s
VSS scheme to share a randomly picked secret. Each partic-
ipant publishes its commitments using a broadcast channel,
such as a blockchain. After that, every participant sends the
signed private shares to the other participants through private
channels. When receiving a share, each participant verifies the
share by using the previously published commitments. If it
is an invalid share, a complaint including the share and the
signature is broadcast. Each participant computes its private
share by summing up all shares received from the other parties
which shared their secret correctly and computes the public
key through the published commitments.

III. SYSTEM DESIGN

In this section, we propose the design of a voting-based
blockchain interoperability oracle. Initially, we give a brief
overview of the basic concept. We follow up with a descrip-
tion of the architecture and finally provide a comprehensive
definition of the functionality.

A. Overview

The proposed design for a voting-based blockchain inter-
operability oracle (see Figure 1) allows clients to verify that
a transaction is included in another blockchain. It uses an

A V

V

V

Signature

SigShare1

SigShare2

SigShare3

Oracle

Fig. 1. Overview of the System

off-chain aggregation mechanism (see Section III-E) based on
BLS threshold signatures. The oracle nodes are divided into
one aggregator and multiple validators which can collectively
respond to requests issued by clients (i.e., parties which are
interested in the verification of a transaction from another
blockchain). For this, the oracle nodes use a DKG protocol
to generate a distributed private key (see Section III-D),
whereby each node only knows its private key share and the
shared public key. Validators obtain the data from the other
blockchain and sign it with their private key share, while the
aggregator collects the data and the signature shares from the
validators to recover the final signature to submit it along with
the data to the smart contract. If the aggregator is not able
to collect at least the threshold of signature shares with the
same result, it cannot generate a valid signature. To ensure
reliability, the aggregator changes over time so that each oracle
node takes over the task of the aggregator at some point.

As an integral part of the system, we also apply an incentive
mechanism (see Section III-F) to encourage oracle nodes to
engage as part of the decentralized oracle and to behave
honestly. For this, the client must provide compensation for
the transaction fees that arise from submitting the result using
the oracle contract and also offer two additional rewards. These
additional rewards consist of the aggregation reward and the
validation reward. Without these rewards, the aggregator, as
well as the validators, would have no interest in participating
as they would only be providing their resources without getting
anything back.

B. Architecture

In our architecture, we can differentiate between the com-
ponents that are on the blockchain, i.e., the smart contracts,
and the components that are off-chain, i.e., the oracle nodes.

For the on-chain components, we make use of three different
smart contracts. The first of these is a registry contract, which
is responsible for managing all oracle nodes (see Section III-C)
and selecting the current aggregator (see Section III-E). Via
this smart contract, an oracle node discovers the other oracle
nodes and checks if they got selected as the current aggregator.

The next component is the oracle contract, which receives
requests from clients and sends them to all oracle nodes. Fur-
thermore, the oracle contract is also responsible for receiving
and verifying the responses from the aggregator (see Sec-

Aggregator: A0 Aggregator: A1 Aggregator: An

. . .

. . .

Fig. 2. Aggregator selection mechanism

tion III-E) and transferring the rewards. Further, it also stores
all responses and makes them available to the clients.

The last smart contract is the key contract, which is respon-
sible for managing the public key and initiating the generation
of new keys (see Section III-D). The off-chain component
consists of oracle nodes that can take on the tasks of the
aggregator as well as the validator.

C. Oracle Registration

The first step of an oracle node to join the decentralized
oracle is to register using the registry contract. During regis-
tration, the oracle nodes must provide their host address and
BLS public key. Furthermore, a stake must be deposited which
is used as a measure against Sybil attacks (see Section V-A3).
After an oracle node has registered, it is eligible to take part
in the run of the DKG protocol.

Another important point is that oracle nodes must also
be able to deregister. Furthermore, oracle nodes can also be
kicked out through a majority vote if they behave incorrectly
and lose their stake.

Particular care is taken to ensure that the system remains
fully operational. A distinction is made between the signature
threshold and the threshold of qualified validators. The valida-
tor threshold is required to ensure that the system continues to
work even if several validators fail or are misbehaving. Should
the number of validators fall below the validator threshold, a
new key generation process is triggered.

D. Distributed Key Generation

Each time a new oracle node registers, the registry contract
checks whether a new run of the DKG protocol should be
initiated. For this, we set a certain number, which indicates
how many new registrations are necessary. Should the number
be reached, the registry contract calls the key contract to
trigger the start of the DKG protocol. The key contract then
broadcasts a generation event containing the threshold which
should be used.

On receiving the generation event, oracle nodes need to wait
a certain amount of time (e.g., measured in blocks) to ensure
that every oracle node had a chance to receive the event since it
can take some time for a block to get propagated through the
network. Then, the oracle nodes execute the DKG protocol
with all currently registered oracle nodes. In our approach,
we make use of Pedersen’s DKG protocol (see Section II-C).
However, other DKG protocols could also be used, as long as

the run of the protocol is made transparent through the usage
of blockchain technology.

The entire run of the DKG protocol takes place off-chain,
which means that we need to get the generated public key as
well as the number of qualified validators into the blockchain,
i.e., we already have the oracle problem in our proposed
solution. One possibility of getting the public key into the
blockchain is to use an on-chain aggregation mechanism.
However, this approach has the disadvantage that it gets more
expensive the higher the number of oracle nodes becomes.
These costs could be neglected if the frequency of generating
new keys is very low. The same applies to the possibility of
using a dispute mechanism, which is used by our prototype
whereby only one oracle node submits the shared public key
and the other oracle nodes can dispute the key. Finally, one
could also assume that several other oracles already exist
that can be used for this task. These could be oracles that
may be pursuing a completely different approach, or it is
already another instance of the proposed oracle solution. With
the latter, however, we have a bootstrapping problem where
the first instance cannot call an existing oracle. Therefore,
one would have to use one of the first two approaches or
a centralized solution and change it later on.

E. Off-chain Aggregation

The task of aggregating the results and the signature shares
is taken over by an aggregator, which is one of the oracle
nodes. The aggregator changes in a cycle of n blocks based
on a round-robin mechanism (see Figure 2). This has several
advantages over an approach in which anyone can aggregate
and submit the voting results: It prevents multiple simul-
taneous submissions of which only the first one would be
successful, while all the other oracle nodes which also try
to submit an aggregation result have to pay the costs for the
failed transaction without getting compensated. This would
lead to the problem that oracle nodes are not incentivized
to submit a result for which it is not certain whether the
submission would be successful or not. Since this is relatively
difficult to determine, nodes could become reluctant to act as
an aggregator.

Another benefit is that this approach also consumes less
bandwidth since not all oracle nodes try to aggregate a result,
which reduces the number of exchanged messages. The fact
that the aggregator changes over time, still ensures that if an

1. notifyRequest

Oracle
Contract

2. getResults

8. result
Aggregator

6. resultShares

3. getTransaction

4. transaction
Validators Blockchain B

7. recover 5. verifyTransaction

Blockchain A

Oracle Nodes9. verify result

Fig. 3. Aggregation mechanism

aggregator should fail, the next aggregator will take its place
and normal operation can be continued.

The aggregation mechanism (see Figure 3) starts when
a client sends a request to the oracle contract. After that,
all oracle nodes are notified about the request (Step 1).
Subsequently, the aggregator begins to collect results from
the validators (Step 2), whereby the request only needs to
contain the request number so that the validators know which
request should be fulfilled. On receiving a request from the
aggregator, a validator retrieves the transaction from the target
blockchain (Step 3 and 4), verifies the transaction (Step 5), and
returns the response consisting of the response to the request
and the signature share (Step 6).

The aggregator collects results until it has at least threshold
t identical results with valid signature shares. If the aggregator
does not receive at least t results with valid signature shares, it
will not be able to recover the signature. This can happen, as
there can be temporary inconsistencies in blockchain systems,
validators fail or behave incorrectly.

Regarding the first problem, however, one can assume that
consistency will be achieved at some point (depending on the
source blockchain) and that the threshold of the validators
will agree. This is one of the advantages that is given by the
fact that this oracle is limited to providing data from other
blockchains. In this case, the aggregator can try again after a
while, or if the aggregator changes in the meantime, the new
aggregator will take over the request and repeat the voting.

If the aggregator has received enough shares, it recovers
the full BLS signature using Lagrange interpolation (Step 7).
After recovering the full BLS signature, the aggregator can
submit the result to the oracle contract by providing the result
and the signature (Step 8). The oracle contract then hashes
the result to a point on the curve and checks the elliptic curve
pairing (Step 9). If the elliptic curve pairing is successful,
the smart contract calculates the reward (see Section III-F)
and transfers it to the aggregator. Finally, the oracle contract
notifies the client that the result is available. Here, however,
one could also pursue a different approach in which the client
also defines a callback function which is to be called when
the result gets submitted. In this case, other problems would
have to be considered, such as the costs caused by the callback
function. Furthermore, the result is then not easy to obtain for
other clients.

F. Incentive Mechanism
Since the aggregator only submits a response including the

data and the threshold signature, the oracle contract does not

have any information about the validators who were contacted,
which makes it difficult to reward validators directly. We can-
not rely on the aggregator to provide us with this information
either, as it cannot be verified whether it is correct, as the entire
DKG protocol is carried out off-chain. Furthermore, it is not
particularly practical to reward each validator individually, as
this would result in very high fees for the client, not only
because the client has to pay each validator individually but
also because each transfer causes additional costs during the
execution of the smart contract.

Therefore, we propose to only reward the aggregator for
submitting the result. The aggregator gets compensated for
the transaction costs, receives an aggregation reward, and
additionally has the chance to win the validation reward with
a certain probability. The probability is scaled super-linearly
based on the deposited stake to encourage the creation of only
one identity [20]. If the aggregator is not lucky and does not
win the validation reward, the reward is maintained by the
oracle contract until an aggregator gets lucky enough to win
the accumulated validation rewards.

It is particularly important to ensure that the validators
are not able to predict whether the aggregator will win the
validation reward. Otherwise, validators would benefit from
not providing the aggregator with an answer to be able to
increase their own chances of winning when they become
aggregators themselves (see Section III-E). Therefore, we
leverage the unpredictable randomness provided by the signa-
ture which is recovered by the aggregator to decide whether
the aggregator receives the validation reward. In the case
of the aggregator, it does not matter whether it knows if it
will receive the validation reward before submitting, since the
aggregator is still encouraged to submit the result, as to at
least receive the aggregation reward. As for the validators, they
are still incentivized to answer the current aggregator with the
assumption that it will not receive the reward and thus increase
their winnable reward when it is their turn to be an aggregator.

Since a round-robin mechanism is used for aggregator
selection, care should be taken that the chance of winning the
validation reward is not too high. Validators who were recently
selected as the aggregator have a reason to assume that another
aggregator will win the validation reward during the time they
will have to wait to be selected again. They may be tempted
to stop validating until they believe otherwise. Therefore, the
chance should be small enough such that the validators can
still assume that no one will win the reward in the current
aggregation round.

IV. IMPLEMENTATION

After defining the system design of our solution, we cre-
ated a prototypical implementation. Our prototype enables
Ethereum-based blockchains to exchange data with each other.
However, the solution can be implemented to work with other
blockchains. For this, the target blockchain needs to have smart
contract capabilities and enable elliptic curve pairing checks.
In this section, we discuss the used technologies as well as
the implementation of the smart contracts and the oracle node
which is available as open-source software on GitHub1.

A. Smart Contracts

For the implementation of the prototype, we decided in favor
of Ethereum because it is one of the most popular second-
generation blockchains and accordingly a wide range of tools
is available. Another important factor was that Ethereum
already provides a precompiled contract that enables elliptic
curve pairing checks on the alt bn128 curve.

The registry contract stores all oracle nodes in an iterable
mapping and provides clients with the necessary functions to
retrieve them. For the aggregator selection mechanism, we
defined a threshold of six blocks after which the aggregator
will be switched. Further, after every third registration, the
registry contract calls the key contract to trigger a new
execution of the DKG protocol.

On receiving the call from the registry contract, the key
contract calculates the threshold based on the number of
currently registered oracle nodes and emits the key generation
event. For the threshold, we defined that the majority of all
registered nodes is necessary to produce a valid signature. For
submitting the key, we provide a function in the prototype via
which the public key can be set by one of the oracle nodes.
The public key can be disputed if the majority of oracle nodes
agree.

When implementing the oracle contract, we especially paid
attention to implementing the contract in a gas-efficient way.
Since storage operations are among the most expensive, we
have tried to keep the number of these low. If a client sends a
request to the oracle contract, the request is only emitted as an
event and not saved in storage. This is possible because only
oracle nodes need to be able to read the requests. However,
this approach involves more work for the oracle nodes since
they have to filter the blockchain for past events in case they
missed some of them.

As has already been mentioned before, we use a precom-
piled contract that allows pairing checks for the alt bn128
curve to verify the BLS signatures submitted by the aggregator.
These precompiled contracts are already existing contracts
that run outside the EVM and perform more complex tasks.
One of the advantages of these contracts is that they are
usually cheaper. Further, we make use of the try and increment
approach (see Section II) to hash the response on the curve.

1https://github.com/pantos-io/ioporacle

B. Oracle Node

The oracle node is implemented in the Go programming
language. For the implementation, we used the advanced
crypto library Kyber2. We adapted the library to work with
the alt bn128 curve used by Ethereum. The library provides
the necessary packages for threshold BLS signatures and the
implementation of a DKG protocol which is based on the
protocol proposed by Pedersen (see Section II-C). For the
DKG protocol, we needed a broadcast channel, for which
we opted for the IOTA tangle [21], as it enables fee-less
and publicly verifiable data exchange. Other broadcast chan-
nels (e.g., Ethereum) can also be used, but they may incur
additional costs. The oracle nodes use a Go client to create
transactions and send them to an IOTA node. These are zero-
value transactions that are only used to exchange messages
which are necessary to execute the DKG protocol.

Furthermore, the oracle nodes must be able to communicate
directly with one another. The aggregator must be able to
collect the results from the validators and all oracle nodes
need a private channel to each other to distribute the private
shares during the execution of the DKG protocol. Therefore,
we make use of gRPC Remote Procedure Calls (gRPC) to
connect the oracle nodes.

To interact with the smart contracts and retrieve data from
an Ethereum blockchain, the oracle nodes need access to an
Ethereum node whereby we make use of the Go Ethereum
client to connect to the Remote Procedure Call (RPC) server.
Further, we use a Go binding generator to create the coun-
terparts of the smart contracts in Go to produce as little
boilerplate code as possible.

V. EVALUATION

In this section, we analyze the security and the costs of the
proposed solution. This provides insight into if the solution
is applicable, what problems can arise and what needs to be
considered.

A. Security Analysis

To analyze the security of the oracle, we look at various
attack scenarios and the consequences that can result from
them. In particular, we are looking at lazy voting, free loading,
Sybil attacks, and the key submission.

We can categorize the oracle nodes based on the Byzantine-
Altruistic-Rational (BAR) model proposed in [22], which has
already found application in other works for security analysis
in the area of blockchain technology, e.g., [23]: Rational
oracle nodes deviate from the protocol as long as they will be
able to increase their benefits by doing so. Byzantine oracle
nodes, however, can unexpectedly deviate from the protocol
for unknown reasons, whereby it does not matter if it is
intentional or unintentional misbehavior and whether they gain
a benefit from it. Altruistic oracle nodes will always adhere
to the protocol no matter if the rational choice would provide
them with additional benefits.

2https://github.com/dedis/kyber

https://github.com/pantos-io/ioporacle
https://github.com/dedis/kyber

The proposed oracle solution applies an incentive mecha-
nism (see Section III-F) to encourage all oracle nodes to follow
the protocol. However, it should be mentioned that even if
all incentives are aligned properly, rational oracle nodes may
deviate from the protocol. The reason for this is that also
actors outside the oracle have to be taken into account. Hence,
it may seem rational for oracle nodes to follow the protocol
solely based on the applied incentive mechanism, but external
factors can influence their decision by providing better benefits
for arbitrary reasons.

1) Lazy Voting: In the lazy voting problem, rational oracle
nodes do not deliver the correct result but always provide
the same response to maximize their benefits. If e.g., it is
the case that a certain result occurs particularly often, it can
be more beneficial to always return the same result directly
instead of executing the request. This could lead to an incorrect
result being successfully submitted. In our proposed solution,
this would mean that a lazy validator would always respond
to the request “Is transaction tx included in blockchain B
and confirmed by at least n blocks?” with true. Since it is
more important for many use cases that a certain transaction
is included and confirmed, it can be assumed that requests
will be answered more frequently with true than with false.
However, this problem can be circumvented by modifying
the request. We expand the usual request and ask “In which
block on blockchain B is transaction tx included and is it
confirmed by at least n blocks?” instead. This question forces
lazy validators to read from blockchain B since otherwise, they
cannot know in which block the transaction is contained. The
lazy voting problem is also discussed in related work (see Sec-
tion VI-C) about decentralized oracles.

2) Free Loading: For the creation of a valid signature, the
aggregator only needs to collect as many valid signature shares
as the threshold t specifies. This means that in the best case
only t validators have to execute the request. However, all
other validators who have not contributed to the creation of
the signature also have the chance to win the validation reward,
when selected as an aggregator.

The problem here is that some validators may never respond
for the aforementioned reason. Even though rational oracle
nodes may be able to increase their benefits by not responding,
they should still be encouraged to respond. The reason for
this is that they minimize the risk of the aggregator not
being able to get enough responses, which leads to a lower
possible validation reward. Even if more than t validators
behave altruistically, it may be the case that no signature
can be created due to possible inconsistencies. This indicates
that it is more beneficial for the validators to always respond
to requests. Above all, validators do not have to perform
any particularly resource-intensive tasks, which means that
possible resource savings are low.

3) Sybil Attacks: Another important aspect that must be
considered is to what extent Sybil attacks are possible and
what the consequences are. A Sybil attack describes the threat
that single faulty participants can control multiple identities,
which enables them to compromise larger parts of a system.

Douceur [24] has shown that it is not possible to prevent such
attacks without a central authority except for conditions that
are not practicable for large-scale distributed systems. Since
we are in the area of blockchain technology where we usually
do not have a central authority, we have to consider such
attacks. Further, in permissionless blockchains, everyone is
allowed to join the system, whereby it is an easy task to create
new identities by simply generating a new key pair. The same
applies to the proposed oracle solution where any number of
oracle nodes can register.

We have already mentioned in Section III that oracle nodes
have to deposit a stake to make Sybil attacks more difficult.
The intention is to make the creation of new identities expen-
sive so that it becomes more difficult to control larger parts of
the oracle. On the other hand, we also make it more difficult
for honest oracle nodes to join the oracle. Therefore, the trade-
off for a more Sybil-resistant oracle is less decentralization
considering only oracle nodes that can provide the stake can
participate. Nevertheless, an attacker is still able to register
multiple oracle nodes to be able to create more signature
shares, which enables the attacker to gain more voting power.

In the worst case, an attacker could register threshold t or
more oracle nodes and decide on the result alone if it can
provide the necessary stake. To provide better Sybil resistance,
we further encourage the creation of only one identity, by
increasing the chance of winning the validation reward super-
linearly based on the deposited stake. As a result, it is more
beneficial for oracle nodes to create a single identity with a
higher stake than to split the stake between multiple identities,
as this gives them a greater chance of winning the validation
reward. Therefore, if one is only interested in gaining more
benefits, this approach resembles the rational choice.

4) Key Submission: The selected key submission mecha-
nism also imposes some security risks. As has already been
discussed, the public key can be submitted by using an on-
chain aggregation mechanism, dispute mechanism, or another
oracle solution for the key submission (see Section III-D).
While the use of an oracle solution appears to be more cost-
effective, we must be aware of the security risks that arise
from this approach.

A central oracle solution represents a single point of failure,
which can submit arbitrary public keys to then be able to create
valid signatures. As a result, a single participant could gain full
control over the oracle. However, if one uses a decentralized
approach, the risk is lower.

It must be ensured that both oracles, i.e., the oracle used
for the key submission and the interoperability oracle, are as
independent of each other as possible. Otherwise, oracle nodes
that participate in both oracles would be able to change the
result in their favor. In the worst case, this would mean that
a certain subset of oracle nodes could have complete control
over the oracle used for key submission and can thus select
the public key. This means that even if the attacker is unable
to create more than threshold t oracle nodes in the interoper-
ability oracle, it can get control over the interoperability oracle
if it can control the oracle for key submission.

B. Cost Analysis

We analyze the costs of the proposed solution by comparing
the implemented prototype with two alternative approaches
which do not make use of BLS threshold signatures. Ac-
cordingly, we implement two additional oracle contracts (On-
chain Oracle, ECDSA Oracle) which follow different aggre-
gation mechanisms. Furthermore, we compare the costs of
our approach with the costs incurred by ETH Relay [23], a
novel relay scheme (see Section VI-C), to examine how well
our approach performs compared to state-of-the-art schemes.
To ensure repeatability, the implementations, as well as the
evaluation scripts, are also included in the open-source project
on GitHub (see Section IV).

The On-chain Oracle implements an on-chain aggregation
mechanism whereas each oracle node calls the oracle contract
to submit a result. The ECDSA Oracle makes use of Elliptic
Curve Digital Signature Algorithm (ECDSA) signatures to
verify the result. In contrast to our proposed scheme, an
aggregator does not submit a single BLS signature but rather
submits several ECDSA signatures that are verified by the
oracle contract. Since there is no reasonable source of ran-
domness for either of these variants, the reward is paid out to
each oracle node that is part of the majority.

For the experiment, we use a private Ethereum blockchain
based on the Muir Glacier hard fork, on which we deploy all
smart contracts. In this experiment, we request the verification
of a transaction with every type of the aforementioned aggre-
gation mechanisms. Besides, we are changing the number of
participating oracle nodes to be able to determine how the
costs develop with an increasing amount of oracle nodes.

By comparing the different mechanisms (see Figure 4),
it can be seen that the costs for the on-chain aggregation
mechanism are considerably higher than those of the other
two. This is due to the reason that for the on-chain mechanism
more storage space is needed and each participant has to
create a transaction to submit its vote. In comparison, the
other mechanism in which an aggregator only submits several
ECDSA signatures, is more cost-efficient. The problem here,
however, is that the costs continue to rise with the number
of oracle nodes, even though the verification of ECDSA
signatures is a relatively cheap operation on the Ethereum
platform.

Our proposed solution based on BLS threshold signatures,
on the other hand, causes almost constant costs that are
independent of the number of oracle nodes, since only one
signature has to be verified. The costs are only almost constant
as the try and increment approach is used for hashing. As
can be seen in Figure 5, submitting the result consumes on
average 257,607 gas with a standard deviation of 21,671 gas.
Verifying a BLS signature is an expensive operation, but it is
considerably more cost-efficient as the number of oracle nodes
increases. With more than three oracle nodes, it is already
cheaper than the on-chain mechanism and with more than
15 nodes, it is also cheaper than the ECDSA mechanism.
Therefore, by using this approach we can achieve a higher

0 5 10 15 20 25 30

1

2

3

4

5
·105

of Oracle Nodes

G
as

C
on

su
m

pt
io

n

On-chain ECDSA BLS

Fig. 4. Gas consumption of the different aggregation mechanisms

BLS Result Submissions

2.5

3

3.5

·105

G
as

C
on

su
m

pt
io

n

Fig. 5. Gas consumption of the result submission with BLS signatures

degree of decentralization without increasing the costs.
Now that we have compared our approach with two dif-

ferent oracle solutions, we examine how the costs differ
compared to a relay solution. To conduct this analysis, we
choose ETH Relay because it is an advanced relay solution
that is specifically designed to be more cost-effective. For
the comparison, we assume a period of 100 blocks. Every
block header submission in ETH Relay consumes 284,041
gas with a standard deviation of 3,679 gas. As a result,
submitting 100 block headers consumes around 28,404,100
gas. Using our presented approach, we can submit 110 results
that incur roughly the same gas costs as the 100 block header
submissions of ETH Relay. The costs for the actual request
must also be taken into account. In the case of ETH Relay,
the relay contract needs to carry out a SPV and check the
membership of the block in the longest chain, which means
that the costs increase as the search depth increases. In the
case of our oracle-based relay, however, a request only ever
consists of an event being emitted, whereby the result can
simply be accessed directly, which results in constant costs.

At the moment, the application of interoperability solutions
is a rather infrequent occurrence, which presumably suggests
that not many requests are made. In the worst case, this could
mean that not a single transaction has to be verified for 100
blocks. With ETH Relay, the blocks still have to be submitted
and thus the costs must be sustained. Hence, keeping the relay
alive is a huge burden since these submitted block headers do
not yield any profit for the submitter. In contrast, our presented

oracle-based solution does not incur any costs in this scenario,
as every request is fulfilled on demand. However, if the number
of requests increases drastically such that it is more than
110, ETH Relay would be the more cost-efficient solution.
One must also note that in this case further adjustments can
be made to the oracle such that every request enables the
verification of all the transactions within a block, rather than
a single one, by providing the Merkle root of such a block.

VI. RELATED WORK

So far, different blockchain interoperability solutions have
been proposed. These include hash-locks, relay solutions, and
oracles. In the course of this section, we examine solutions
that are related to our work.

A. Hash-Locks

Hash-locks are a well-known technique to enable a basic
form of blockchain interoperability without oracles and relays,
e.g., to realize atomic cross-chain swaps [25]. Atomic swaps
allow multiple parties to exchange their assets across mul-
tiple blockchains. The involved parties make use of Hashed
Timelock Contracts (HTLCs) to escrow their assets with a
hashlock h and timelock t. Ownership of the asset is only
transferred if the receiver can provide the secret s such that
h(s) = h before t expires. However, attention must be
paid to specify the right timelock values and use the correct
deployment order of the contracts.

B. Relays

Frauenthaler et al. [23] propose ETH Relay, a novel relay
scheme for Ethereum-based blockchains. A validation-on-
demand pattern is used to keep the operating costs low by re-
ducing the number of expensive full block header validations.
Instead of validating every block header when it is submitted,
off-chain clients have a certain time frame in which they can
dispute submitted block headers. To make SPVs more efficient,
the authors also optimize the traversal of the blockchain, by
jumping from branching point to branching point instead of
iterating over the whole data structure. While the authors
achieve a remarkable cost reduction over traditional relay
solutions, the costs remain quite high.

In [26], the authors present zkRelay, which is a relay
solution that utilizes off-chain computations to validate batches
of block headers through the usage of Zero-Knowledge Suc-
cinct Non-Interactive Argument of Knowledge (zkSNARK)
proofs. Since these proofs are generated off-chain, the smart
contract only needs to be able to verify the proof, removing
the necessity of storing and validating every submitted block
header, whereby only the last block header of a batch is stored.
Although the solution offers improvements in the form of
scalability and cost optimization, there are tradeoffs in terms
of delay and hardware resources. Our solution, however, can
immediately retrieve data from the source blockchain and has
no excessive RAM consumption since no complex proofs are
generated.

C. Oracles

Provable [27] (formerly known as Oraclize) is a centralized
oracle service for various blockchain platforms, e.g., Ethereum
and EOS. The Provable blockchain oracle utilizes TLSnotary
authenticity proofs [28] to attest the authenticity of the data
retrieved from the originating source. Within TLSnotary, an
auditee can prove to an auditor the authenticity of information
retrieved from a Web server that is using the Hypertext
Transfer Protocol Secure (HTTPS) protocol, by utilizing the
features of the underlying Transport Layer Security (TLS)
protocols 1.0 and 1.1.

With Town Crier, the authors of [29] propose another
centralized blockchain oracle, which uses the HTTPS/TLS
protocol and additionally utilizes trusted hardware to ensure
the authenticity of the data. The implementation uses Intel’s
Software Guard Extensions (SGX) which allows the execution
of a process in a protected address space which guards the
process against malicious software running outside of the
enclave but also from various hardware attacks. While both
of the aforementioned oracle services offer a solution to the
oracle problem, the high level of centralization poses a major
problem regarding scalability and single points of failure.

In [30], the authors present ChainLink, a decentralized
oracle network. ChainLink offers a reputation-based voting
system whereby users can issue queries to the ChainLink smart
contracts. Queries are executed by the selected oracle nodes
which retrieve the results from different or overlapping sets of
data sources. These results are aggregated by a smart contract
which is also responsible for the calculation of the outcome.
Breidenbach et al. [31] further introduce a new off-chain
reporting protocol for ChainLink, which however follows a
different approach compared to our solution.

Peterson et al. [32] propose a decentralized oracle and
prediction market platform called Augur. Within Augur, users
can create prediction markets to get information that is
external to the system. Market participants trade shares of
those markets and reporters can vote by staking their REP
tokens (Augur’s native token) on one possible outcome. The
reached consensus of reporters is considered as the outcome.
Depending on the result, reporters receive a reporting fee
from the markets. Augur’s incentive mechanism encourages
participants to behave honestly to maximize their profits, while
misbehaving participants get penalized.

The authors of [33] propose ASTRAEA, another decentral-
ized voting-based blockchain oracle. Submitters, voters, and
certifiers play a voting game to decide on the truth value
of boolean propositions. These propositions are added to the
system by submitters, who pay fees to receive an answer to
the submitted proposition. Voters play a low-risk/low-reward
game by depositing a stake to answer a random proposition.
Certifiers on the other hand play a high-risk/high-reward game
whereby they can choose a proposition to certify but have to
place a high stake.

Merlini et al. [34] propose an extension to this protocol to
solve the lazy equilibrium problem, whereby all voters report

the same answer on all propositions. The authors describe a
paired-question protocol, in which submitters add queries with
two antithetic questions, whereby the oracle additionally needs
to check if both answers converge to different outcomes. With
this approach, the protocol ensures that honest voters receive
higher rewards than lazy voters.

While the approaches discussed above are interesting solu-
tions to the oracle problem, they are not specifically aiming
at providing blockchain interoperability and also implement
their mechanisms on-chain, which results in high costs.

VII. CONCLUSION

Research on closing the gaps between different blockchains
has already led to several concepts and solutions. However,
these are usually too expensive or very resource-intensive.

To overcome these issues, we propose a voting-based
blockchain interoperability oracle that uses an off-chain ag-
gregation mechanism based on BLS threshold signatures. The
oracle nodes are divided into one aggregator and multiple
validators and generate a distributed private key to collectively
decide on the result of a request. Validators read the data from
the other blockchain and sign it with their private key share.
The selected aggregator collects the results and the signature
shares from the validators to create a valid signature which is
submitted to and verified by the oracle contract. Our evaluation
shows that the proposed solution is more cost-efficient than
other oracle solutions and also incurs lower costs than state-
of-the-art relay schemes depending on the request rate.

In future work, we will investigate how we can improve
Sybil resistance and the submission of the shared public key.
We will also examine if there is still potential to further reduce
the costs by applying other signature schemes and enabling
requests such that multiple transactions can be verified.

ACKNOWLEDGMENT

The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for Re-
search, Technology and Development as well as the Christian
Doppler Research Association is gratefully acknowledged.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21260, 2008.

[2] S. Saberi, M. Kouhizadeh, J. Sarkis, and L. Shen, “Blockchain tech-
nology and its relationships to sustainable supply chain management,”
International Journal of Production Research, vol. 57, no. 7, pp. 2117–
2135, 2019.

[3] E. J. De Aguiar, B. S. Faiçal, B. Krishnamachari, and J. Ueyama, “A
survey of blockchain-based strategies for healthcare,” ACM Computing
Surveys, vol. 53, no. 2, 2020.

[4] S. Schulte, M. Sigwart, P. Frauenthaler, and M. Borkowski, “Towards
blockchain interoperability,” in International Conference on Business
Process Management. Springer, 2019, pp. 3–10.

[5] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A Sur-
vey on Blockchain Interoperability: Past, Present, and Future Trends,”
arXiv:2005:14282, 2020.

[6] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, vol. 151, 2014.

[7] H. Al-Breiki, M. H. U. Rehman, K. Salah, and D. Svetinovic, “Trust-
worthy blockchain oracles: review, comparison, and open research
challenges,” IEEE Access, vol. 8, pp. 85 675–85 685, 2020.

[8] J. Heiss, J. Eberhardt, and S. Tai, “From oracles to trustworthy
data on-chaining systems,” in 2019 IEEE International Conference on
Blockchain. IEEE, 2019, pp. 496–503.

[9] V. Buterin, “Chain interoperability,” R3 Research Paper, 2016.
[10] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil

pairing,” Journal of Cryptology, vol. 17, no. 4, pp. 297–319, 2004.
[11] A. Boldyreva, “Threshold signatures, multisignatures and blind sig-

natures based on the gap-diffie-hellman-group signature scheme,” in
6th International Workshop on Theory and Practice in Public Key
Cryptography. Springer, 2002, pp. 31–46.

[12] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in International
Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 2003, pp. 416–432.

[13] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[14] P. Feldman, “A practical scheme for non-interactive verifiable secret
sharing,” in 28th Annual Symposium on Foundations of Computer
Science. IEEE, 1987, pp. 427–438.

[15] T. P. Pedersen, “Non-interactive and information-theoretic secure ver-
ifiable secret sharing,” in Annual international cryptology conference.
Springer, 1991, pp. 129–140.

[16] ——, “A threshold cryptosystem without a trusted party,” in Work-
shop on the Theory and Application of of Cryptographic Techniques.
Springer, 1991, pp. 522–526.

[17] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” in International
Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 1999, pp. 295–310.

[18] A. Kate and I. Goldberg, “Distributed key generation for the internet,”
in 2009 29th IEEE International Conference on Distributed Computing
Systems. IEEE, 2009, pp. 119–128.

[19] E. Kokoris Kogias, D. Malkhi, and A. Spiegelman, “Asynchronous
distributed key generation for computationally-secure randomness, con-
sensus, and threshold signatures.” in 2020 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2020, pp. 1751–1767.

[20] Y. Cai, G. Fragkos, E. E. Tsiropoulou, and A. Veneris, “A truth-inducing
sybil resistant decentralized blockchain oracle,” in 2020 2nd Conference
on Blockchain Research Applications for Innovative Networks and
Services (BRAINS). IEEE, 2020, pp. 128–135.

[21] S. Popov, “The tangle,” White paper, 2018.
[22] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and

C. Porth, “Bar fault tolerance for cooperative services,” in Twentieth
ACM Symposium on Operating Systems Principles. ACM, 2005, pp.
45–58.

[23] P. Frauenthaler, M. Sigwart, C. Spanring, M. Sober, and S. Schulte,
“ETH relay: A cost-efficient relay for ethereum-based blockchains,” in
2020 IEEE International Conference on Blockchain. IEEE, 2020, pp.
204–213.

[24] J. R. Douceur, “The sybil attack,” in International Workshop on Peer-
to-Peer Systems. Springer, 2002, pp. 251–260.

[25] M. Herlihy, “Atomic cross-chain swaps,” in Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing. Association
for Computing Machinery, 2018, p. 245–254.

[26] M. Westerkamp and J. Eberhardt, “zkRelay: Facilitating Sidechains
using zkSNARK-based Chain-Relays,” in 2020 IEEE European Sym-
posium on Security and Privacy Workshops. IEEE, 2020, pp. 378–386.

[27] Provable. The provable blockchain oracle for modern dapps. Accessed:
2021-02-24. [Online]. Available: https://provable.xyz

[28] TLSnotary. (2014) Tlsnotary - a mechanism for independently
audited https sessions. Accessed: 2021-03-01. [Online]. Available:
https://tlsnotary.org/TLSNotary.pdf

[29] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier:
An authenticated data feed for smart contracts,” in 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2016,
p. 270–282.

[30] S. Ellis, A. Juels, and S. Nazarov. (2017) Chainlink: A decentralized
oracle network. Accessed: 2021-02-24. [Online]. Available: https:
//link.smartcontract.com/whitepaper

[31] L. Breidenbach, C. Cachin, A. Coventry, A. Juels, and A. Miller.
(2021) Chainlink off-chain reporting protocol. Accessed: 2021-07-16.
[Online]. Available: https://research.chain.link/ocr.pdf

[32] J. Peterson, J. Krug, M. Zoltu, A. K. Williams, and S. Alexander.
(2019) Augur: a decentralized oracle and prediction market platform

https://provable.xyz
https://tlsnotary.org/TLSNotary.pdf
https://link.smartcontract.com/whitepaper
https://link.smartcontract.com/whitepaper
https://research.chain.link/ocr.pdf

(v2.0). Accessed: 2021-02-24. [Online]. Available: https://augur.net/
whitepaper.pdf

[33] J. Adler, R. Berryhill, A. Veneris, Z. Poulos, N. Veira, and A. Kastania,
“Astraea: A decentralized blockchain oracle,” in 2018 IEEE Interna-
tional Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data (SmartData).
IEEE, 2018, pp. 1145–1152.

[34] M. Merlini, N. Veira, R. Berryhill, and A. Veneris, “On public decen-
tralized ledger oracles via a paired-question protocol,” in 2019 IEEE
International Conference on Blockchain and Cryptocurrency. IEEE,
2019, pp. 337–344.

https://augur.net/whitepaper.pdf
https://augur.net/whitepaper.pdf

	I Introduction
	II Background
	II-A BLS Signatures
	II-B Verifiable Secret Sharing
	II-C Distributed Key Generation

	III System Design
	III-A Overview
	III-B Architecture
	III-C Oracle Registration
	III-D Distributed Key Generation
	III-E Off-chain Aggregation
	III-F Incentive Mechanism

	IV Implementation
	IV-A Smart Contracts
	IV-B Oracle Node

	V Evaluation
	V-A Security Analysis
	V-A1 Lazy Voting
	V-A2 Free Loading
	V-A3 Sybil Attacks
	V-A4 Key Submission

	V-B Cost Analysis

	VI Related Work
	VI-A Hash-Locks
	VI-B Relays
	VI-C Oracles

	VII Conclusion
	References

