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Abstract. Highly efficient encryption and authentication of short messages is an essential
requirement for enabling security in constrained scenarios such as the CAN FD in auto-
motive systems (max. message size 64 bytes), massive IoT, critical communication domains
of 5G, and Narrowband IoT, to mention a few. In addition, one of the NIST lightweight
cryptography project requirements is that AEAD schemes shall be “optimized to be efficient
for short messages (e.g., as short as 8 bytes)”.
In this work we introduce and formalize a novel primitive in symmetric cryptography called a
forkcipher. A forkcipher is a keyed function expanding a fixed-length input to a fixed-length
output. We define its security as indistinguishability under chosen ciphertext attack. We give
a generic construction validation via the new iterate-fork-iterate design paradigm.
We then propose ForkSkinny as a concrete forkcipher instance with a public tweak and
based on SKINNY: a tweakable lightweight block cipher constructed using the TWEAKEY
framework. We conduct extensive cryptanalysis of ForkSkinny against classical and structure-
specific attacks.
We demonstrate the applicability of forkciphers by designing three new provably-secure,
nonce-based AEAD modes which offer performance and security tradeoffs and are optimized
for efficiency of very short messages. Considering a reference block size of 16 bytes, and ig-
noring possible hardware optimizations, our new AEAD schemes beat the best SKINNY-based
AEAD modes. More generally, we show forkciphers are suited for lightweight applications
dealing with predominantly short messages, while at the same time allowing handling arbi-
trary messages sizes.
Furthermore, our hardware implementation results show that when we exploit the inherent
parallelism of ForkSkinny we achieve the best performance when directly compared with the
most efficient mode instantiated with the SKINNY block cipher.

Keywords: Authenticated encryption, new primitive, forkcipher, ForkSkinny, lightweight
cryptography, short messages.

1 Introduction

Authenticated encryption (AE) aims at achieving the two fundamental security goals of symmetric-
key cryptography: confidentiality (privacy) and integrity (together with authentication). Histori-
cally, these two goals were achieved by the generic composition of an encryption scheme (for confi-
dentiality) and a message authentication code (MAC) [22]. For instance, old versions of major secu-
rity protocols such as TLS, SSH and IPsec included variants of generic composition, namely MAC-
then-Encrypt, Encrypt-and-MAC and Encrypt-then-MAC schemes, respectively. But it turned out
that this approach is neither the most efficient (as it needs processing the whole message twice) nor
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the most robust to security and implementation issues [21,50,51]; rather it is easy for practitioners
to get it wrong even when using the best known method among the three, i.e. Encrypt-then-MAC,
following standards [48].
The notion of AE as a primitive in its own right—integrating encryption and authentication by
exposing a single abstract interface— was put forth by Bellare and Rogaway [24] and independently
by Katz and Yung [38] in 2000. It was further enhanced by Rogaway [53] to authenticated encryp-
tion with associated data (AEAD). Being able to process associated data (AD) is now a default
requirement for any authenticated encryption scheme; hence we use AE and AEAD interchange-
ably. After nearly two decades of research and standardization activities, recently fostered by the
CAESAR competition (2014–2018) [26], we now have a rich set of general-purpose AEAD schemes,
some already standardized (e.g. GCM and CCM) and some expected to be adopted by new ap-
plications and standards (e.g. the CAESAR finalists Ascon [31], ACORN [64], AEGIS-128 [66],
OCB [41], COLM [9], Deoxys II [35], and MORUS [65]).
This progress may lead to the belief that the AEAD problem is “solved”. However, as evidenced
by the ECRYPT-CSA report in 2017 [13], several critical ongoing “Challenges in Authenticated
Encryption” still need research efforts stretching years into the future. Thus, it is interesting to
investigate to what extent CAESAR has resulted in solutions to these problems.

Our Target Challenge. Among the four categories of challenges—security, interface, perfor-
mance, mistakes and malice—reported by the ECRYPT-CSA [13], we aim at delving into the
performance regarding authenticated encryption of very short messages. General-purpose AEAD
schemes are usually optimized for handling (moderately) long messages, and often incur some
initialization and/or finalization cost that is amortized when the message is long. To quote the
ECRYPT-CSA report: “The performance target is wrong · · · Another increasingly common sce-
nario is that an authenticated cipher is applied to many small messages · · · The challenge here is
to minimize overhead.”
Therefore, designing efficient AEAD for short messages is an important objective as also evidenced
by NIST’s first call for submissions (May 14, 2018) for lightweight cryptography [49], where it is
stressed as a design requirement that lightweight AEAD submissions shall be “optimized to be
efficient for short messages (e.g., as short as 8 bytes)”.

Plenty of Use Cases. The need for high-performance and low-latency processing of short mes-
sages is identified as an essential requirement in a multitude of security and safety critical use
cases in various domains. Examples are Secure On board Communication (SecOC) in automotive
systems [6], handling of short data bursts in critical communication and massive IoT domains of
5G [1], and Narrowband IoT (NB-IoT) [2, 5] systems. For example, the new CAN FD standard
(ISO 11898-1) for vehicle bus technology [3, 4], which is expected to be implemented in most cars
by 2020, allows for a payload up to 64 bytes. In NB-IoT standards [2, 5] the maximum transport
block size (TBS) is 680 bits in downlink and 1000 bits in uplink (the minimum TBS size is 16
bits in both cases). Low energy protocols also come with stringent requirements on the maximum
packet size: the Bluetooth, SigFox, LoraWan and ZigBee protocols allow for maximum sizes of 47,
12, 51-255 (51 bytes for slowest data rate, 255 for the fastest), and 84 bytes packet sizes, respec-
tively. In use cases with tight requirements on delay and latency, the typical packet sizes should
be small as large packets occupy a link for more time, causing more delays to subsequent packets
and increasing latency. Furthermore, in applications such as smart parking lots the data to be sent
is just one bit (“free” or “occupied”), so a minimum allowed TBS size of 2 bytes (16 bits) would
suit the application. Even more, most medical implant devices, such as pacemakers, permit the
exchange of messages of length at most 16 bytes between the device programmer and the device.

Our Goal. Our main objective is to construct secure, modular (provably secure) AEAD schemes
that excel in efficiency over previous modular AEAD constructions at processing very short inputs,
while also being able to process longer inputs, albeit somewhat less efficiently. We insist that
our AEAD schemes ought to be able to securely process inputs of arbitrary lengths to be fairly
comparable to other general-purpose (long message centric) schemes, and to be qualified as a
full-fledged variable-input-length AEAD scheme according to the requirements in NIST’s call for
lightweight cryptography primitives.
Towards this goal, we take an approach that can be seen as a parallel to the shift from generic
composition to dedicated AEAD designs, but on the level of the primitive. We rethink the way



Forkcipher: a New Primitive for Authenticated Encryption of Very Short Messages 3

a low level fixed-input-length (FIL) primitive is designed, and how variable-input-length (VIL)
AEAD schemes are constructed from such a new primitive.

The Gap between the Primitives and AEAD. Our first observation is that there is a large
gap between the high level security goal to be achieved by the VIL AEAD schemes and the security
properties that the underlying FIL primitives can provide. Modular AEAD designs typically confine
the AE security to the mode of operation only; the lower-level primitives, such as (tweakable) block
ciphers, cryptographic permutations and compression functions, are never meant to possess any
AE-like features, and in particular they are never expanding as needed to ensure ciphertext integrity
in AEAD. Hence, a VIL AEAD scheme Π designed as a mode of operation for an FIL primitive
F plays two roles: not only does it extend the domain of the FIL primitive but it also transforms
and boosts the security property of the primitive to match the AEAD security notion. A natural
question then arises, whether by explicitly decoupling these two AEAD roles we can have more
efficient designs and more transparent security proofs.

The first, most obvious approach to resolving the latter question is to remove the security gap
between the mode and its primitive altogether, i.e., to start from a FIL primitive F which itself is
a secure FIL AEAD. This way a VIL AEAD mode will only have one role: a property-preserving
domain extender for the primitive F. Property-preserving domain extension is a well-studied and
popular design paradigm for other primitives such as hash functions [10,23,52].

Informally speaking, the best possible security that a FIL AEAD scheme with a fixed ciphertext
expansion (stretch) can achieve is to be indistinguishable from a tweakable random injective func-
tion, i.e., to be a tweakable pseudorandom injection (PRI) [32,55]. But starting directly with a FIL
tweakable PRI, we did not achieve a desirable solution in our quest for the most efficient AEAD
design for short messages.6 It seems that, interestingly, narrowing the security gap between the
mode and its primitive, but not removing the gap entirely, is what helps us achieve our ultimate
goal.

Contribution 1: Forkcipher – a New Symmetric Primitive. We introduce a novel primitive—
a tweakable forkcipher—that yields efficient AEAD designs for short messages. A tweakable
forkcipher is nearly, but not exactly, a FIL AE primitive; “nearly” because it produces expanded
ciphertexts with a non-trivial redundancy, and not exactly because it has no integrity-checking
mechanisms.7 When keyed and tweaked, we show how a forkcipher maps an n-bit input block M
to an output C of 2n bits. Intuitively, this is equivalent to evaluating two independent tweakable
permutations on M but with an amortized computational cost (see Figure 1 for an illustration
of the forkcipher’s high-level structure). We give a strict formalization of the security of such a
forkcipher. Our new notion of pseudorandom tweakable forked permutation captures the game of
indistinguishability of a n-bit to 2n-bits forkcipher from a pair of random permutations in the
context of chosen ciphertext attacks.

Contribution 2: Instantiating a Forkcipher. We give an efficient instance of the tweakable
forkcipher and name it ForkSkinny. It is based on the lightweight tweakable block cipher SKINNY [17].
Building ForkSkinny on an existing block cipher enables us to rely on the cryptanalyses result behind
SKINNY [11,12,56,61,67,68], and in addition, helps us provide systematic analysis for the necessary
forkcipher alterations. We also inherit the cipher’s efficiency features and obtain a natural and
consistent metric for comparison of the forkcipher performance with that of its underlying block
cipher.

SKINNY comes with multiple optimization tradeoffs in area, throughput, power, efficiency and
software performance in lightweight applications. Additionally, SKINNY also provides a number
of choices for its block size and tweak size which we incorporate naturally into ForkSkinny. We
have performed cryptanalyses of ForkSkinny against differential, linear, algebraic, impossible dif-
ferential, MITM, integral attacks and boomerang attacks. We have taken the security analysis
of ForkAES [16] into account to ensure that the same type of attacks is not possible against
ForkSkinny.

6 See Section 8 for a brief discussion.
7 We demonstrate that when used in a minimalistic mode of operation, a secure tweakable forkcipher

yields a miniature FIL AEAD scheme which achieves tweakable PRI security.
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To obtain ForkSkinny, we apply our newly proposed iterate-fork-iterate(IFI) paradigm: when
encrypting a block M of n bits with a secret key and a tweak (public), we first transform M into M ′

using rinit SKINNY rounds together with the tweakey schedule. Then, we fork the encryption process
by applying two parallel paths (left and right) each comprising r SKINNY rounds. Along left path
the state of the cipher is processed using tweakey schedule of SKINNY, thus producing the same
ciphertext as SKINNY. Along the right path the state is processed with a tweakey schedule which
differs from that of the left path at each round. The IFI design strategy also provides a scope of
parallelizing the implementation of the design. The IFI paradigm is conceptually easy, and supports
the transference of security and performance results based on the underlying tweakable cipher. We
also provide arguments for the generic security of the IFI construction paradigm assuming that
the building blocks are behaving as secure pseudorandom permutations. Our generic result is
indicative of the forkcipher structural soundness (but does not directly imply security, because a
real forkcipher is never built from a secure pseudorandom permutation). While a forkcipher inherits
some of the side-channel security features of its underlying structure, the fully-fledged side-channel
security of forkciphers is out of the scope of this paper.

Contribution 3: New AEAD Modes. In our work we follow the well-established modular AE
design approach for arbitrary long data in the provable security framework. There is no general
consensus in the cryptographic community if AEAD schemes can claim higher merits for being
modular and provably secure or not. For instance, 3 out of 7 CAESAR [26] finalists, namely
ACORN, AEGIS and MORUS are monolithic designs and do not follow the provable security
paradigms. Nonetheless, we trust and follow in the modular and provable security methodology
for its well-known security benefits [19, 54]. Moreover, the class of provably secure AEAD designs
includes all currently standardized AEAD schemes, as well as the majority of CAESAR finalists.
We also emphasize that, by defining the forkcipher as a new fully-fledged primitive and building
modes on top in a provable way, we clearly differentiate ourselves from the “prove-then-prune”
design approaches.

Regarding the state of the art in AE designs, it appears that aiming for a provably secure AEAD
mode that achieves the best performance for both long and short message scenarios is an ambitious
goal. Instead, we design high-performance AEAD modes for very short inputs whilst maintaining
the functionality and security for long ones. All our three modes, PAEF, SAEF and RPAEF can
be further implemented very efficiently when instantiated with ForkSkinny.

Our first scheme PAEF (Parallel AEAD from a forkcipher) makes ` calls to a forkcipher to process
a message of ` blocks. PAEF is fully parallelizable and thus can leverage parallel computation. We
prove its optimal security: n bit confidentiality and n-bit authenticity (for an n-bit block input).

Our second scheme RPAEF (Reduced Parallel AEAD from a forkcipher) is also fully parallelizable,
but in contrast to PAEF only uses the left forkcipher path for the first (`− 1) blocks, and the full
(left and right) forkcipher evaluation for the final block (first block for the single block-message).
When instantiated with ForkSkinny, RPAEF computes the equivalent of (`−1) calls to SKINNY and
1 call to ForkSkinny. This general mode optimization, as compared to PAEF, comes at the cost of
restrictive use of large tweaks (as large as 256 bits) and increased HW area footprint. Similarly to
PAEF, we prove that RPAEF achieves optimal quantitative security.

Our third scheme SAEF (Sequential AEAD from a forkcipher) encrypts each block “on-the-fly”
in a sequential manner (and hence is not parallelizable). SAEF lends itself well to low-overhead
implementations (as it does not store the nonce and the block counter) but its security is birthday-
bounded in the block size (n/2-bit confidentiality and authenticity for n-bit block).

Contribution 4: Hardware Performance and Comparisons. PAEF and SAEF need an equiv-
alent of about 1 and 1.6 SKINNY evaluation per block of AD and message, respectively (both encryp-
tion and decryption). RPAEF reduces further the computational cost for all but the last message
blocks to an equivalent of 1 SKINNY evaluation. When compared directly with block cipher modes
instantiated with SKINNY with a fixed tweak (to facilitate the comparison), such as the standardized
GCM [46], CCM [63], and OCB [42], we outperform those significantly for predominantly short
data sizes of up to four blocks. We achieve a performance gain in the range of (10− 50)% for data
ranging from 4 blocks down to 1 block, respectively. The additional overhead for all block-cipher-
based modes is incurred by at least two additional cipher calls: one for subkey/mask generation
and one for tag computation.
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We provide a hardware comparison (in Section 7, Table 10) of our three modes (with different
ForkSkinny variants) with Sk-AEAD. The Sk-AEAD is the tweakable cipher mode TAE [43], which
is same as ΘCB [42], instantiated with Skinny-AEAD M1/M2, M5/M6 [18]. We compare on the
bases of block size, nonce, and tag sizes variants. Based on the round-based implementations all of
our three modes perform faster (in terms of cycles) for short data (up to 3 blocks) with about the
same area. RPAEF beats its competitor for all message sizes at the cost of a area increase of about
20% (for only one of its variants). We further optimize the performances by exploiting the in-built
parallelism (//) in the ForkSkinny primitive and obtain superior performance results. Namely, for
messages up to three 128-bit blocks, the speed-up of PAEF and SAEF (both parallel (//)) ranges
from 25% to 50%, where the advantage is largest for the single-block messages. Most importantly,
the RPEAF, PAEF, and SAEF (//) instances result in fewer cycles than the ΘCB variants for all
message sizes at a small cost in area increase. However, the relative advantage of the latter instances
is more explicit for short messages; as it diminishes asymptotically with the message blocks. For
message sizes up to 8 bytes, which is emphasized by NIST [49], the Paef-ForkSkinny-64-192
instances are more than 58% faster with also a considerably smaller implementation size.

Related work. An AE design which bears similarities with our forkcipher idea is Manticore [8]
(the CS scheme). They use the middle state of a block cipher to evaluate a polynomial hash
function for authentication purposes. Yet, for a single block, Manticore needs 2 calls to the block
cipher (compared to ≈1.6 SKINNY calls in ForkSkinny), thus failing to realize optimal efficiency for
very short messages. The CS design, which has been shown insecure [59] (and fixed with an extra
block cipher call), necessitates a direct cryptanalysis on the level of an AE scheme, which is a
much more daunting task than dedicated cryptanalysis of a compact primitive. In [14], Avanzi
proposes a somewhat similar design approach which splits an intermediate state to process them
seperately. More concretely, it uses a nonce addition either prior to the encryption or in the middle
of the encryption rounds, specifically at the splitting phase. Yet, the fundamental difference with
our design is that we use a different framework (TWEAKEY [37]) which considers the nonce and
key together and injects a transformation of those throughout the forkcipher rounds. Moreover, it
seems impossible to describe the latter designs ( [8], [14]) as neither primitives nor modes with
clearly defined security goals, whereas our approach aims the opposite.

It is worth mentioning that the recent permutation based construction Farfalle [27] also has
superficially similar design structure. For example, in Farfalle with a fixed input length message it
is possible to produce two or more fixed length outputs. However, the design strategy of ForkSkinny
and Farfalle are different in two aspects: 1. ForkSkinny follows an iterative design strategy (with
round keys, round constants etc.), while Farfalle is a permutation based design, and 2. ForkSkinny
has an explicit tweak input which is processed using the tweakey framework.

2 Preliminaries

All strings are binary strings. The set of all strings of length n (for a positive integer n) is denoted
{0, 1}n. We let {0, 1}≤n =

⋃n
i=0{0, 1}n. We denote by Perm(n) the set of all permutations of

{0, 1}n. We denote by Func(m,n) the set of all functions with domain {0, 1}m and range {0, 1}n,
and we let Inj(m)n ⊂ Func(m)n denote the set of all injective functions with the same signature.

For a string X of ` bits, we let X[i] denote the ith bit of X for i = 0, . . . , `−1 (starting from the
left) and X[i . . . j] = X[i]‖X[i + 1]‖ . . . ‖X[j] for 0 ≤ i < j < `. We let left`(X) = X[0 . . . (` − 1)]
denote the ` leftmost bits of X and rightr(X) = X[(|X|−r) . . . (|X|−1)] the r rightmost bits of X,
such that X = leftχ(X)‖right|X|−χ(X) for any 0 ≤ χ ≤ |X|. Given a (possibly implicit) positive

integer n and an X ∈ {0, 1}∗, we let denote X‖10n−(|X| mod n)−1 for simplicity. Given an implicit
block length n, we let pad10(X) = X‖10∗ return X if |X| ≡ 0 (mod n) and X‖10∗ otherwise.

Given a string X and an integer n, we let X1, . . . , Xx, X∗
n←− X denote partitioning X into

n-bit blocks, such that |Xi| = n for i = 1, . . . , x, 0 ≤ |X∗| ≤ n and X = X1‖ . . . ‖Xx‖X∗, so
x = max(0, bX/nc−1). We let |X|n = dX/ne. We let (M ′,M∗) = msplitn(M) (as in message split)
denote a splitting of a string M ∈ {0, 1}∗ into two parts M ′‖M∗ = M , such that |M∗| ≡ |M |
(mod n) and 0 ≤ |M∗| ≤ n, where |M∗| = 0 if and only if |M | = 0. We let (C ′, C∗, T ) = csplitn(C)
(as in ciphertext split) denote splitting a string C of at least n bits into three parts C ′‖C∗‖T = C,
such that |C∗| = n, |T | ≡ |C| (mod n), and 0 ≤ |T | ≤ n, where |T | = 0 if and only if |C| =
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n. Finally, we let C ′1, . . . , C
′
m, C∗, T ← csplit-bn(C) (as in csplit to blocks) denote the result of

csplitn(C) followed by partitioning of C ′ into |C ′|n blocks of n bits, such that C ′ = C ′1‖ . . . ‖C ′m.
The symbol ⊥ denotes an error signal, or an undefined value. We denote by X ←$ X sampling

an element X from a finite set X following the uniform distribution.

3 Forkcipher

We formalize the syntax and security goals of a forkcipher. Informally, a forkcipher is a symmetric
primitive that takes as input a fixed-length block M of n bits with a secret key K and possibly a
public tweak T , and expands it to an output block of fixed length greater than n bits.

In this article we formalize and instantiate the forkcipher as a tweakable keyed function which
maps an n-bit input M to a 2n-bit output block C0‖C1. We additionally require that the input M
is computable from either of the two output blocks C0 or C1. Also, given one half of the output C0,
the other half C1 should be reconstructible from it, and vice versa. These are the basic properties
imposed in the syntax of our n-bit to 2n-bit forkcipher.

When used with a random key, the ideal forkcipher implements a pair of independent random
permutations π0 and π1 for every tweak T , namely C0 = π0(M) and C1 = π1(M). We define a
secure forkcipher to be computationally indistiguishable from such an idealized object - a tweak-
indexed collection of pairs of random permutations.

A trivial forkcipher. It may be clear at this point that the security notion towards which we
are headed can be achieved with two instances of a secure tweakable block cipher that are used in
parallel. One could thus instantiate a forkcipher by a secure tweakable block cipher used with two
independent keys (or a tweak-space separation mechanism).

The main novelty in a forkcipher is that it provides the same security as a pair of tweakable
block ciphers at a reduced cost. Yet this reduction of complexity has nothing to do with the security
goals and syntax; these only model the kind of object a forkcipher inevitably is, and which security
properties it aspires to achieve.

Fig. 1: Forkcipher encryption (two leftmost): the output selector s outputs both output blocks C0, C1 if
s = b, the “left” ciphertext block C0 if s = 0 (if s = b then C1). Forkcipher decryption (three rightmost):
the first indicator b = 0 denotes the left ciphertext block is input (b = 1 when right). The second output
selector s = i when the ciphertext is inverted to block M (middle); s = b when both blocks M,C′ are
output; and s = o when the other ciphertext block C′ is output.

3.1 Syntax

A forkcipher is a pair of deterministic algorithms, the encryption8 algorithm:

F : {0, 1}k × T × {0, 1}n × {0, 1, b} → {0, 1}n ∪ {0, 1}n × {0, 1}n

and the inversion algorithm:

F−1{0, 1}k × T × {0, 1}n × {0, 1} × {i, o, b} → {0, 1}n ∪ {0, 1}n × {0, 1}n.

The encryption algorithm takes a key K, a tweak T ∈ T , a plaintext block M and an output
selector s, and outputs the “left” n-bit ciphertext block C0 if s = 0, the “right” n-bit ciphertext

8 We again conflate the label for the primitive with the label of the encryption algorithm.
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block C1 if s = 1, and a both blocks C0, C1 if s = b. We write F(K,T,M, s) = FK(T,M, s) =

FT
K(M, s) = FT,s

K (M) interchangeably. The decryption algorithm takes a key K, a tweak T, a
ciphertext block C (left/right half of output block), an indicator b of whether this is the left or
the right ciphertext block and an output selector s, and outputs the plaintext (or inverse) block
M if s = i, the other ciphertext block C ′ if s = o, and both blocks M,C ′ if s = b. We write

F−1(K,T,M, b, s) = F−1K(T,M, b, s) = F−1
T
K(M, b, s) = FT,b,s

K (M) interchangeably. We call k, n
and T the keysize, blocksize and tweak space of F, respectively.

A tweakable forkcipher F meets the correctness condition, if for every K ∈ {0, 1}k,T ∈ T ,M ∈
{0, 1}n and β ∈ {0, 1} all of the following conditions are met:

1. F−1(K,T,F(K,T,M, β), β, i) = M
2. F−1(K,T,F(K,T,M, β), β, o) = F(K,T,M, β ⊕ 1)
3. (F(K,T,M, 0),F(K,T,M, 1)) = F(K,T,M, b)
4.
(
F−1(K,T, C, β, i),F−1(K,T, C, β, o)

)
= F−1(K,T, C, β, b)

In other words, for each pair of key and tweak, the forkcipher applies two independent permutations
to the input to produce the two output blocks. We focus on a specific form of T only: when
T = {0, 1}t for some positive t.

The formalization we just gave faithfully models how a forkcipher is used to realize its full
potential. As explained in Section 8, the most suitable FIL expanding cipher to construct modes of
operation is a forkcipher, which implements two parallel tweakable permutations. Such a primitive
can be formalized with a simpler syntax and equivalent functionality, such as by fixing the selector
to b in both the algorithms (one could discard an unneeded output block). Yet, such a syntax would
not align well with the way a forkcipher is used (for example in Section 6): our syntax of choice
allows the user of a forkcipher to precisely select what gets computed, to do so more efficiently
when both output blocks are needed, and without wasting computations if only one output block
is required. This will become clear upon inspection of ForkSkinny in Section 4.

3.2 Security Definition

We define the security of forkciphers by indistiguishability from the closest, most natural idealized
version of the primitive, a pseudorandom tweakable forked permutation, with the help of security
games in Figure 2. A forked permutation is a pair of oracles, that make use of two permutations,
s.t. the two permutations are always used with the same preimage, no matter if the query is made
in the forward or the backward direction.

An adversary A that aims at breaking a tweakable forkcipher F plays the games prtfp-real and
prtfp-ideal. We define the advantage of A at distinguishing F from a pair of random tweakable
permutations in a chosen ciphertext attack as

Advprtfp
F (A) = Pr[Aprtfp-realF ⇒ 1]− Pr[Aprtfp-idealF ⇒ 1].

3.3 Iterate-Fork-Iterate

One approach to build a forkcipher from an existing iterated tweakable cipher is by applying our
novel iterate-fork-iterate(IFI) paradigm. Following the IFI, in encryption a fixed length message
block M is transformed via a fixed number of rounds or iterations of a tweakable cipher to M ′.
Then, M ′ is forked and two copies of the internal state are created, which are iterated to produce
C0 and C1. Two of the main objectives of designing forkcipher in the IFI paradigm are (partial)
transference of security results and maintaining forkcipher security without increasing the original
cipher key size. In order to rule out that the IFI design succumbs to generic attacks (i.e., attacks
that treat the primitive as a blackbox), we carry out a provable generic analysis. This result
indicates structural soundness in the sense that no additional exploitable weakness are introduced,
but does not directly imply security of IFI forkciphers, because a real forkcipher never uses a
number of rounds in the partial iteration that is a secure pseudorandom permutation.
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Game prtfp-realF

K ←$ {0, 1}k
b← AEnc,Dec

return b

Oracle Enc(T,M, s)
return F(K,T,M, s)

Oracle Dec(T, C, β, s)
return F−1(K,T, C, β, s)

Game prtfp-idealF

for T ∈ T do πT,0, πT,1 ←$ Perm(n)
b← AEnc,Dec

return b

Oracle Enc(T,M, s)
if s = 0 then return πT,0(M)
if s = 1 then return πT,1(M)
if s = b then return πT,0(M), πT,1(M)

Oracle Dec(T, C, β, s)
if s = i then return π−1

T,β(C)

if s = o then return πT,(β⊕1)(π
−1
T,β(C))

if s = b then return π−1
T,β(C), πT,(β⊕1)(π

−1
T,β(C))

Fig. 2: Games prtfp-real and prtfp-ideal defining the security of a (strong) forkcipher.

IFI Generic Validation. We prove that a IFI forkcipher is a structurally sound construction
as long as the three components: three tweak-indexed collections of permutations are ideal tweak
permutations in Appendix A9. Fix the block length n and the tweak length t. Formally, for three
tweakable random permutations p, p0, p1 (i.e. p = (pT←$ Perm(n))T∈{0,1}t is a collection of inde-
pendent uniform elements of Perm(n) indexed by the elements of T ∈ {0, 1}t, and similar applies
for p0 and p1), the forkcipher F = IFI[p, p0, p1] is defined by FT,b(M) = pT,0(pT(M)), pT,1(pT(M)),

and by F−1
T,b,b

(C) = p−1T (p−1T,b(C)), pT,b⊕1(p−1T,b(C)) (the rest follows from the correctness). We note
that the three tweakable random permutations act as a key for IFI[p, p0, p1] and we omit them for
the sake of simplicity.

In Appendix A, Theorem 1 we prove the indistinguishability of the IFI construction from a
single forked random permutation in the information-theoretic setting.

Our IFI instantiation. IFI is motivated by the most popular design strategy for block cipher
design - iterative or round-based structure where the round functions are typically identical, up to
round keys and constants. In forkcipher, after an initial number of rounds rinit two copies of the
internal state are processed with different tweakeys. The number of rounds after the forking step,
r0 (left) and r1 (right), are determined from the cryptanalytic assurances of the IFI block cipher
instantiation. The block cipher round functions instantiate the forkcipher round functions (both
before and after forking), again up to constants and round key addition. The single (secret) key SK

security of both (left and right) forward FT,0, FT,1 and inverse F−1
T,0,i

(resp. F−1
T,1,i

) forkcipher
transformations, and the related-key (RK) security of FT,1 follow easily from the underlying security
of the block cipher. We further perform the SK and RK analysis for FT,0 and the reconstruction

F−1
T,0,o

(resp. F−1
T,1,o

) transformations.
In our instantiation, r0 = r1 as a direct consequence of the IFI design approach. Suppose, in

the SK model FT,0 is secure using rinit + r0 number of rounds. Such FT,0 can be instantiated using
any existing (secure) off-the-shelf tweakable block cipher, which is the approach taken here. Then,
having rinit+r1 rounds, where r1 < r0, for FT,1 will obviously weaken the security of the forkcipher.
This is true, assuming that we apply the same round function in both forking branches. In this
article we choose a tweakable SPN-based block cipher to construct a forkcipher.

4 ForkSkinny

We design the ForkSkinny forkcipher using the recently published lightweight tweakable block cipher
SKINNY [17]. As detailed in Table 1, we propose several instances, with various block and tweakey
sizes, in order to fit the different use cases. For simplifying the notation, in the rest of this section
we will denote the transformations Cb ← ForkSkinnyT,bK (M) as ForkSkinnyb, where b = 0 or 1 and

the corresponding inverse transformations ForkSkinny−1
T,b,i

K as ForkSkinny−1b .

9 We refer to all the materials in Appendix provided as supplementary material to the submission.
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4.1 Specification
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Fig. 3: ForkSkinny encryption with selector s = b. A plaintext M , a key K and a tweak T (blue) are used
to compute a ciphertext C = C0‖C1 (red) of twice the size of the plaintext. RF is a single round function
of SKINNY and TKS is round tweakey update function [17]. and BC is a branch constant that we introduce.

Overall Structure. We illustrate our design in Fig. 3 for ForkSkinny-128-192. This version takes a
128-bit plaintext M , a 64-bit tweak T and a 128-bit secret key K as input, and outputs two 128-bit
ciphertext blocks C0 and C1 (i.e., ForkSkinny(K,T,M, b) = C0, C1). The first rinit= 21 rounds of
ForkSkinny are almost identical to the one of SKINNY and only differ in the value of the constant
added to the internal state. After that, the encryption is forked, which means that two copies of the
internal state are further modified with different sets of tweakeys. For reasons that we detail below,
a constant denoted by BC (Branch Constant) is added to the internal state used to compute C1,
right after forking. Then, ForkSkinny0 iterates r0 = 27 rounds and ForkSkinny1 iterates r1 = 27
rounds. As illustrated in Figure 3, after forking the tweakeys for the round functions of ForkSkinny0
are computed from the tweakey state obtained after rinit rounds, while the tweakeys for the round
functions of ForkSkinny1 are derived from the tweakey state at the end of rinit + r0 rounds (denoted
by Tw). Figure 4 details the ForkSkinny construction, where Enc-SKinnyr(·, ·) denotes the SKINNY

encryption using r round functions taking as input a plaintext or state together with a tweakey.
Similarly, Dec-SKinnyr(·, ·) denotes the corresponding decryption algorithm using r rounds.

1: function ForkSkinnyEnc(M,K, T, s)
2: tk ← K||T
3: L ← Enc-Skinnyrinit(M, tk)
4: if s = 0 or s = b then
5: C0 ← Enc-Skinnyr0(L,TKSrinit(tk))
6: end if
7: if s = 1 or s = b then
8: tk′ ← TKSrinit+r0(tk)
9: C1 ← Enc-Skinnyr1(L⊕BC, tk′)

10: end if
11: if s = 0 return C0

12: if s = 1 return C1

13: if s = b return C0, C1

14: end function

1: function ForkSkinnyDec(C,K, T, b, s)
2: tk ← K||T
3: tk′ ← TKSrinit(tk)
4: if b = 0 then
5: L ← Dec-Skinnyr0(C, tk′)
6: else if b = 1 then
7: tk′′ ← TKSr0(tk′)
8: L ← Dec-Skinnyr1(Cb, tk

′′)⊕BC
9: end if

10: if s = i or s = b then
11: M ← Dec-Skinnyrinit(L, tk)
12: end if
13: if s = o or s = b then
14: if b = 0 then tk′ ← TKSr0(tk′)
15: C′ ← Enc-Skinnyrb⊕1

(L, tk′)
16: end if
17: if s = i return M
18: if s = o return C′

19: if s = b return M,C′

20: end function

Fig. 4: ForkSkinny encryption and decryption algorithms. Here TKS denotes the round tweakey scheduling
function of SKINNY. TKSr depicts r rounds of TKS.
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Round function. As stated previously, the round function used in ForkSkinny is derived from the
one of SKINNY and can be described as:

Ri = Mixcolumn ◦ Addconstant ◦ Addroundtweakey ◦ Shiftrow ◦ Subcell

where Subcell, Shiftrow and Mixcolumn are identical to the ones of SKINNY. The Addroundtweakey
function and the tweakeyschedule are also left unchanged, but more tweakeys than in SKINNY are
produced given that we have rinit + r0 + r1 rounds. To keep the paper short, we leave the details
of these operations to Appendix F.

The only change we made in the round function of ForkSkinny stands in the AddConstants step.
Instead of using 6 bit round constants (generated with an LFSR), we use 7 bit ones. This change
was required in order to avoid that the same round constant is added to different rounds, as 6-bit
round constants only provides 64 different values while some of our instances require a number of
iterations higher than that. These 7-bit round constants may be chosen randomly and fixed. In our
implementation we use an affine 7-bit LFSR to generate the round constant. The update function
is defined as:

(rc6||rc5|| . . . ||rc0)→ (rc5||rc4|| . . . ||rc0||rc6 ⊕ rc5 ⊕ 1)

The 7 bits are initialized to 0 and updated before using in the round function. The bits from the
LFSR are used exactly the same way as in Skinny. The 4× 4 array

c0 0 0 0
c1 0 0 0
c2 0 0 0
0 0 0 0


is constructed depending on the size of the internal state, where c2 = 0x2 and

(c0, c1) = (rc3||rc2||rc1||rc0, 0||rc6||rc5||rc4) when each cell is 4 bits

(c0, c1) = (0||0||0||0||rc3||rc2||rc1||rc0, 0||0||0||0||0||rc6||rc5||rc4) when each cell is 8 bits.

Branch Constant. We introduce constants to be added right after the forking point. When each
cell is made of 4 bits we add BC4, and when each cell is a byte we add BC8, where:

BC4 =


1 2 4 9

3 6 d a

5 b 7 f

e c 8 1

 BC8 =


01 02 04 08

10 20 41 82

05 0a 14 28

51 a2 44 88

 .

This addition is made right after forking, to the right branch leading to C1. To save memory and
since there are no constraints on the values used these constants are generated by clocking LFSRs,
given by: (x3||x2||x1||x0) → (x2||x1||x0||x3 ⊕ x2), and initialised with x0 = 1, x1 = x2 = x3 = 0
for BC4, and with the LFSR (x7||x6||x5||x4||x3||x2||x1||x0)→ (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5),
again initialised with x0 = 1 and all the other bits equal to 0 for BC8.

This introduction is necessary to avoid that two SubCells steps cancel each others when looking
at the sequence of operations relating C0 and C1 in the reconstruction scenario.

Variants. Other sets of parameters can be chosen. We propose some variants in Table 1. Note
that their exact number of rounds (that are the parameters r0 = r1 and rinit), were determined
from the security analysis of the cipher, detailed below.

4.2 Design Rationale

Using SKINNY. A forkcipher in IFI paradigm can be instantiated in various ways. We build our
forkcipher design reusing the iterative structure of the SPN-based lightweight tweakable block
cipher SKINNY. SPNs are very well-researched and allow to apply existing cryptanalysis techniques
to the security analysis of our forkcipher. A large number of cryptanalytic results [11,12,56,61,67,68]
have further been published on round reduced SKINNY showing that the full version of the cipher
has comfortable security margins. Unlike other lightweight block ciphers such as Midori [15] and
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PRINCE [30], the SKINNY design is constructed following the TWEAKEY framework, and in
addition supports a number of choices for the tweak size; an important aspect for the choice of
SKINNY for our design. SKINNY is good for lightweight applications on both hardware and software
platforms. We also assume that the target application platform does not have AES instruction set
available, hence avoiding AES based instantiation.

ForkSkinny Components. In ForkSkinny we have introduced features which aim to serve the
forkcipher construction characteristics and security requirements. The 7-bit LFSR introduced in
Addconstant avoids the repetition of round constants that could have possibly lead to slide attack -
like cryptanalyses. The Branch Constant added after forking ensures that in the reconstruction
scenario the two non-linear layers positionned around the forking point do not cancel each other.
Finally, the required round tweakeys are computed by extending the key schedule of SKINNY by
the necessary number of rounds. We chose this particular way of computing the extra tweakeys
due to its simplicity, ability to maximally reuse components of SKINNY, and because it was among
the most conservative options security-wise.

5 Security Analysis

For most attacks (for instance differential and linear cryptanalysis), the results devised on SKINNY

give sufficient arguments to show the resistance of ForkSkinny. First, the series of operations leading
M to C0 correspond exactly to one encryption with SKINNY (up to the round constants) so the
existing results transfer easily in this case. Then, when looking at the relation between M and C1

we have a version of SKINNY with different round constants and a different tweak after rinit rounds.
One way to give security arguments here is to look at what happens in the first rinit rounds and
independently, in the next r1 ones to have a (pessimistic) estimation (for instance of the number
of active Sboxes). A similar technique can be applied to study the reconstruction path. In both
cases, the very large security margins10 of SKINNY imply that ForkSkinny appears out of reach of
the attacks we considered.

Our full security analysis is detailed in Appendix G. It covers truncated, impossible differential,
boomerang, meet-in-the-middle, integral and algebraic attacks. We particularly stress that the
boomerang type attack which was shown against ForkAES [16], is not applicable to ForkSkinny.
This is due to two reasons: first, the number of rounds after the forking step protects against
such attacks by making the boomerang path of very low probability. Second, the branch constant
introduced in the right branch protects against such attacks by making the state of two branches
different immediately after forking. Note that the attack [16] against (9 out of 10 rounds) ForkAES
in fact uses the property that there is no difference between the states after forking.

We detail below our analysis of differential and linear attacks.

5.1 Detail of the Evaluation of Differential and Linear Attacks

Arguments in favor of the resistance of ForkSkinny to differential [29] and linear [45] cryptanalysis
can easily be deduced from the available analysis on SKINNY. First, we refer to the bounds on the
number of active Sboxes provided in the SKINNY specification document (recalled in Table 6 in

10 At the time of writing, the best attacks on SKINNY cover at most 55% of the cipher.

Primitive block tweak tweakey rinit r0 r1

ForkSkinny-64-192 64 64 192 17 23 23
ForkSkinny-128-192 128 64 192 21 27 27
ForkSkinny-128-256 128 128 256 21 27 27
ForkSkinny-128-288 128 160 288 25 31 31
ForkSkinny-128-384 128 256 384 25 31 31

Table 1: The ForkSkinny primitives with their internal parameters for round numbers rinit, r0 and r1 and
their corresponding external parameters of block and tweakey sizes (in bits) for fixed 128-bit keys.
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Appendix G). These bounds were later refined, and for instance Abdelkhalek et al. [7] showed that
in the single key scenario there are no differential characteristics of probability higher than 2−128

for 14 rounds or more of SKINNY-128.
The previous results transfer to the case where we look at a trail covering the path from the

input message up to C0. Due to the change in the tweakey schedule we expect different bounds in
the related-tweakey for the path from the input message up to C1. A rough estimate of the minimal
number of active Sboxes on this trail can be obtained by summing the bound on rinit rounds and
the bound on r1 rounds. For instance for ForkSkinny-128-192 (in TK2 model), 21 rounds activate
at least 59 Sboxes. If we consider that the branch starting from the forking point is independent
and can start from any internal state difference and tweakey difference (this is the very pessimistic
case), only 8 rounds after forking are necessary to go below the characteristic probability of 2−128.

The last case that needs to be evaluated is the reconstruction path scenario. An estimate can
be computed following the same idea as before: the number of active Sboxes can be upper bounded
by the bound obtained by summing the one for r0 rounds and the one for r1 rounds. If we consider
that r0 = r1 as for our concrete instances, we obtain that 16 rounds are required to get more
than 64 active Sboxes. For ForkSkinny-128-192, 30 rounds are required to get more than 64 active
Sboxes.

With respect to the parameters we chose, these (optimistic for the attacker) evaluations make
us believe that differential attacks pose no threat to our proposal.

Similar arguments lead to the same conclusion for linear attacks. Also, we refer to the FSE
2017 paper [40] by Kranz et al. that looks at the linear hull of a tweakable block cipher and shows
that the addition of a tweak does not introduce new linear characteristics, so that no additional
precaution should be taken in comparison to a key-only cipher.

6 Tweakable Forkcipher Modes

We demonstrate the applicability of forkciphers by designing provably secure AEAD modes of
operation for a tweakable forkcipher. Our AEAD schemes are designed such that (1) they are able
to process strings of arbitrary length but (2) they are most efficient for data whose total number
of blocks (in AD and message) is small, e.g. below four.

We define three forkcipher, nonce-based AEAD modes of operation: PAEF, SAEF and RPAEF.
The first mode is fully parallelizable and (quantitatively) optimally secure in the nonce respecting
model. The second mode SAEF sequentially encrypts “on-the-fly”, has birthday-bounded security,
and lends itself to low-overhead implementations. The third mode RPAEF is derived from the first
one; it only uses both output blocks of a forkcipher in the final call, allowing to further reduce
computational cost even for longer messages. The improved efficiency comes at the price of an
n-bit larger tweak, and thus increased HW area footprint.

A small AE primitive. While a secure forkcipher does not directly capture integrity, we show in
Section 6.9 that a secure forkcipher can be used as an AEAD scheme with fixed length messages
and AD in the natural way, provably delivering strong AE security guarantees.

6.1 Syntax and Security of AEAD

Our modes following the AEAD syntax proposed by Rogaway [53]. A nonce-based AEAD scheme
is a triplet Π = (K, E ,D). The key space K is a finite set. The deterministic encryption algorithm
E : K×N ×A×M→ C maps a secret key K, a nonce N , an associated data A and a message M
to a ciphertext C = E(K,N,A,M). The nonce, AD and message domains are all subsets of {0, 1}∗.
The deterministic decryption algorithm D : K×N ×A×C →M∪{⊥} takes a tuple (K,N,A,C)
and either returns a mesage M ∈ M, or a distinguished symbol ⊥ to indicate an authentication
error.

We require that for every M ∈ M, we have {0, 1}|M | ⊆ M (i.e. for any integer m, either all
or no strings of length m belong to M) and that for all K,N,A,M ∈ K × N × A ×M we have
|E(K,N,A,M)| = |M |+ τ for some non-negative integer τ called the stretch of Π. For correctness
of Π, we require that for all K,N,A,M ∈ K×N×A×M we have M = D(K,N,A, E(K,N,A,M)).
We let EK(N,A,M) = E(K,N,A,M) and DK(N,A,M) = D(K,N,A,M).
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We follow Rogaway’s two-requirement definition of AE security. A chosen plaintext attack of
an adversary A against the confidentiality of a nonce-based AE scheme Π is captured with the
help of the security games priv-real and priv-real. In both games, the adversary can make
arbitrary chosen plaintext queries to a blackbox encryption oracle, such that each query must have
a unique nonce, and such that the queries are replied with the scheme Π using a random secret
key (real), or with independent uniform strings of the same length (ideal). The goal of A is to
distinguish the two games. We define the advantage of A in breaking the confidentiality of Π as
Advpriv

Π (A) = Pr[Apriv-realΠ ⇒ 1]− Pr[Apriv-idealΠ ⇒ 1].
A chosen ciphertext attack against the integrity of Π is captured with the game auth, in which

an adversary can make nonce-respecting chosen plaintext and arbitrary chosen ciphertext queries
to a black-box instance of Π with the goal of finding a forgery: a tuple that decrypts correctly but
is not trivially knwn from the encryption queries. We define the advantage of A in breaking the
integrity of Π as Advpriv

Π (A) = Pr[AauthΠ forges] where “A forges” denotes a decryption query
that returns a value 6= ⊥. (For convenience, the games are included in Appendix H)

6.2 Parallel AE from a Forkcipher

The nonce-based AEAD scheme PAEF (“Parallel AE from a Forkcipher”) is parameterized by a
forkcipher F (Section 3) with T = {0, 1}t for a positive t. It is further parameterized by a nonce
length 0 < ν ≤ t − 4. An instance PAEF[F, ν] = (K, E ,D) has K = {0, 1}k and the encryption
(Figure 6) and decryption algorithms are defined in Figure 5. Its nonce space is N = {0, 1}ν , and

its message and AD space are respectivelyM = {0, 1}≤n·(2(t−ν−3)−1), and A = {0, 1}≤n·(2(t−ν−3)−1)

(i.e., AD and message can have at most 2(t−ν−3)−1 blocks). The ciphertext expansion of PAEF[F, ν]
is n bits.

In an encryption query, AD and message are partitioned into blocks of n bits. Each block is
processed with one call to F using a tweak that is composed of: 1) the nonce; 2) a three-bit flag
f0‖f1‖f2; 3) a (t− ν − 3)-bit encoding of the block index (unique for both AD and message). The
nonce-length is a parameter that allows to make a trade-off between the maximal message length
and maximal number of queries with the same key. The bit f0 = 1 iff the final block of message
is being processed, f1 = 1 iff a block of message is being processed, and f2 = 1 iff the final block
of the current input (depending on f1) is processed and the block is incomplete. The ciphertext
blocks are the “left” output blocks of F applied to message blocks, and the right “right” output
blocks are xor-summed with the AD output blocks, and the result xored to the final ciphertext
block.

The decryption proceeds similarly as the encryption, except that “right” output blocks of the
message blocks are reconstructed from ciphertext blocks (using the reconstruction algorithm) to
recompute the tag, which is then checked.

6.3 Security of PAEF

We state the formal claim about the nonce-based AE security of PAEF in Theorem 1.

Theorem 1. Let F be a tweakable forkcipher with T = {0, 1}t, and let 0 < ν ≤ t − 4. Then for
any nonce-respecting adversary A whose queries lie in the proper domains of the encryption and
decryption algorithms and who makes at most qv decryption queries, we have

Advpriv
PAEF[F,ν](A) ≤ Advprtfp

F (B) and Advauth
PAEF[F,ν](A) ≤ Advprfp

F (C) +
qv · 2n

(2n − 1)2

for some adversaries B and C who make at most twice as many queries in total as is the total
number of blocks in all encryption, respectively all encryption and decryption queries made by A,
and who run in time given by the running time of A plus an overhead that is linear in the total
number of blocks in all A’s queries.

Proof (sketch). The full proof appears in Appendix B. For both confidentiality and authentic-
ity, we first replace F with a pair of independent random tweakable permutations π0, π1, i.e.
π0 = (πT,0 ←$ Perm(n))T∈{0,1}t is a collection of independent uniform elements of Perm(n) in-
dexed by the elements of T ∈ {0, 1}t (and similarly π1 = (πT,1 ←$ Perm(n))T∈{0,1}t). We let
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1: function E(K,N,A,M)
2: A1, . . . , Aa, A∗

n←− A
3: M1, . . . ,Mm,M∗

n←−M
4: S ← 0n; c← (t− ν − 3)
5: for i← 1 to a do
6: �T← N‖000‖〈i〉c
7: ◦T← N‖000‖〈i〉c‖0n
8: S ← S ⊕ FT,0

K (Ai)
9: end for

10: if |A∗| = n then
11: �T← N‖001‖〈a+ 1〉c
12: ◦T← N‖001‖〈a+ 1〉c‖0n
13: S ← S ⊕ FT,0

K (A∗)
14: else if |A∗| > 0 or |M | = 0 then
15: �T← N‖011‖〈a+ 1〉c
16: ◦T← N‖011‖〈a+ 1〉c‖0n
17: S ← S ⊕ FT,0

K (A∗‖10∗)
18: end if . Do nothing if A = ε,M 6= ε
19: for i← 1 to m do
20: �T← N‖100‖〈i〉c
21: �Ci, S′ ← FT,b

K (Mi)
22: �S ← S ⊕ S′
23: ◦T← N‖100‖〈i〉c‖0n
24: ◦Ci ← FT,0

K (Mi)
25: ◦S ← S ⊕Mi

26: end for
27: if |M∗| = n then
28: �T← N‖101‖〈m+ 1〉c
29: ◦T← N‖101‖〈m+ 1〉c‖S
30: else if |M∗| > 0 then
31: �T← N‖111‖〈m+ 1〉c
32: ◦T← N‖111‖〈m+ 1〉c‖S
33: else
34: return S
35: end if
36: C∗, T ← FT,b

K (pad10(M∗))
37: �C∗ ← C∗ ⊕ S
38: return C1‖ . . . ‖Cm‖C∗‖left|M∗|(T )
39: end function

1: function D(K,N,A,C)
2: A1, . . . , Aa, A∗

n←− A
3: C1, . . . , Cm, C∗, T ← csplit-bn(C)
4: S ← 0n; c← (t− ν − 3)
5: for i← 1 to a do
6: �T← N‖000‖〈i〉c
7: ◦T← N‖000‖〈i〉c‖0n
8: S ← S ⊕ FT,0

K (Ai)
9: end for

10: if |A∗| = n then
11: �T← N‖001‖〈a+ 1〉c
12: ◦T← N‖001‖〈a+ 1〉c‖0n
13: S ← S ⊕ FT,0

K (A∗)
14: else if |A∗| > 0 or |T | = 0 then
15: �T← N‖011‖〈a+ 1〉c
16: ◦T← N‖011‖〈a+ 1〉c‖0n
17: S ← S ⊕ FT,0

K (A∗‖10∗)
18: end if . Do nothing if A = ε,M 6= ε
19: for i← 1 to m do
20: �T← N‖100‖〈i〉c
21: �Mi, S

′ ← F−1T,0,b
K (Ci)

22: �S ← S ⊕ S′
23: ◦T← N‖100‖〈i〉c‖0n

24: ◦Mi ← F−1T,0,i
K (Ci)

25: ◦S ← S ⊕Mi

26: end for
27: if |T | = n then
28: �T← N‖101|〈m+ 1〉c
29: ◦T← N‖101|〈m+ 1〉c‖S
30: else if |T | > 0 then
31: �T← N‖111‖〈m+ 1〉c
32: ◦T← N‖111‖〈m+ 1〉c‖S
33: else
34: if C∗ 6= S then return ⊥
35: return ε
36: end if
37: �C∗ ← C∗ ⊕ S
38: M∗, T

′ ← F−1T,0,b
K (C∗ ⊕ S)

39: T ′ ← left|T |(T
′); P ← rightn−|T |(M∗)

40: if T ′ 6= T return ⊥
41: if P 6= leftn−|T |(10n−1) return ⊥
42: return M1‖ . . . ‖Mm‖left|T |(M∗)
43: end function

Fig. 5: The PAEF[F, ν] (unmarked lines and �-marked lines) and the RPAEF[F, ν] (unmarked lines and
◦-marked lines) AEAD schemes. Here 〈i〉` is the cannonical encoding of an integer i as an `-bit string.
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Fig. 6: The encryption algorithm of PAEF[F] mode. The picture illustrates the processing of AD when
length of AD is a multiple of n (top left) and when the length of AD is not a multiple of n (top right),
and the processing of the message when length of the message is a multiple of n (bottom left) and when
the length of message is not a multiple of n (bottom right). The white hatching denotes that an output
block is not computed.

PAEF[(π0, π1), ν] denote the PAEF mode that uses π0, π1 instead of F. Using a standard hybrid

argument we have that Advpriv
PAEF[F,ν](A) ≤ Advprtfp

F (B) + Advpriv
PAEF[(π0,π1),ν]

(A), and also that

Advauth
PAEF[F,ν](A) ≤ Advprtfp

F (C) + Advpriv
PAEF[(π0,π1),ν]

(A).

For confidentiality, it is easy to see that in a nonce-respecting attack, every ciphertext block,
and all tags are processed using a unique tweak-permutation combination, and thus are uniformly
distributed. Thus Advpriv

PAEF[(π0,π1),ν]
(A) = 0.

For authenticity, we analyse the probability of forgery for an adversary A′ that makes a single
decryption query against PAEF[(π0, π1), ν] and then use a result of Bellare et al. [20] to obtain
Advauth

PAEF[(π0,π1),ν](A) ≤ qv ·Advauth
PAEF[(π0,π1),ν](A

′).

We analyze Advauth
PAEF[(π0,π1),ν](A

′) by a case analysis of all A′ possible forgery attempts. The

forgery succeeds with the highest probability 2n/(2n − 1)2 if the tweak used to process the final
block and the tag has been used before (the decryption query has the same nonce, same number of
blocks etc. as some previous enc. query) and the final message block is incomplete (this corresponds
to guessing n out of 2n bits of two images under two random permutations for which there was
exactly one other image sampled before). Thus, Advauth

PAEF[(π0,π1),ν](A
′) ≤ 2n/(2n − 1)2.

6.4 Sequential AE from a Forkcipher

SAEF (as in “Sequential AE from a Forkcipher,” pronounce as “safe”) is a nonce-based AEAD
scheme parameterized by a tweakable forkcipher F (as defined in Section 3) with T = {0, 1}t
for a positive t ≤ n. An instance SAEF[F] = (K, E ,D) has a key space K = {0, 1}k, nonce
space N = {0, 1}t−4, and the AD and message spaces are both {0, 1}∗ (although the maximal
AD/message length influences the security). The ciphertext expansion of SAEF[F] is n bits. The
encryption and decryption algorithms are defined in Figure 8 and the encryption algorithm is
illustrated in Figure 7.

In an encryption query, first AD and then message are processed in blocks of n bits. Each block
is processed with exactly one call to F, using a tweak that is composed of: (1) the nonce followed
by a 1-bit in the initial F call, and the string 0τ−3 otherwise, (2) three-bit flag f . The binary flag
f takes different values for processing of different types of blocks in the encryption algorithm. The
values f = {000, 010, 011, 110, 111, 001, 100, 101} indicate the processing of respectively: non-final
AD block; final complete AD block; final incomplete AD block; final complete AD block to produce
tag; final incomplete AD block to produce tag; non-final message block; final complete message
block; and final incomplete message block.

One output block of every F call is used as a whitening mask for the following F call, masking
either the input (in AD processing) or both the input and the output (in message processing) of
this subsequent call. The initial F call in the query is unmasked. The tag is the last “right” output
of F produced in the query. The decryption proceeds similarly to the encryption, except that the
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Fig. 7: The encryption algorithm of SAEF[F] mode. The bit noM = 1 iff |M | = 0. The picture illustrates
the processing of AD when length of AD is a multiple of n (top left) and when the length of AD is not
a multiple of n (top right), and the processing of the message when length of the message is a multiple
of n (bottom left) and when the length of message is not a multiple of n (bottom right). The white
hatching denotes that an output block is not computed.

plaintext blocks and the right-hand outputs of F in the message processing part are computed with
the inverse F algorithm.

6.5 Security of SAEF

We state the formal claim about the nonce-based AE security of SAEF in Theorem 2.

Theorem 2. Let F be a tweakable forkcipher with T = {0, 1}τ . Then for any nonce-respecting
adversary A whose makes at most q encryption queries, at most qv decryption queries such that
the total number of forkcipher calls induced by all the queries is at most σ, with σ ≤ 2n/2, we have

Advpriv
SAEF[F](A) ≤Advprtfp

F (B) + 2 · (σ − q)2

2n
,

Advauth
SAEF[F](A) ≤Advprtfp

F (C) +
(σ − q + 1)2

2n
+
σ(σ − q)

2n
+
qv(q + 2)

2n

for some adversaries B and C who make at most 2σ queries, and who run in time given by the
running time of A plus γ · σ for some constant γ.

Proof (sketch). The full proof appears in Appendix C. As with PAEF, we first replace F with a pair
of independent random tweakable permutations π0 = (πT,0 ←$ Perm(n))T∈{0,1}t and π1 = (πT,1 ←$

Perm(n))T∈{0,1}t . We let SAEF[(π0, π1), ν] denote the SAEF mode that uses π0, π1 instead of F.
For confidentiality, we further replace tweakable permutations π0, π1 by random “tweakable”

functions f1, f0, increasing the bound by 2 · (σ − q)2/2n+1 due to an RP-RF switch. Unless there
is a non-trivial collision of inputs to f0 and f1, confidentiality of SAEF[(f0, f1), ν] is perfect. With
such a collision appearing with a probability no greater than 2 ·(σ−q)2/2n+1, we obtain the bound.

In the proof of integrity, we replace certain random permutations (indexed by a specific subset
of tweaks) of in the tweakable permutations π0 and π0 by a tweakable functions with the same
signature, increasing the bound by (σ − q + 1)2/2n+1 due to an RP-RF switch. We then define a
variant of the auth game (call it auth′), which prevents A to win if an input collision occurs in any
of the encryption queries (i.e., the same input is fed to the same tweakable permutation/function
when processing two different blocks). The transition to the new game increases the bound by
σ(σ − q)/2n. Finally, (using the result of Bellare as for PAEF), we bound the probability of a
successful forgery in auth′ with help of a case analysis by 2 · qv/(2n − 1).

6.6 Reduced Parallel AE from a Forkcipher

The nonce-based AEAD scheme RPAEF (“Reduced Parallel AE from a Forkcipher”) is a derivative
of PAEF that only uses the left output block of the underlying forkcipher for most of the message
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1: function E(K,N,A,M)
2: A1, . . . , Aa, A∗

n←− A
3: M1, . . . ,Mm,M∗

n←−M
4: noM← 0
5: if |M | = 0 then noM← 1
6: ∆← 0n; T← N‖0τ−4−ν‖1
7: for i← 1 to a do
8: T← T‖000
9: ∆← FT,0

K (Ai ⊕∆)
10: T← 0τ−3

11: end for
12: if |A∗| = n then
13: T← T‖noM‖10
14: ∆← FT,0

K (A∗ ⊕∆)
15: T← 0τ−3

16: else if |A∗| > 0 or |M | = 0 then
17: T← T‖noM‖11
18: ∆← FT,0

K ((A∗‖10∗)⊕∆)
19: T← 0τ−3

20: end if . Do nothing if A = ε,M 6= ε
21: for i← 1 to m do
22: T← T‖001
23: Ci,∆← FT,b

K (Mi ⊕∆)⊕ (∆, 0n)
24: T← 0τ−3

25: end for
26: if |M∗| = n then
27: T← T‖100
28: else if |M∗| > 0 then
29: T← T‖101
30: else
31: return ∆
32: end if
33: C∗, T ← FT,b

K (pad10(M∗)⊕∆)⊕ (∆‖0n)
34: return C1‖ . . . ‖Cm‖C∗‖left|M∗|(T )
35: end function

1: function D(K,N,A,C)
2: A1, . . . , Aa, A∗

n←− A
3: C1, . . . , Cm, C∗, T ← csplit-bnC
4: noM← 0
5: if |C| = n then noM← 1
6: ∆← 0n; T← N‖0τ−4−ν‖1
7: for i← 1 to a do
8: T← T‖000
9: ∆← FT,0

K (Ai ⊕∆)
10: T← 0τ−3

11: end for
12: if |A∗| = n then
13: T← T‖noM‖10
14: ∆← FT,0

K (A∗ ⊕∆)
15: T← 0τ−3

16: else if |A∗| > 0 or |T | = 0 then
17: T← T‖noM‖11
18: ∆← FT,0

K ((A∗‖10∗)⊕∆)
19: T← 0τ−3

20: end if . Do nothing if A = ε,M 6= ε
21: for i← 1 to m do
22: T← T‖001

23: Mi,∆← F−1T,0,b
K (Ci ⊕∆)⊕ (∆, 0n)

24: T← 0τ−3

25: end for
26: if |T | = n then
27: T← T‖100
28: else if |T | > 0 then
29: T← T‖101
30: else
31: if C∗ 6= ∆ then return ⊥
32: return ε
33: end if
34: M∗, T

′ ← F−1T,0,b
K (C∗ ⊕∆)⊕ (∆, 0n)

35: T ′ ← left|T |(T
′); P ← rightn−|T |(M∗)

36: if T ′ 6= T return ⊥
37: if P 6= leftn−|T |(10n−1) return ⊥
38: return M1‖ . . . ‖Mm‖left|T |(M∗)
39: end function

Fig. 8: The SAEF[F] AEAD scheme.
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blocks. This allows for reducing the computational cost if the unevaluated fork can be switched
off (as in ForkSkinny) at the expense of increasing the required tweak size. It is parameterized by
a forkcipher F (Section 3) with T = {0, 1}t for a positive t ≥ n + 5. It is further parameterized
by a nonce length 0 < ν ≤ t − (n + 4). An instance RPAEF[F, ν] = (K, E ,D) has K = {0, 1}k
and the encryption (Figure 9) and decryption algorithms are defined in Figure 5. Its nonce space

is N = {0, 1}ν , and its message and AD space are respectively M = {0, 1}≤n·(2(t−(n+ν+3))−1), and

A = {0, 1}≤n·(2(t−(n+ν+3))−1) (i.e. AD and message can have at most 2(t−(n+ν+3)) − 1 blocks). The
ciphertext expansion of PAEF[F, ν] is n bits.

In an encryption query, AD and message are processed in blocks of n bits. Each block is
processed with one call to F using a tweak in which the first t bits are the same as in PAEF and
the remaining n bits are either equal to a “checksum” of of all AD blocks and all-but-last message
blocks, or to n zero bits (all other F calls). For all message blocks except the last one, only the
left output block of F is used. The decryption proceeds similarly as the encryption, except that
putative message blocks are reconstructed from ciphertext blocks to recompute the “checksum”.

Fig. 9: The encryption algorithm of RPAEF[F] mode. The picture illustrates the processing of AD when
length of AD is a multiple of n (top left) and when the length of AD is not a multiple of n (top right),
and the processing of the message when length of the message is a multiple of n (bottom left) and when
the length of message is not a multiple of n (bottom right). The white hatching denotes that an output
block is not computed.

6.7 Security of RPAEF

Theorem 3. Let F be a tweakable forkcipher with T = {0, 1}t and t ≥ n + 5, and let 0 < ν ≤
t − 4. Then for any nonce-respecting adversary A whose queries lie in the proper domains of the
encryption and decryption algorithms and who makes at most qv decryption queries, we have

Advpriv
PAEF[F,ν](A) ≤ Advprtfp

F (B) and Advauth
PAEF[F,ν](A) ≤ Advprfp

F (C) +
2 · qv

(2n − 1)

for some adversaries B and C who make at most twice as many queries in total as is the total
number of blocks in all encryption, respectively all encryption and decryption queries made by A,
and who run in time given by the running time of A plus an overhead that is linear in the total
number of blocks in all A’s queries.

Proof (sketch). The full proof appears in Appendix D. For both confidentiality and authenticity,
we first replace F with a pair of independent random tweakable permutations π0, π1, similarly as
for PAEF.

For confidentiality, it is easy to see that, exactly as with PAEF, in a nonce-respecting attack
every ciphertext block and all tags are processed using a unique tweak-permutation combination,
and thus are uniformly distributed. We have Advpriv

PAEF[(π0,π1),ν]
(A) = 0.

For authenticity, we combine a case analysis and the same result of Bellare et al. [20] as used
for PAEF to obtain the bound. The largest probability of forgery occurs in a case when the final
tweak reuses the nonce, flags and the counter from a previous query, and the adversary may forge
both by a collision on the checksum (with probability 1/(2n − 1)), and guessing the tag otherwise
(with probability 2−n). This is bounded by 2/(2n − 1).
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6.8 Aggressive RPAEF instance.

We remark that when instantiated with ForkSkinny-128-384 (smaller tweakey would not make sense
due to RPAEF’s tweak size requirements), one of the three 128-bit tweakey schedule registers is
effectively unused for all but last message blocks (it holds the the 0n tweak component). Based on
this observation, we consider a further, more aggressive optimization of RPAEF, which consists in
lowering the numbers of applied rounds to those from ForkSkinny-128-256 for all but last message
blocks, and for all AD blocks. A thorough analysis of this aggressive variant of ForkSkinny with
a number of rounds adjusted to the effective tweak size is left as an open question. We do note,
however that every tweak will only ever be used with a fixed number of rounds.

6.9 Deterministic MiniAE

In the introduction, we stated that a forkcipher is nearly, but not exactly, an AE primitive: we
clarify this statement in Appendix E). In short: it is easy to see that the syntax and security
goals of a forkcipher, as proposed in Section 3, capture neither AE functionality nor AE security
goals. Yet, constructing a secure PRI (with the same signature) from the forkcipher is trivial: just

set E(K,N,A,M) = F
N‖A,b
K (M) and D(K,N,A,C‖T ) = F−1

N‖A,0,i
K (C) iff T = F−1

N‖A,0,o
K (C).

We prove that when used in this minimalistic “mode” of operation, a secure forkcipher yields a
miniature AE scheme for fixed-size messages, which achieves PRI security [55].

7 Hardware Performance

Due to the independent branching of the data flow after the forking point, ForkSkinny comes with
inherent data-level parallelism that does not exist in normal (tweakable) blockciphers like SKINNY.
We illustrate how round-based hardware implementations amplify the performance boost of our
forkcipher modes, well beyond the reduction of blockcipher rounds as argued in Section 1. We give
a preliminary hardware implementation of all ForkSkinny variants in our three modes of operation,
and compare the results with Skinny-Aead [18] as the most fairly comparable TBC mode of
operation based on SKINNY.

Hardware synthesis. To stimulate future comparison, the hardware synthesis results (ASIC)
are obtained with the open source cell library Nangate45nm in typical operating conditions.
All designs face an identical synthesis flow and are synthesized with Synopsys Design Compiler

2017.N3, using compile. We allow the use of Scan flip-flops (FF). All designs are governed by the
exact same assumptions: the key and plaintext are assumed to be available from a 128-bit bus at
the interface and are stored directly in the computational registers, while the nonce is stored at
the level of the mode. While this interface can be optimized for a target usecase, note that changes
and optimizations to this interface affect all the compared designs identically.

Implementations. For Skinny-Aead, we use the publicly available SKINNY round-based encryp-
tion implementations11. The ForkSkinny implementations are a modification thereof, with a second
state register, branch constant logic and extended round constant. We then go on to obtain par-
allel ForkSkinny implementations, denoted (//), by adding an extra copy of the round function to
compute both branches simultaneously. We also implement the aggressive variant of RPAEF with
tuned-down number of SKINNY rounds (see Section 6.8).

Results. Figure 10 presents hardware synthesis results (ASIC) and cycle counts for encrypting a
blocks of associated data and m blocks of message for the AEAD schemes under consideration.
Messages as small as 8 bytes (64 bits) are considered separately, for which we select M6 as the
most suitable Skinny-Aead family member. For processing 128-bit blocks, concrete instances are
partitioned based matching tweakey lengths.

The hardware area is partly based on synthesis results (i.e. the primitive) and partly estimated
(i.e. the mode): Atotal = Aprim + Amode. As the area overhead associated with the modes of
operation is largely dominated by the storage elements of the mode, it can be estimated in first
order by counting 7.67 GE per bit of storage (size of a Scan FF in Nangate45nm). This estimate

11 Available at https://sites.google.com/site/skinnycipher/implementation
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includes all state that is required to compute ciphertext and tag, as well as storage for the nonce
(if applicable) and the block counter (if applicable). As an example, the number of storage bits for
Paef-128-256 is 128 + 96 + 29 = 253 bits and for Skinny-AEAD-M5 is 256 + 96 + 24 = 376 bits.

Interpretation. When implementations exploit the available primitive-level parallelism, the fork-
cipher performance boost is substantial. For instance, for messages up to three 128-bit blocks,
the speed-up of PAEF and SAEF (both parallel (//)) ranges from 25% to 50%, where the advan-
tage is largest for the single-block messages. RPAEF shows similar numbers, with a 5% − 22%
speed-up for the “aggressive” version. Most notably, for parallel instances(//) the forkcipher invo-
cations are essentially equally fast as block cipher invocations, which results in fewer cycles than
Skinny-Aead for all message sizes. However, this advantage diminishes asymptotically with the
message size (cf. the general column). For message sizes up to 8 bytes, emphasized by NIST [49],
the Paef-ForkSkinny-64-192 instances are more than 58% faster (40 vs. 96 cycles) at a consid-
erably smaller implementation size. Saef has the disadvantage of being a serial mode but it has
the smallest area (no block counter and nonce in tweak).

Implementation
(round-based)

Area [GE]
A = Aprim +Amode

fmax

[MHz]

Nb. cycles for encrypting (a+m) 64-bit blocks
a = 0 a = 1

General
m=1 m=2 m=3 m=0 m=1 m=2

Sk-Aead M6 6288 = 3895 + 2393 1075 96 96 144 48 96 96 48(da
2
e+dm

2
e+1)

Paef-64-192 4205 = 3246 + 959 1265 63 126 189 40 103 166 40(a+ 1.575m)
Paef-64-192 (//) 4811 = 3852 + 959 1265 40 80 120 40 80 120 40(a+m)

Implementation
(round-based)

Area [GE]
A = Aprim +Amode

fmax

[MHz]

Nb. cycles for encrypting (a+m) 128-bit blocks
a = 0 a = 1

General (m≥1)
m=1 m=2 m=3 m=0 m=1 m=2

Sk-Aead M5 6778 = 3895 + 2883 1075 96 144 192 96 144 192 48(a+m+ 1)

Paef-128-256 7189 = 5248 + 1941 1053 75 150 225 48 123 198 48(a+ 1.562m)
Paef-128-256 (//) 8023 = 6082 + 1941 1042 48 96 144 48 96 144 48(a+m)
Saef-128-256 (//) 7064 = 6082 + 982 1042 48 96 144 48 96 144 48(a+m)
Rpaef (aggr.) 8203 = 7244 + 959 1052 87 135 183 48 135 183 48(a+m)+39

Sk-Aead M1-2 8210 = 5020 + 3190 1000 112 168 224 112 168 224 56(a+m+ 1)

Paef-128-288 7989 = 5803 + 2186 971 87 174 261 56 143 230 56(a+ 1.553m)
Paef-128-288 (//) 9308 = 7122 + 2186 962 56 112 168 56 112 168 56(a+m)
Rpaef (cons.) 8178 = 7219 + 959 1052 87 143 199 56 143 199 56(a+m)+31

Fig. 10: Synthesis results and cycles for encrypting a blocks associated data and m blocks message.
Superior performance w.r.t. the baseline (Sk-Aead [18]) is indicated in bold. The area is a partly
synthesized and partly estimated. Rpaef (conservative) is RPAEF instantiated with ForkSkinny-
128-384, and Rpaef (aggressive) is described in Section 6.8.

8 Discussion and open questions

We presented three modes of operation for our novel tweakable forkcipher primitive ForkSkinny.
Each of the three modes reduces to a single call to the used forkcipher F in the case that the
input only consists of a single block of data (either AD or message, but not both). This, together
with an appropriate instantiation of F yields concrete AEAD schemes that excel in short-message
encryption and decryption performance. Apart from its practical ramifications, the theory in this
work sets the field of exploration of the novel forkcipher structure which by itself is an important
contribution in symmetric cryptography.

Starting from a FIL PRI. As mentioned in Section 1, we also considered designing the VIL
AEAD schemes as modes of operation of a FIL (tweakable) PRI, but we encountered a setbacks
when heading in this direction. The technique we use to process the final message block in PAEF,
SAEF and RPAEF requires the parallel-permutation structure of a forkcipher. When our finaliza-
tion gets replaced with a n-to-2n bit PRI, an encryption of a single-bit message would result in
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a ciphertext with 2n − 1 bits of expansion; an attempt to truncate the ciphertext would render
decryption impossible. Thus, we were unable to design an AE mode of a FIL PRI, that would
simultaneously use a single primitive call for the shortest queries and have a constant stretch.
Whether such a mode of operation exists is another interesting open question.

Constructing a FIL PRI. The second question is if we can find better instances of a FIL PRI.
Our preferred choice was lightweight-based and thus the ForkSkinny. Our concrete idea to build
a forkcipher was founded in the novel iterate-fork-iterate approach, yet we have not investigated
other advantageous generic design paradigms. Also, as evidenced by the result in Section 6.9,
there is an unavoidable birthday-type quantitative gap between the PRI security, and the kind of
security that ForkSkinny inherently possesses. A direct instance of a true FIL tweakable PRI is
another question we leave open.

Iterate-multifork-iterate. Another, interesting research direction would be to generalize the IFI
paradigm to fork into µ branches (IFI[µ]). This direction would be interesting from the cryptana-
lytic point of view (to see how security degrades with an increasing number of branches), as well
as from the application point of view (asymptotic reduction of PRP cost to ≈ 1/2).

Novel Forkcipher Instantiations For very resource constrained IoT devices in which our ForkSkinny-
based instances could not be considered a fitting lightweight option, our SAEF, PAEF and RPAEF
can be further instantiated using a forkcipher based on any off-the-shelf lightweight blockcipher.
The crux would be a careful realization of the tweakable forkcipher (possibly following the IFI
framework).

Beyond AEAD. This work opens a new design space in symmetric cryptography and is natu-
rally accompanied with plenty of open research questions. Possible direction is the research on the
broader (than AEAD) application space for forkciphers and cnstructions in those domains. Fork-
cipher is undoubtedly an interesting primitive beyond AEAD applications and provides a number
of examples for potential applications which can offer both efficiency and security optimizations
compared to classical symmetric primitive structures: 1. GF multiplication-less BBB secure MACs;
2. design of streamcipher-like primitives (a generalized forkcipher with B branches produces a key
stream in (B + 1)/2 BC calls); 3. BBB secure PRFs; 4. a generalized forkcipher with B branches
and B−1 near-uniform blocks computing in (B+1)/2 BC calls following the CENC framework [33]).
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A Generic Validation of the Iterate-Fork-Iterate Construction

Theorem 4. Fix a blocklength n and a tweaklength t. Then for any adversary A that makes at
most q queries we have that

Advprtfp
IFI[p,p0,p1]

(A) = 0

where p, p0, p1 are random tweakable permutations with n-bit blocks and t-bit tweaks.

Proof. We use the game Γ from Figure 11 to show that the IFI construction used with a triple
of random tweakable permutations yields a perfect forkcipher. For any partially defined permu-
tation π, we let D(π) ⊆ {0, 1}n denote those domain points with a defined image, and we let
R(π) ⊆ {0, 1}n denote those range points with a defined preimage. For simplicity, we will denote
IFI[p, p0, p1] as F.

We first prove by an induction over adversary’s queries that at any point during the execution
of game Γ , and for any T ∈ {0, 1}t the following properties hold:

1. D(πT,0) = D(πT,1) = D(pT),
2. R(pT) = D(pT,0) = D(pT,1),
3. R(πT,0) = R(pT,0),
4. R(πT,1) = R(pT,1),
5. pT,0(pT(M)) = πT,0(M) and pT,1(pT(M)) = πT,1(M) for each M ∈ D(pT)

At the beginning of the game Γ , pT, pT,0, pT,1, πT,0 and πT,1 are undefined for every T ∈ {0, 1}t, so
all four properties are trivially true. Then, assuming that all five properties are true, we examine
the effect of A’s Enc and Dec queries. Note that the value of the selector s does not influence the
computations that are updating the permutations p, p0, p1, π0, π1, and thus have no effect on the
properties we wish to examine.

When A makes an Enc(T,M, s) query, and πT,0(M) 6= ⊥ (i.e., M ∈ D(πT,0)) then none of
the partial permutations is extended, and the properties are trivially preserved by the induction
assumption.

If πT,0(M) = ⊥, then by property 1 the images of πT,1(M) and pT(M) are undefined as well.
We assign a new image to M in each of the three partial permutations, so property 1 is preserved.
The value Y is included in R(pT),D(pT,0) and D(pT,1), so property 2 is preserved as well. Similarly,
R(πT,0) and R(pT,0) both get extended by the same value Z0, and similarly R(πT,1) and R(pT,1)
both get extended by Z1. Thus properties 3 and 4 are preserved as well. Finally, if property 5 held
before the current query then it also holds after it is made, as pT(M) = Y , pT,0(Y ) = Z0 = πT,0(M)
and pT,1(Y ) = Z1 = πT,1(M).

When A makes a Dec(T, C, β) query and π−1T,β(C) 6= ⊥, no changes are made to the partial
permutations and all properties are trivially preserved. Otherwise, the value X extends the domains
of pT, πT,0 and πT,1, preserving property 1. The range of pT is extended by the value Y , as
are the domains of pT,0 and pT,1, preserving property 2. The adversarial input C is added to
both R(πT,β) and R(pT,β), and the value Zβ⊕1 extends both R(πT,β⊕1) and R(pT,β⊕1), so the
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1: proc initialize
2: bad← false
3: for T ∈ {0, 1}t do
4: pT ← ⊥; pT,0 ← ∅; pT,1 ← ∅
5: πT,0 ← ⊥; πT,1 ← ⊥
6: end for

1: proc Enc(T,M, s)
2: if πT,0(M) = ⊥ then
3: Z0 ←$ {0, 1}n\R(πT,0)
4: Z1 ←$ {0, 1}n\R(πT,1)
5: πT,0(M)← Z0

6: πT,0(M)← Z1

7: Y ←$ {0, 1}n\R(pT)

8: pT(M)← Y

9: pT,0(Y )← Z0

10: pT,1(Y )← Z1

11: end if
12: if s = 0 then return πT,0(M)
13: if s = 1 then return πT,1(M)
14: if s = b then return πT,0(M), πT,1(M)

1: proc Dec(T,C, β, s)
2: if π−1

T,β(C) = ⊥ then
3: X ←$ {0, 1}n\D(πT,β)
4: Zβ⊕1 ←$ {0, 1}n\R(πT,β⊕1)
5: π−1

T,β(C)← X
6: πT,β⊕1(X)← Zβ⊕1

7: Y ←$ {0, 1}n\D(pT,β)

8: p−1
T,β(C)← Y

9: p−1
T (Y )← X

10: pT,β⊕1(Y )← Zβ⊕1

11: end if
12: if s = i then return π−1

T,β(C)

13: if s = o then return πT,β⊕1(π−1
T,β(C))

14: if s = b then
15: return π−1

T,β(C), πT,β⊕1(π−1
T,β(C))

16: end if

Fig. 11: Game Γ used in the proof of security of the IFI[p, p0, p1] construction. The tweakable permutations
p, p0, p1, π0 and π1 are initially undefined.

properties 3 and 4 are preserved. Finally, we have pT(X) = Y , pT,β(Y ) = C = πT,β(X) and
pT,β⊕1(Y ) = Zβ⊕1 = πT,β⊕1(X), so property 5 is preserved as well.

It is easy to see, that the games Γ and prtfp-idealAF are equivalent. The framed lines in
Figure 11 do not affect the outputs of oracle queries; Γ just lazily samples two tweakable random
permutations π0 and π1, and uses them to reply the Enc and Dec queries the same way as in
prtfp-idealF. Therefore Pr[AΓ ⇒ 1] = Pr[Aprtfp-idealF ⇒ 1].

At the same time, in a non-trivial Enc(T,M) query, we lazily sample an image Y of pT(M),
which was previously undefined due to property 1. The lines 3 and 4 do a correct lazy sampling of
pT,0 and pT,1: the images pT,0(Y ) and pT,1(Y ) were previously undefined due to property 2, and the
sampling of the images Z0 and Z1 is correct due to properties 3 and 4. Finally, due to property 5,
we see that the Enc oracle actually implements the F construction.

Similarly, in a Dec(T,M, β) query, we sample a preimage Y of previously undefined p−1T,β(C)

(due to property 3 or 4). Then, the previously unassigned p−1T (Y ) and pT,β⊕1(Y ) (due to property 2)
get a correctly sampled preimage X, resp. image Zβ⊕1 (and sampling is correct due to property 1
and property 3 or 4). Finally, the assignment is compatible with the F construction (due to prop-
erty 5). Thus the games Γ and prtfp-realF are equivalent, and Pr[AΓ ⇒ 1] = Pr[Aprtfp-realF ⇒ 1].
This concludes the proof. ut

B PAEF confidentiality and Integrity Proofs

Proof. Below we prove the confidentiality and authenticity of the PAEF mode. For both confiden-
tiality and authenticity, we first replace F with a pair of independent random tweakable permuta-
tions π0, π1, i.e. π0 = (πT,0 ←$ Perm(n))T∈{0,1}t is a collection of independent uniform elements of
Perm(n) indexed by the elements of T ∈ {0, 1}t (and similarly π1 = (πT,1 ←$ Perm(n))T∈{0,1}t).
We let PAEF[(π0, π1), ν] denote the PAEF mode that uses π0, π1 instead of F. We have that

Advpriv
PAEF[F,ν](A) ≤ Advprtfp

F (B) + Advpriv
PAEF[(π0,π1),ν]

(A)
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because a distinguisher B for F can perfectly simulate the games priv-realPAEF[F,ν] and priv-realPAEF[(π0,π1),ν]

for A using its own oracles. In place of any Fρ call, B has to make a decryption query followed by
an encryption query. By copying A’s output, B can achieve the same advantage as A does, with
the same data complexity as A and a very similar running time. This implies that the gap between
these games is bounded by Advprtfp

F (B). By a similar argument, we have that

Advauth
PAEF[F,ν](A) ≤ Advprtfp

F (C) + Advauth
PAEF[(π0,π1),ν](A).

For confidentiality, it is easy to see that in a nonce-respecting attack, every message block is
processed with a unique tweak. Every ciphertext block and every tag is produced as the only
image under and independent random permutation (or a substring of such), and thus uniformly
distributed. The final block C∗ of every ciphertext is produced as a xor-sum of outputs of π0 and
π1, each produced with a unique tweak, and thus uniformly distributed. Since all ciphertexts are
uniformly distributed we get perfect confidentiality and hence our result.

For authenticity, we analyse the probability of forgery for an adversary that makes a single de-
cryption query against PAEF[(π0, π1), ν] and then use a result of Bellare [20] to extend our result
to multiple queries (still against PAEF[(π0, π1), ν]).

We will denote the encryption queries of A and the corresponding replies as (N i, Ai,M i) and
Ci for i = 1, . . . , q, where q is the number of encryption queries made by A. For each i we let
Ci1, . . . , C

i
mi , C

i
∗, T = csplit-bn(Ci). We let (N,A,C) denote the only decryption query of A and we

let C1, . . . , Cm, C∗, T = csplit-bn(C). When the forgery (N,A,C) is made, we have two base cases.
If the nonce N is fresh, then the forgery attempt is equivalent to guessing the value of a uniform
string of n bits, and thus succeeds with probability 2−n. This holds even if |T | < n, because the
rightmost (n− |T |) bits of the preimage of C∗ under π0 must have a specific value.

If N is reused, i.e. if N = N i for some N i ∈ {N1, . . . , Nq}, then we perform a case analysis.
Note that we can disregard all encryption queries except the ith, because their ciphertetxts are
computed using independent random permutations. Every case assumes the negation of all previous
case-conditions.

Case 1, |C|n 6= |Ci|n: We have several subcases.
– If |C| = n, then C is equal to a xor-sum of πT,0 images from the associated data (denoted

as TA in Figure 6), such that we can possibly have Ai = A. However, due to the assumption
in this case, we must have |M i| > 0, so the xor-sum TAi computed in the ith encryption
query is xor-masked with uniform bits produced by the processing of M i

∗. Therefore TAi is
statistically independent of Ci, and the adversary has no information when trying to guess
the value of the TA sum. The probability of a successful forgery is 2−n.

– When |C| > n, regardless if C has more or less blocks than Ci, the successful forgery is
equivalent to guessing the value of an image under π1 (respectively the value of n out of
2n bits produced by π−1T,0(leftn(T∗)) and πT,1(π−1T,0(leftn(T∗)))) such that the tweak T =
N‖110‖〈m + 1〉t−ν−3 (respectively T = N‖111‖〈m + 1〉t−ν−3) was not used before. The
probability of this event is 2−n.

The probability of a successful forgery in Case 1 is at most 2−n. In the following cases,
|C|n = |Ci|n.

Case 2, |A|n 6= |Ai|n: Again, we have a few subcases to consider.
– If |A|n > |Ai|n, a successful forgery is equivalent to guessing an output value of πT,0 with

a previously unused tweak (T = N‖0b1‖〈a + 1〉t−ν−3 for b ∈ {0, 1}) thanks to a > ai,
succeeding with probability of 2−n.

– If 0 < |A|n < |Ai|n, then a successful forgery is still equivalent to guessing an output value
of πT,0 with a previously unused tweak (T = N‖0b1‖〈a + 1〉t−ν−3 for b ∈ {0, 1}), thanks
to the three-bit domain-separation flag (which was set to 000 in the ith encryption query).
This succeeds with probability 2−n.

– Finally if |A| = 0, then |A|n 6= |Ai|n implies that |Ai|n > 0. Forging in this case is either
equivalent to guessing the image π(N‖011‖1),0(10n−1) such that the random permutation
π(N‖011‖〈1〉t−ν−3),0 was evaluated on no more than a single other input Ai∗‖10∗ 6= 10n−1 in
the whole game (if |C| = n), or to guessing the correct value for C∗. The former succeeds
with probability at most 1/(2n − 1), and the latter with probability at most 2−n (because
the corresponding output of πT,0 was masked by TAi).
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Thus the probability of a successful forgery in this case is at most 1/(2n− 1). In the remaining
cases, we have |C|n = |Ci|n > 1 and |A|n = |Ai|n > 0.

Case 3, |C| 6= |Ci| and |T | = n or |T i| = n: In this case, the forgery verification will use πT,1
with a fresh tweak T because the “incomplete-block” bit of the three-bit flag will have different
values in the processing of the decryption query, and in the processing of the ith encryption
query. The forgery succeeds with probability 2−n.

Case 4, |A| 6= |Ai| and |A∗| = n or |Ai∗| = n: This is analogous with the previous case; the prob-
ability of forgery is 2−n. In the remaining cases, we have |C|n = |Ci|n > 1, |A|n = |Ai|n > 0
and |T | > 0, |T i| > 0, |A∗| > 0, |Ai∗| > 0.

Case 5, |C| 6= |Ci| and |T | < n and |T i| < n: In this case, both the encryption query and the
decryption query use the same tweak T to process M i

∗ and C∗, T , respectively. There are two
conditions for the forgery to succeed. First, the preimage X = π−1T,0(C∗ ⊕ S) (as per line 38

in Figure 5) must be equal to W‖10n−|T |−1 6= M i
∗‖10n−|T

i|−1 (noting that the case condition
implies |T | 6= |T i|) for some W ∈ {0, 1}|T |. This is no easier than finding a fresh value whose
preimage falls into a set of size 2|T |. With a single image of π−1T,0 already used, this succeeds with

probability bounded by (2|T |)/(2n−1). Secondly, the image Y = πT,1(X) must be equal to T‖Z
for some Z ∈ {0, 1}n−|T |, conditioned on X having the correct format. This is equivalent to
guessing a fresh image under πT,1 with (n−|T |) free bits. As a single image of πT,1 has been used
already, this happens with probability at most (2n−|T |)/(2n−1). The probability of a successful
forgery in this case is therefore bounded by (2|T |)/(2n − 1) · (2n−|T |)/(2n − 1) = 2n/(2n − 1)2.

Case 6, |A| 6= |Ai| and |Aa| < n and |Aia| < n: In this case, the final blocks A∗ and Ai∗ are pro-

cessed by the same random permutation πT,0, but as A∗‖10n−|A∗| 6= Ai∗‖10n−|A
i
∗|, successfully

forging in this case is equivalent to guessing the yet unsampled image πT,0(A∗‖10n−|A∗|). With
a single image of πT,0 used before, this happens with probability at most 1/(2n − 1).

Case 7, |C| = |Ci| and |A| = |Ai|: In this case, there must be at least a single block of either AD
or ciphertext where the two queries differ. We investigate the following subcases.
– If the forgery N,A,C differs from N,Ai, Ci only in C∗‖T , then , if we ran the decryption

algorithm on N,Ai, Ci and N,A,C in parallel, the values Si and S used on the line 38 of
the decryption algorithm in Figure 5 would be the same, and thus necessarily (C∗⊕S)‖T 6=
(Ci∗ ⊕ Si)‖T i. The probability of a successful forgery is at (2n − 1)−1 if |T | = n (inverse
of C∗ ⊕ S has not yet been sampled) and at most 2n/(2n − 1)2 otherwise (by a similar
argument as in Case 5).

– If A,C‖T and Ai, Ci‖T i differ in a single block, such that C∗‖T = Ci∗‖T i, a forgery is
impossible (because πT,0 and πT,1 are all permutations).

– If there are at least two blocks in A1, . . . Aa, A∗, C1, . . . , Cm, C∗, T that differ from the
corresponding blocks in Ai1, . . . A

i
a, A

i
∗, C

i
1, . . . , C

i
m, C

i
∗, T

i, then the forgery can succeed in
two ways. The first is if (C∗ ⊕ S)‖T = (Ci∗ ⊕ Si)‖T i. This happens with probability at
most 1/(2n − 1), as there will be at least one index j for which Aj 6= Aij (or Cj 6= Cij),

and for which πT,0(Aj) ⊕ πT,0(Aij) (respectively πT,1(π−1T,0(Cj)) ⊕ πT,1(π−1T,1(Cij))) would
have to take a particular value. The probability follows from the fact that whatever T,
the random permutations πT,0 and πT,1 were sampled only once. The second way is if
(C∗ ⊕ S)‖T 6= (Ci∗ ⊕ Si)‖T i but the verification still succeeds. This is analogous to Case
5.

The probability of a successful forgery in this case is bounded by 2n/(2n − 1)2.

Thus a single forgery succeeds with probability no greater than 2n/(2n − 1)2. By applying the
result of Bellare [20], we can bound the probability of a successful forgery among qv decryption
queries as (qv · 2n)/(2n − 1)2. ut

C SAEF Confidentiality and Integrity Proofs

Proof (Proof of Theorem 2). The security analysis of SAEF is slightly more involved than in the
case of PAEF. We first tackle confidentiality and then integrity.

Confidentiality of SAEF. We first replace the forkcipher F with a pair of tweakable permutations
π0 and π1. I.e. π0 = (πT,0 ←$ Perm(n))T∈{0,1}τ is a collection of independent uniform elements of
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Perm(n) indexed by the elements of T ∈ {0, 1}τ (and similarly for π1 = (πT,1 ←$ Perm(n))T∈{0,1}τ ).
We let SAEF[π0, π1] denote the SAEF mode that uses π0, π1 instead of F. This replacement implies
the following inequality:

Advpriv
SAEF[F](A) ≤ Advprtfp

F (B) + Advpriv
SAEF[π0,π1]

(A)

by a similar argument as in the proof of Theorem 1.

We now further replace the two families of random permutations π0 and π1 with families of random
functions f0 and f1 with the same signature. I.e. fb = (fT,b ←$ Func(n))T∈{0,1}τ for b ∈ {0, 1}.
Denoting the SAEF mode using these random functions by SAEF[f0, f1], we have that

Advpriv
SAEF[π0,π1]

(A) ≤ Advpriv
SAEF[f0,f1]

(A) + 2 · (σ − q)2

2n+1

because all but the first block (be it AD or message) of each query are processed using a tweak of
the form 0τ−3‖b0b1b2 with b0, b1, b2 ∈ {0, 1}. As there are no more than σ blocks of data in total,
each of the permutations πT,0 and πT,1 processes σT blocks with

∑
T∈{0,1}τ σT = σ. Replacing

each πT,0 by fT,0 augments the bound by at most σT(σT − 1) · 2−n−1 by the RP-RF switching
lemma [25] and a standard hybrid argument. A sum of all these augmentations is upper bounded
by (σ − q)2/2n+1, noting that there are at least q tweak values T for which πT,0 is applied to at
most a single block. Another term (σ− q)2/2n+1 needs to be added to account for the replacement
of πT,1 for all T.

We now bound Advpriv
SAEF[f0,f1]

(A). For this, we use the games G0 and G1 defined in Figure 12.

In both games, the set DT collects the domain points, on which the functions fT,0 and fT,1 were
already evaluated. It is easy to verify that G0 actually implements priv-realSAEF[f0,f1], as the flag
bad and the sets DT have no influence on the outputs of Enc. It is also possible to verify that
Pr[Apriv-idealSAEF[f0,f1] ⇒ 1] = Pr[AG1 ⇒ 1]: unless bad is set, every ciphertext block Ci is an xor
of images of a distinct input to two random functions, and T is simply produced by applying a
random function to a fresh input. Thus, all the output bits of Enc are uniform. Once bad is set,
all the ciphertext blocks and each value of ∆ is replaced by a uniform string, so the simulation is
perfect. Thus we have Advpriv

SAEF[f0,f1]
(A) ≤ Pr[AG0 ⇒ 1]− Pr[AG1 ⇒ 1].

We also have that G0 and G1 are identical until bad, so by the Fundamental lemma of game-
playing [25] we have that Advpriv

SAEF[f0,f1]
(A) ≤ Pr[AG0 sets bad], where AG0 sets bad denotes the

event that bad = true when A issues its final output. We bound Pr[AG0 sets bad] by union bound,
iterating over the probability that the ith query sets bad, given that bad was not set before.

For an encryption query (N,A,M), the initial block of that query is processed with a tweak
N‖1b0b1b2, with the corresponding set DN‖1b0b1b2 empty, making it impossible to set bad. Each
remaining block (be it AD or message) is masked with the ∆ value before it is fed to fT,b (for
b ∈ {0, 1} and some T). If bad has not been set before, ∆ is a uniform n-bit string. Thus each
such block can set bad with probability |DT,b|/2n for b ∈ {0, 1} and some T will be uniformly
distributed due to the ∆ mask produced by fN‖1b0b1b2,1. There are almost (σ − q) blocks that can
set bad when fed to fT,b, and for each we have |DT,b| ≤ (σ − q). The total probability of setting
bad is thus no more than (σ − q)/2n, completing the proof of the confidentiality bound.

Integrity of SAEF. We again replace the forkcipher F with a pair of tweakable permutations
π0 = (πT,0 ←$ Perm(n))T∈{0,1}τ and π1 = (πT,1 ←$ Perm(n))T∈{0,1}τ , such that we have

Advauth
SAEF[F](A) ≤ Advprtfp

F (C) + Advauth
SAEF[π0,π1](A)

by a similar argument as in the proof of Theorem 1.
We additionally replace π0, π1 by π̃0, π̃1, which implement a random permutation for some

tweaks, and a random function for others. More precisely, we let FlagA ⊂ {0, 1}t denote the
set of all tweaks whose 3-bit flag is in the set {000, 010, 011, 110, 111} (i.e., tweaks used in the
AD processing), and we let FlagM = {0, 1}t\FlagA be the set of all tweaks used in the message
processing. Then we define

π̃0 = (π̃T,0)T∈{0,1}τ s.t. π̃T,0 ←$ Func(n) if T ∈ FlagA and π̃T,0 ←$ Perm(n) otherwise

π̃1 = (π̃T,1)T∈{0,1}τ s.t. π̃T,1 ←$ Func(n) if T ∈ FlagM and π̃T,1 ←$ Perm(n) otherwise .
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1: proc initialize
2: for T ∈ {0, 1}τ do
3: fT,0 ←$ Func(n)
4: fT,1 ←$ Func(n)
5: DT ← ∅
6: end for
7: bad← false

1: proc Enc(N,A,M)
2: A1, . . . , Aa, A∗

n←− A
3: M1, . . . ,Mm,M∗

n←−M
4: W ← (N,A)
5: noM← 0
6: if |M | = 0 then noM← 1
7: ∆← 0n; T← N‖0τ−ν−4‖1
8: for i← 1 to a do
9: T← T‖000

10: if Ai ⊕∆ ∈ DT then
11: bad← true
12: end if
13: DT ← DT ∪ (Ai ⊕∆)
14: ∆← fT,0(Ai ⊕∆)
15: if bad = true then

16: ∆←$ {0, 1}n

17: end if
18: T← 0τ−3

19: end for
20: if |A∗| = n then
21: T← T‖noM‖10
22: if A∗ ⊕∆ ∈ DT then
23: bad← true
24: end if
25: DT ← DT ∪ (A∗ ⊕∆)
26: ∆← fT,0(A∗ ⊕∆)
27: if bad = true then

28: ∆←$ {0, 1}n

29: end if
30: T← 0τ−3

31: else if |A∗| > 0 or |M | = 0 then
32: T← T‖noM‖11

33: if A∗ ⊕∆ ∈ DT then
34: bad← true
35: end if
36: DT ← DT ∪ ((A∗‖10∗)⊕∆)
37: ∆← fT,0((A∗‖10∗)⊕∆)
38: if bad = true then

39: ∆←$ {0, 1}n

40: end if
41: T← 0τ−3

42: end if
43: for i← 1 to m do
44: T← T‖001
45: if Mi ⊕∆ ∈ DT then
46: bad← true
47: end if
48: DT ← DT ∪ (Mi ⊕∆)
49: Ci ← fT,0(Mi ⊕∆)⊕∆
50: ∆← fT,1(Mi ⊕∆)
51: if bad = true then

52: Ci,∆←$ {0, 1}n × {0, 1}n

53: end if
54: T← 0τ−3

55: end for
56: if |M∗| = n then
57: T← T‖100
58: else if |M∗| > 0 then
59: T← T‖101
60: else
61: return ∆
62: end if
63: if M∗ ⊕∆ ∈ DT then
64: bad← true
65: end if
66: C∗ ← fT,0(pad10(M∗)⊕∆)⊕∆
67: T ← fT,1(pad10(M∗)⊕∆)
68: if bad = true then

69: C∗, T ←$ {0, 1}n × {0, 1}n

70: end if
71: return C1‖ . . . ‖Cm‖C∗‖left|M∗|(T )

Fig. 12: The games G0 and G1 for bounding Advpriv
SAEF[f0,f1]

. The game G0 does not contain the boxed
statement, while G1 does.

In other words, we replace those random permutations that produce the ∆ masks with random
functions. We have

Advauth
SAEF[π0,π1](A) ≤ Advauth

SAEF[π̃0,π̃1](A) +
(σ − q + 1)2

2n+1

by a similar argument as in the proof of SAEF’s confidentiality; the difference here is that A may
force a permutation πN‖b0b1b2,1 to be used σ − q + 1 times by making all decryption queries with
N .

To bound Advauth
SAEF[π̃0,π̃1](A), we consider the games G2 and G3 in Figures 13 and 14. It is easy

to see that the game G2 actually implements the game authSAEF[π̃0,π̃1], because the sets DT for
T ∈ {0, 1}τ and the flag bad have no effect on the outputs of the game. Moreover, unless bad is set
to true, the games G2 and G3 execute the same code. Thus, by the Fundamental lemma of game-
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playing [25], we have that Pr[AG2 forges] − Pr[AG3 forges] ≤ Pr[AG2 sets bad] and consequently
Advauth

SAEF[π̃0,π̃1](A) ≤ Pr[AG2 sets bad] + Pr[AG3 forges].

Transition from G2 to G3. The flag bad being set means that for some T ∈ {0, 1}τ , the pair of
permutations/functions π̃T,0 and π̃T,1 were used twice on the same input in an encryption query,
beyond a trivial prefix of the two queries. Informally speaking, this event may allow the adversary
to forge trivially by simply truncating the ciphertext, or the associated data used in an encryption
query with such a collision. We disallow this kind of victory in the game G3.

Some of the conditions that can set bad use predicates P iA(W,Q), P ∗A(W,Q) and P iM(W,Q).
These predicates return true if the current query is, up to the currently processed block, not
a blockwise prefix of some previous query. More precisely, the predicate P iA(W,Q) (with W =
(N,A,C) or (N,A)) returns false if and only if(1) Q(N) 6= ∅ and (2) there is a tuple (N,A′)
or (N,A′, C ′) such that Aj = A′j for j = 1, . . . , i. The predicate P ∗A(W,Q) is the same as the

predicate P iA(W,Q) except condition (2) becomes that there is a tuple (N,A′) or (N,A′, C ′) such
that Aj = A′j for j = 1, . . . , a and A∗ = A′∗. Finally the predicate P iA(W,Q) returns false if and
only if P ∗A(W,Q) is false, and if additionally Cj = C ′j for j = 1, . . . , i. Note that the three predicates
generate a monotonic sequence when a query is processed; once one predicate returns true, all will
return true in the same query. Note also that in the decrytpion queries, checking the collisions in
the domain of any π̃T,0 processing message blocks is equivalent with checking the collisions in the
range, as each such π̃T,0 is a permutation. Similarly as in the proof of confidentiality bound, we
bound Pr[AG2 sets bad] by the union bound, iterating over the probability that the ith query sets
bad, given that bad was not set before.

In an encryption query (N,A,M), the flag bad can be set during AD processing only after
P iA(W,Q) (or P ∗A(W,Q)) are returning true. The first block Ai (or A∗), for which the predicate
is true comes right after the longest blockwise prefix with previous queries, so the current mask
∆ = ∆′ for the corresponding ∆′ in the previous query (N,A′) that yields the common prefix, but
Ai 6= A′i (or A∗ 6= A′∗). The value of ∆′ is statistically independent of the ciphertexts returned to A,
and so Ai⊕∆ ∈ DT (or pad10(A∗)⊕∆ ∈ DT) falls into DT with probability |DT|/2n ≤ (σ− q)/2n
by a similar argument as in the confidentiality proof of SAEF. For all the consequent blocks B of
AD or message, if bad is not set before B is being processed, the ∆ value that is used to mask B
is a uniformly distributed string, so B ⊕∆ ∈ DT with probability |DT|/2n ≤ (σ − q)/2n as well.

In a decryption query (N,A,C), bad can only be set after the first time P iA(W,Q), P ∗A(W,Q), or
P iM(W,Q) return true. Similarly as in an encryption query, the first block B for which this occurs
will be masked by a reused ∆, but this ∆ will be independent of the observed ciphertexts (even if
B is a message block, because ¬bad implies that each ciphertext block was computed with a fresh
uniform mask). For the consequent blocks, ¬bad implies that ∆ is fresh and uniformly distributed.
Thus B ⊕∆ ∈ DT with probability |DT|/2n ≤ (σ − q)/2n.

By summing over all σ blocks, we get Pr[AG2 sets bad] ≤ σ(σ − q)/2n.

Forgery in G3. We proceed to bounding Pr[AG3 forges]. We carry out the analysis for an adversary

A′ that makes a single verification query, and then obtain Pr[AG3 forges] ≤ qv · Pr[A′G3 forges],
referring to a result by Bellare to support the claim [20]. We establish the bound by the means of
a case analysis.

In what follows, we let (N i, Ai,M i), Ci denote the ith encryption query made by A′, and
(N,A,C) denote the only decryption query. For each i, we let Ci1, . . . , C

i
m, C

i
∗, T

i ← csplit-bn(Ci)
and we let C1, . . . , Cm, C∗, T ← csplit-bn(C). Additionally, we will refer to the values of the ∆
variable. We will indicate by ∆A,j the jth value that the variable ∆ takes when processing the jth

block of A from the decryption query (N,A,C), and by ∆M,j the jth value that the variable ∆
takes when processing the jth block of the ciphertext C. We note that we can have j = ∗ and that
∆A,1 = 0n. We define ∆i

A,j and ∆i
M,j in a similar way for (N i, Ai,M i).

Case 1, A = ε and |C|n ≤ 2, or |A|n = 1 and |C|n = 1: We have two sub-cases.

Case 1.1, @N i such that N = N i: In this case, the forgery equals to guessing n random bits, as
the verification uses π̃N‖b0b1b2,0 and π̃N‖b0b1b2,0, which have not been sampled before because
of the freshness of the nonce.
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Case 1.2, ∃N i such that N = N i but |A|n + |C|n > 2: Also in this case, the forgery equals to
guessing n random bits, as the verification uses πN‖b0b1b2,0 and π̃N‖b0b1b2,0, which have not
been sampled before because the N was not used with the binary flags b0b1b2.

Case 1.3, ∃N i such that N = N i and |A|n + |C|n ≤ 2: A′ knows a at most a single image un-
der each π̃N‖b0b1b2,0 (processes C∗) and π̃N‖b0b1b2,0 (processes T ). If the forgery attempt is
with an AD block, or a ciphertext corresponding to a complete message block, the adver-
sary has to guess a fresh image under π̃N‖b0b1b2,0, succeeding with probability 2−n. If A′
tries to forge with a ciphertext corresponding to an incomplete message block, the freshly
sampled preimage M∗ = π̃−1N‖101,0(C∗ ⊕ ∆M,∗) will need to be of the form M∗ = Z‖10∗

for some Z ∈ {0, 1}|T | and simultaneously, the first |T | bits of the freshly sampled image
Y = π̃N‖101,1(M∗) will need to be equal to T . This happens with probability no greater than

((2|T | − 1) · (2n−|T |))/((2n − 1) · 2n) ≤ 1/(2n − 1).

The probability of forgery in this case is no more than 1/(2n − 1).
The following cases assume the negation of the condition in Case 1 (i.e., the forgery attempt

consist of more than a single block in total).

Case 2: The tag computation is not done right after the trivial prefix with (N,Ai, Ci). More
formally, we have the following subcases:

Case 2.1, |C|n = 1 and P aA(W,Q) = true: In this case, the tag is verified in AD processing using
A∗ and a mask ∆A,∗. Due to the condition in this case (and the fact that a domain collision on
π̃T,0 sets bad and ends the game), ∆ is computed as an image of π̃T,0 evaluated on a fresh input,

and thus uniform. The forgery can either succeed if A∗ ⊕ ∆A,∗ equals to a value Aj∗ ⊕ ∆j
A,∗

that has already been fed to π̃T,0 in the jth encryption query (then A′ can reuse Cj∗). As
j ∈ {1, . . . , q} (T is used at most once per query), this happens with probability at most q/2n.
If this collision does not succeed, then the adversary must guess a fresh image under π̃T,0,
which succeeds with probability 2−n. The total forgery probability in this case is bounded by
(q + 1)/2n.

Case 2.2, |C|n > 1 and PmM (W,Q) = true: In this case, the tag is verified in message processing
using C∗, tweak T ∈ {0τ−3‖100, 0τ−3‖101} and a mask ∆M,∗. Similarly as in Case 2.1, the
∆ mask is a uniform string, and the forgery can either succeed if C∗ ⊕ ∆M,∗ is equal to an

already-used range point Cj∗⊕∆j
M,∗ of πT,0 (allowing A′ to reuse the corresponding tag), or by

guessing a correct value and length of the tag. The former succeeds with probability at most
q/2n. For the latter, we explore two brief subcases.
Case 2.2.1, |T | = n. In this case, the fact that C∗⊕∆M,∗ is fresh implies that M∗⊕∆M,∗ has
not been fed to π̃T,1 before, and a successful forgery equals to guessing a value of a uniform
n-bit string. This happens with probability at most 2−n.
Case 2.2.2, |T | < n. In this case, the yet unknown preimage M∗ = π−1T,0(C∗⊕∆M,∗) must have

the form M∗ = Z‖10n−|T |−1 for some Z ∈ {0, 1}|T |, and the yet unknown image π̃T,1(M∗ ⊕
∆M,∗) has to be equal to T‖Y for some Y ∈ {0, 1}n−|T |. This happens with probability at
most (2|T |/(2n − σ)) · (2n−|T |/2n) ≤ 2/2n.
The total probability of forgery in Case 2.2 is bounded by (q + 2)/2n.

The probability of forgery in Case 2 is at most (q + 2)/2n.

Case 3: In the final case, the tag verification is done right after the trivial prefix with (N,Ai, Ci).
More formally, we have the following subcases:

Case 3.1, |C|n = 1 and P aA(W,Q) = false: In this case, the tag is verified in AD processing using
A∗, right after the trivial prefix with the ith encryption query, using a tweak T ∈ {0τ−3‖110, 0τ−3‖111}
and a mask ∆A,∗ = ∆i

A,∗ (for the corresponding mask in the ith encryption query). We must

have that A∗ 6= Ai∗ (otherwise the forgery attempt would be invalid), so Ci∗ can’t be reused
(as necessarily C∗ 6= Ci∗). A′ may attempt to force A∗ ⊕ ∆A,∗ = Aj∗ ⊕ ∆A,∗ and reuse Cj∗
for j 6= i, but this happens with probability at most q/2n, similarly as in Case 2.1. This is
because ∆A,∗ = ∆j

A,∗ is statistically independent of the ciphertexts observed by the adversary.

Otherwise A′ can forge by guessing the correct value for C∗ succeeding with probability 2−n.
The total probability of forgery in this case is no more than (q + 1)/2n.
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1: proc initialize
2: for T ∈ {0, 1}τ do
3: if T ∈ FlagA then
4: π̃T,0 ←$ Func(n)
5: else
6: π̃T,0 ←$ Perm(n)
7: end if
8: if T ∈ FlagM then
9: π̃T,1 ←$ Func(n)

10: else
11: π̃T,1 ←$ Perm(n)
12: end if
13: DT ← ∅
14: end for
15: for N ∈ {0, 1}ν do Q(N)← ∅
16: bad← false

1: proc Enc(N,A,M)
2: A1, . . . , Aa, A∗

n←− A
3: M1, . . . ,Mm,M∗

n←−M
4: noM← 0
5: if |M | = 0 then noM← 1
6: ∆← 0n; T← N‖1
7: for i← 1 to a do
8: T← T‖000
9: if Ai ⊕∆ ∈ DT and Pia(W,Q) then

10: bad← true
11: end if
12: DT ← DT ∪ (Ai ⊕∆)
13: ∆← π̃T,0(Ai ⊕∆)
14: T← 0τ−3

15: end for
16: if |A∗| = n then
17: T← T‖noM‖10
18: if A∗ ⊕∆ ∈ DT and P∗a(W,Q) then
19: bad← true
20: end if
21: DT ← DT ∪ (A∗ ⊕∆)

22: ∆← π̃T,0(A∗ ⊕∆)
23: T← 0τ−3

24: else if |A∗| > 0 or |M | = 0 then
25: T← T‖noM‖11
26: if (A∗‖10∗) ⊕∆ ∈ DT and P∗a(W,Q)

then
27: bad← true
28: end if
29: DT ← DT ∪ ((A∗‖10∗)⊕∆)
30: ∆← π̃T,0((A∗‖10∗)⊕∆)
31: T← 0τ−3

32: end if
33: for i← 1 to m do
34: T← T‖001
35: if Mi ⊕∆ ∈ DT then
36: bad← true
37: end if
38: DT ← DT ∪ (Mi ⊕∆)
39: Ci ← π̃T,0(Mi ⊕∆)⊕∆
40: ∆← π̃T,1(Mi ⊕∆)
41: T← 0τ−3

42: end for
43: if |M∗| = n then
44: T← T‖100
45: else if |M∗| > 0 then
46: T← T‖101
47: else
48: return ∆
49: end if
50: if pad10(Mi)⊕∆ ∈ DT then
51: bad← true
52: end if
53: DT ← DT ∪ (pad10(Mi)⊕∆)
54: C∗ ← π̃T,0(pad10(M∗)⊕∆)⊕∆
55: T ← π̃T,1(pad10(M∗)⊕∆)
56: Q(N)← Q(N)∪ ((A1, .., A∗), (C1, .., Cm))
57: return C1‖ . . . ‖Cm‖C∗‖left|M∗|(T )

Fig. 13: The games G2 and G3 for bounding Advauth
SAEF[π̃0,π̃1]

(continued in Figure 14). The game G2 does
not contain the boxed statements, while G3 does.

Case 3.2, |C|n > 1 and PmM (W,Q) = false: In this case, the tag is verified in message processing
right after the trivial prefix with the ith encryption query, using C∗, tweak T ∈ {0τ−3‖100, 0τ−3‖101}
and a mask ∆M,∗. This case is analogous to Case 2.2, except that ∆M,∗ = ∆i

M,∗ has already

been used before. Yet, ∆M,∗ = ∆i
M,∗ is statistically independent from the observed ciphertexts

(if bad is not set, every ciphertext block is equal to an image of πT,0 masked with an indepen-
dent uniform string). Thus the argumentation of Case 2.2 carries over, and the probability of
forgery in Case 3.2 is no more than (q + 2)/2n.

By taking the maximum over all cases, the probability that a single-decryption-query adversary A′
forgers in the game G3 is at most (q + 2)/2n. The adversary A making qv decryption queries thus
forges with probability bounded by qv · (q+ 2)/2n. By back-substituting all the previous equalities,
we obtain the claimed result.
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1: proc Dec(N,A,C)
2: if bad = true then
3: return ⊥
4: end if
5: W ← (N,A,C)
6: Q(N)← Q(N) ∪ ((A1, .., A∗))
7: A1, . . . , Aa, A∗

n←− A
8: C1, . . . , Cm, C∗, T ← csplit-bn(C)
9: noM← 0

10: if |C| = n then noM← 1
11: ∆← 0n; T← N‖1
12: for i← 1 to a do
13: T← T‖000
14: if Ai ⊕∆ ∈ DT and Pia(W,Q) then
15: bad← true
16: return ⊥
17: end if
18: DT ← DT ∪ (Ai ⊕∆)
19: ∆← π̃T,0(Ai ⊕∆)
20: T← 0τ−3

21: end for
22: if |A∗| = n then
23: T← T‖noM‖10
24: if A∗ ⊕∆ ∈ DT and P∗a(W,Q) then
25: bad← true
26: return ⊥
27: end if
28: DT ← DT ∪ (A∗ ⊕∆)
29: ∆← π̃T,0(A∗ ⊕∆)
30: T← 0τ−3

31: end if
32: if |A∗| > 0 or |T | = 0 then
33: T← T‖noM‖11 and P∗a(W,Q)

34: if (A∗‖10∗) ⊕∆ ∈ DT and P∗a(W,Q)
then

35: bad← true
36: return ⊥
37: end if
38: DT ← DT ∪ ((A∗‖10∗)⊕∆)
39: ∆← π̃T,0((A∗‖10∗)⊕∆)
40: T← 0τ−3

41: end if
42: for i← 1 to m do
43: T← T‖001
44: Mi ← π−1

T,0(Ci ⊕∆, 0)⊕∆
45: if Mi ⊕∆ ∈ DT and Pim(W,Q) then
46: bad← true
47: return ⊥
48: end if
49: DT ← DT ∪ (Mi ⊕∆)
50: ∆← π̃T,1(π−1

T,0(Ci ⊕∆, 0))

51: T← 0τ−3

52: end for
53: if |T | = n then
54: T← T‖100
55: else if |T | > 0 then
56: T← T‖100
57: else
58: if C∗ 6= ∆ then return ⊥
59: return ε
60: end if
61: M∗ ← π̃−1

T,0(C∗ ⊕∆)⊕∆
62: T ′ ← π̃T,1(M∗ ⊕∆)
63: T ′ ← left|T |(T

′); P ← rightn−|T |(M∗)
64: if T ′ 6= T return ⊥
65: if P 6= leftn−|T |(10n−1) return ⊥
66: return M1‖ . . . ‖Mm‖left|T |(M∗)

Fig. 14: The games G2 and G3 for bounding Advauth
SAEF[π̃0,π̃1]

(continued from Figure 13). The game G2

does not contain the boxed statements, while G3 does. The predicates PA and PM are defined in Section C.
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D RPAEF confidentiality and Integrity Proofs

Proof. Below we prove the confidentiality and authenticity of the RPAEF mode. As for PAEF, we
replace F with a pair of independent random tweakable permutations π0 and π1, obtaining

Advpriv
RPAEF[F,ν](A) ≤ Advprtfp

F (B) + Advpriv
RPAEF[(π0,π1),ν]

(A)

and
Advauth

RPAEF[F,ν](A) ≤ Advprtfp
F (C) + Advauth

RPAEF[(π0,π1),ν](A).

We have Advpriv
RPAEF[(π0,π1),ν]

(A) = 0; similarly as in PAEF, every ciphertext block and every tag

is produced with a fresh tweak, and thus uniformly distributed.

For authenticity, we analyse the probability of forgery for an adversary that makes a single decryp-
tion query against RPAEF[(π0, π1), ν] and then use a result of Bellare [20] to obtain a bound for
multiple decryption queries (against RPAEF[(π0, π1), ν]).

As before, we will denote the encryption queries ofA and the corresponding replies as (N i, Ai,M i)
and Ci for i = 1, . . . , q, where q is the number of encryption queries made by A. For each i we let
Ci1, . . . , C

i
mi , C

i
∗, T = csplit-bn(Ci). We let (N,A,C) denote the only decryption query of A and we

let C1, . . . , Cm, C∗, T = csplit-bn(C). We further let c = t− (ν + n+ 3).
Similarly to PAEF, there are two base cases to consider; forging with a fresh nonce N (which

is equivalent to guessing the value of a uniform string of n bits) succeeding with probability 2−n,
and forging with a reused N .

If N is reused, i.e. if N = N i for some N i ∈ {N1, . . . , Nq}, then we perform a case analysis,
disregarding all encryption queries except the ith, because their ciphertetxts are computed using
independent random permutations. Every case assumes the negation of all previous case-conditions.
We note that for the forgery to be valid, we must have (Ai, Ci) 6= (A,C).

Case 1, |C|n 6= |Ci|n: We have several subcases.
– If |C| = n, then C is equal to a xor-sum of πT,1 images from the associated data (denoted

as SA in Figure 9), such that we can possibly have Ai = A. Because we must have |M i| > 0,
the xor-sum SAi computed in the ith encryption query is masked with uniform bits Ci∗.
The probability of a successful forgery which is equivalent to guessing SA, is 2−n.

– When |C| > n, regardless if C has more or less blocks than Ci, the forgery attempt succeeds
with probability 2−n as C∗ and T are processed with a tweak T = N‖110‖〈m + 1〉c‖S
(respectively T = N‖111‖〈m+ 1〉c‖S) that was not used before.

The probability of a successful forgery in Case 1 is at most 2−n.

In the following cases, |C|n = |Ci|n.

Case 2, |C| = |Ci| = n: In this special case, Ci∗ = SiA and C∗ = SA (referring to Figure 9). Valid
forgery requiring A 6= Ai, one of the following conditions must be true:
– If |A|n 6= |Ai|n, then forging is equivalent to guessing the image π(N‖b‖〈a+1〉c‖0n),0(A∗) with
b ∈ {001, 011}, such that this tweak has not been used before, succeeding with probability
2−n.

– Otherwise, if |A∗| = n and |Ai∗| < n, or |A∗| < n and |Ai∗| = n, then as in the previous
subcase, forging is equivalent to guessing the image created with a fresh tweak (thanks to
the domain separation flag), succeeding with probability 2−n.

– Otherwise, if there is 1 ≤ j ≤ a such that Aj 6= Aij , then forging is equivalent to successfully
guessing the image π(N‖000‖〈j〉c‖0n),0(Aj), which has not been sample before, succeeding
with probability at most 1/(2n − 1).

– Finally we can have A∗ 6= Ai∗, in which case forging is equivalent to guessing the image
π(N‖b‖〈a+1〉c‖0n),0(A∗) with b ∈ {001, 011}, which succeeds with probability at most 1/(2n−
1)

The probability of forging in this case is at most 1/(2n − 1).

In the following cases, we have |C|n = |Ci|n > 1, so the tag T is non-empty, and the final ciphertext
block C∗ and the tag T are processed by an F call with a tweak containing the checksum S in its
last n bits.
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Case 3, |T | = n and |T i| < n or |T | < n and |T i| = n: In this case, the final verification check
of C∗, T will be done using a tweak N‖b‖〈m + 1〉c‖S with b ∈ {101, 111} that has not been
used before (thanks to the flag b). The forgery succeeds with probability 2−n.

In the following cases, the tweak used to process the final ciphertext block C∗ and the tag T will
contain the same nonce, the same 3-bit flag, and the same counter as the tweak that produced
Ci∗, T

i. In all cases, the checksum in the forgery attempt S may or may not collide with the
checksum Si.

Case 4, A 6= Ai: A can succeed in forging either by forcing a collision S = Si (in which case it
can set (C∗, T ) = (Ci∗, T

i)), or else if S 6= Si the forgery succeeds with probability 2−n. The
probability of S = Si is at most 1/(2n − 1) by a similar argument as in Case 2, and the
probability of forgery in this case is bounded by 2−n + 1/(2n − 1) ≤ 2/(2n − 1) by a union
bound.

In the remaining cases, we have A = Ai.

Case 5, |C| 6= |Ci| and |T | < n and |T i| < n: We consider two subcases.
– If S = Si, both the encryption query and the decryption query use the same tweak T to

process M i
∗ and C∗, T , respectively. There are two conditions for the forgery to succeed.

First, the preimage X = π−1T,0(C∗) must be equal to W‖10n−|T |−1 6= M i
∗‖10n−|T

i|−1 (noting

that the case condition implies |T | 6= |T i|) for some W ∈ {0, 1}|T |. This is no easier than
finding a fresh value whose preimage falls into a set of size 2|T |. With a single image of π−1T,0

already used, this succeeds with probability bounded by (2|T |)/(2n−1). Secondly, the image
Y = πT,1(X) must be equal to T‖Z for some Z ∈ {0, 1}n−|T |, conditioned on X having
the correct format. This is equivalent to guessing a fresh image under πT,1 with (n − |T |)
free bits. As a single image of πT,1 has been used already, this happens with probability at
most (2n−|T |)/(2n − 1). The probability of a successful forgery in this subcase is therefore
bounded by (2|T |)/(2n − 1) · (2n−|T |)/(2n − 1) = 2n/(2n − 1)2.

– If S 6= Si, the forgery succeeds with probability 2−n.
The probability of a forgery in this case is at most 2n/(2n − 1)2 (because the checksum (non-
)collision is treated as subcases).

In the following cases, we have |C| = |Ci|.

Case 6, |C| = |Ci| and A = Ai: In this case, there must be at least a single block of ciphertext
where the two queries differ. We investigate the following subcases.
– If the forgery N,A,C differs from N,Ai, Ci only in C∗‖T , then , if we ran the decryption

algorithm on N,Ai, Ci and N,A,C in parallel, the values Si and S used on the line 38 of
the decryption algorithm in Figure 5 would be the same, resulting in identical tweaks in
the final F calls of both queries. The probability of a successful forgery is at (2n − 1)−1 if
|T | = n (inverse of C∗ ⊕ S has not yet been sampled) and at most 2n/(2n − 1)2 otherwise
(by a similar argument as in Case 5).

– If there is some 1 ≤ j ≤ m such that Cj 6= Cij , the adversary may reuse Ci∗, T
i if S = Si, or

the forgery is equivalent to guessing a random string otherwise. The latter succeeds with
probability 2−n. The collision in the former case occurs with probability at most 1/(2n−1),
because the preimage π(N‖100‖〈j〉c‖0n),0(Cj) is unknown.

The probability of a successful forgery in this case is bounded by 1/(2n−1)+2−n ≤ 2/(2n−1)
otherwise.

Thus a single forgery succeeds with probability no greater than 2/(2n− 1). By applying the result
of Bellare [20], we can bound the probability of a successful forgery among qv decryption queries
as (2 · qv)/(2n − 1). ut

E Deterministic MiniAE

In this section, we demonstrate that when used in a minimalistic “mode” of operation, a secure
forkcipher yields a miniature AE scheme for fixed-size messages, which achieves PRI security [55].
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PRI security of an AEAD scheme. Informally speaking, the best possible security that an AEAD
scheme with a fixed stretch can achieve is to be (computationally) indistinguishable from a random
injection from N ×A×M to C, because any AE scheme that is correct, must also be injective. This
intuition is formalized as follows. The advantage of an adversary A in distinguishing an AEAD
scheme Π with ciphertext expansion τ from a random injection with the same signature is defined
as

Advpri
Π (A) = Pr[Apri-realΠ ⇒ 1]− Pr[Apri-idealΠ ⇒ 1]

with the games pri-realΠ and pri-idealΠ defined in Figure 15.

proc initialize pri-realΠ

K ←$ K

proc Enc(N,A,M)
return E(K,N,A,M)

proc Dec(N,A,C)
return D(K,N,A,C)

proc initialize pri-idealΠ

for N,A ∈ N ×A do
fN,A ←$ Inj(τ)

proc Enc(N,A,M)
return fN,A(M)

proc Dec(N,A,C)
if ∃M ∈M s.t. fN,A(M) = C then

return M
else

return ⊥

Fig. 15: Pseudo-random injection (PRI) security games for a scheme Π = (K, E ,D) with ciphertext ex-
pansion τ .

Given a tweakable forkcipher F with T = {0, 1}t and a 1 ≤ ν < t, we define the AEAD scheme
MAE[F, ν] = (K, E ,D) (as in “mini AE”) with K = {0, 1}k. The message space M = {0, 1}n is
given by the block-size of F, the nonce space N = {0, 1}ν and the AD space A = {0, 1}α with
α = t − ν, so the parameter ν allows to make a trade-off between the nonce and AD sizes. The
ciphertext expansion is n. The encryption and the decryption algorithm are defined in Figure 16.

The MAE mode captures the immediate intuition behind the “AE-potential” of a forkcipher:
just use the redundancy contained in the right output block as a “tag”.

1: function E(K,N,A,M)

2: return F
N‖A,b
K M

3: end function

1: function D(K,N,A,C‖T )

2: M,T ′ = F−1N‖A,0,b
K (C)

3: if T = T ′ then return M
4: return ⊥
5: end function

Fig. 16: The MAE[F, ν] AEAD scheme.

Security of MAE. We have the following statement about the security of MAE.

Theorem 5. Let F be a tweakable forkcipher with T = {0, 1}t, let 1 ≤ ν < t and let 1 ≤ τ ≤ n.
Then for adversary A whose queries lie in the proper domains of the encryption and decryption
algorithms and who makes q encryption queries and qv decryption queries such that q+ qv ≤ 2n−1,
we have

Advpri
MAE[F,ν,τ ](A) ≤ Advprtfp

F (B) +
(q + qv)

2

2n

for some adversary B who makes at most twice as many queries in total as A, and who runs in
time given by the running time of A plus an overhead that is linear in the total number A’s queries.
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Proof. We first replace F by a pair of tweakable random permutations π0 = (πT,0 ←$ Perm(n))T∈{0,1}t
and π1 = (πT,1 ←$ Perm(n))T∈{0,1}t). Letting MAE[π0, π1] denote the MAE mode that uses π0, π1
instead of F, we have

Advpri
MAE[F](A) ≤ Advprtfp

F (B) + Advpri
MAE[π0,π1]

(A)

by a similar argument as in the proof of Theorem 1. In the rest of the analysis, we will refer to
MAE[π0, π1 simply by Π.

For the rest of the analysis, we use the game Γ0 and Γ1 defined in Figure 17. We claim that
Pr[Apri-realΠ → 1] = AΓ1 → 1] and that Pr[Apri-idealΠ → 1] = Pr[AΓ0 → 1], which yields

Advpri
MAE[π0,π1]

(A) ≤ Pr[AΓ1 → 1]− Pr[AΓ0 → 1].

It is easy to verify the latter equality; with the boxed statements removed, the code in Figure 17
implements a family of random injections indexed by (N,A) by lazy sampling. In particular, note
that the probability that non-trivial decryption query succeeds in Γ0 is Pr[b′ = 1 ∧ b′′ = 1] =
1 · (2n − |fN,A|)2/(2n − |fN,A|) · (22n − |fN,A|) which is equal to the probability of finding a
preimage of a random injection for which |fN,A| range points with known images (or known to
have no preimages).

The former equality holds, because the framed lines in game Γ1 make sure that f does in fact
implement MAE based on a family of pairs of random permutations indexed by (N,A). First,
there is an implicit bijection between {0, 1}t and N × A, so they are interchangeable. Then,
the conditions of lines 7 and 7 make sure that the functions π(N,A),0 and π(N,A),1 defined by
π(N,A),0(M) = leftn(f(m)) and π(N,A),1(M) = rightn(f(m)). The framed lines following the line 8
make sure that the distribution of ciphertext is the same as when produced by a pair of random
permutations. The boxed statement after line 10 rejects ciphertexts that can never be produced by
MAE[π0, π1]. The boxed statements after line 20 make sure that the probability that a non-trivial
decryption query succeeds is the same as for MAE[π0, π1].

In addition, the games Γ0 and Γ1 are identical until bad, so we have Pr[AΓ1 → 1]− Pr[AΓ0 →
1] ≤ Pr[AΓ1 sets bad] by the Fundamental lemma of gameplaying [25]. We define badi for i =
1, . . . , q + qv to be the event bad is set to true in the ith query made by the adversary. We further
let badi1 denote the event that badi is true due to line 8, badi2 denote the event that badi is true
due to line 10 and badi3 denote the event that badi is true due to line 20. Then we have that

Pr[AΓ1 sets bad] ≤
∑3
i=1

∑q+qv
j=1 Pr[badij ].

We have that

Pr[badi1] ≤ (i− 1) · 2 · 2n − 1

22n − i+ 1
≤ (i− 1) · 2n+1

2n(2n − 1)
≤ 2 · (i− 1)

2n − 1

because if bad was not set previously, there are at most i − 1 elements in both Rl(fN,A) and
Rr(fN,A) for any (N,A), and for each X element of either Rl(fN,A) or Rr(fN,A), there are at
most 2n−1 elements of {0, 1}2n\R⊥(fN,A) that collide with X on their n leftmost, or respectively
rightmost bits. The rest follows from the assumption (q + qv) ≤ 2n implied by q + qv ≤ 2n−1.
Summing over i, we get that

∑q+qv
i=1 Pr[badi1] ≤ 2 · (q + qv)

2/2 · (2n − 1).
Then, we have that

Pr[badi2] ≤ · 2n

22n − i+ 1
≤ 2n

2n(2n − 1)
≤ 1

2n − 1

because in the ith query, we have 0 ≤ |fN,A| ≤ i − 1 for any (N,A), and this determines the
parameter of the Bernouli variable which can set bad. The inequality follows using the assumption
(q + qv) ≤ 2n implied by (q + qv) ≤ 2n−1. Summing over i, we get that

∑q+qv
i=1 Pr[badi2] ≤ (q +

qv)/(2
n − 1).

Finally, we have that

Pr[badi3] =
1

2n − |fN,A|
·
(

1− (2n − |fN,A|)2

22n − |fN,A|

)
≤ 1

2n − |fN,A|
≤ 1

2n − (i− 1)
≤ 1

2n−1

because badij occurs in the ith query if and only if b′ = b′′ = 1. The final inequality then follows from

the assumption (q + qv) ≤ 2n−1. Summing over i, we get that
∑q+qv
i=1 Pr[badi3] ≤ (q + qv)/(2

n−1).

The claimed bound is obtained by adding up the sums
∑q+qv
j=1 Pr[badij ] for j = 1, 2, 3.
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1: proc initialize
2: for N,A ∈ N ×A do
3: fN,A = ∅
4: end for
5: bad← false

1: proc Enc(N,A,M)
2: if ∃ C s.t. (M,C) ∈ fN,A then
3: return C
4: end if
5: C ←$ {0, 1}2n\R⊥(fN,A)
6: Cl ← leftn(C); Cr ← rightn(C)
7: if Cl ∈ Rl(fN,A) or Cr ∈ Rr(fN,A)

then
8: bad← true
9: if Cl ∈ Rl(fN,A) then

10: X ←$ {0, 1}n\Rl(fN,A)

11: C ← X‖Cr
12: end if
13: if Cr ∈ Rr(fN,A) then

14: X ←$ {0, 1}n\Rr(fN,A)

15: C ← Cl‖X
16: end if
17: end if
18: fN,A ← fN,A ∪ {(M,C)}
19: return C

1: proc Dec(N,A,C‖T )
2: if ∃ M s.t. (M,C) ∈ fN,A then
3: return M

4: end if
5: M ←$ {0, 1}n\D(fN,A)
6: Cl ← leftn(C); Cr ← rightn(C)
7: if Cl ∈ Rl(fN,A) or Cr ∈ Rr(fN,A)

then
8: b←$ Be

(
2n−|fN,A|
22n−|fN,A|

)
9: if b = 1 then

10: bad← true
11: return ⊥
12: fN,A ← fN,A ∪ {(M,C)}
13: return M
14: end if
15: else
16: b′ ←$ Be

(
1

2n−|fN,A|

)
17: b′′ ←$ Be

(
(2n−|fN,A|)2

22n−|fN,A|

)
18: if b′ = 1 then
19: if b′′ = 0 then
20: bad← true
21: fN,A ← fN,A ∪ {(M,C)}
22: return M

23: else
24: fN,A ← fN,A ∪ {(M,C)}
25: return M
26: end if
27: end if
28: end if
29: fN,A ← fN,A ∪ {(⊥, C)}
30: return ⊥

Fig. 17: The games Γ0 and Γ1 for bounding Advpri
MAE[π0,π1]

. The game Γ1 does not contain the boxed

statements, while Γ0 does. The games implement the (partially defined) injective funcitons fN,A : {0, 1}n →
{0, 1}2n as initially-empty sets of preimage-image pairs; a pair (⊥, C) signifies that C has no premiage under
the given function. We define the domain, range, and the “left” and “right” range of any fN,A as D(fN,A) =
{M ∈ {0, 1}n|∃(M,C) ∈ fN,A}, R(fN,A) = {C ∈ {0, 1}2n|∃(M,C) ∈ fN,A s.t. M 6= ⊥}, Rl(fN,A) = {L ∈
{0, 1}n|∃ some L‖X ∈ R(fN,A)} and Rr(fN,A) = {R ∈ {0, 1}n|∃ some X‖R ∈ R(fN,A)}. We additionally
define the extended range R⊥(fN,A) = {C ∈ {0, 1}2n|∃(M,C) ∈ fN,A}. Be (p) denotes a random variable
with Bernouli distribution with Pr[Be (p) = 1] = p.
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F Description and Security Analysis of ForkSkinny

F.1 Detailed Description of ForkSkinny

ForkSkinny is based on SKINNY, a family of lightweight tweakable block ciphers that was presented
at Crypto 2016 by Beierle et al. [17]. The 6 variants described in [17] differ from the block size
(n = 64 or n = 128 bits) and from the tweakey size (z × n bits, where z is either 1, 2 or 3). They
are denoted as SKINNY-n-zn.

In a similar way, by ForkSkinny-n-zn we denote one variant of our cipher with a block size of n
bits (either 64 or 128) and of z × n tweakey bits. We further consider versions where the tweakey
size is not a multiple of the block size n. In general, ForkSkinny-n-t here will denote the ForkSkinny
with n-bit block and t-bit tweakey. As detailed in Section 4 The two branches of ForkSkinny produce
two ciphertexts each of length n bits.

The ciphers have a Substitution-Permutation-Network (SPN) structure, and the internal state
is organised as a 4× 4 matrix, where each cell is either a byte (when n = 128) or a nibble (when
n = 64). The n-bit messages are loaded row-wisely in the internal state IS, as depicted below.

IS =


m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15


In the following, we review the most important aspects of the design of SKINNY, and refer to

the original SKINNY specification [17] for more details.

Round Function ForkSkinny round function (see Figure 18) only differs slightly from the SKINNY

one: it reuses the 5 operations described in SKINNY, but considers different round constants in the
AddConstants step to take into account the fact that more rounds are iterated.

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 18: Structure of every round in ForkSkinny, made of the five operations SubCells (SC),
AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and MixColumns (MC), as it is done
in SKINNY. (Figure credits: [36]).

The round function operations are the following (see Figure 18):

– SubCells (SC): each of the 16 words of the internal state is modified by a 4× 4 (if n = 64) or
8 × 8 Sbox (if n = 128). The definition of the Sboxes is recalled below. ForkSkinny reuses the
Sboxes of SKINNY without any change.

– AddConstants (AC): A LFSR is used to produce constants that are added in the first 3 cells of
the first column. Since in total ForkSkinny iterates more rounds than SKINNY, we changed the
definition of the LFSR to avoid repetitions.

– AddRoundTweakey (ART): Exactly as in SKINNY, the addition of the tweakey material is done
in the first two lines of the state.

– ShiftRows (SR): The second line of the internal state is right rotated by 1 cell, the third line
is right rotated by 2 cells, and the last line is right rotated by 3 cells.

– MixColumns (MC): This operation modifies each column by multiplying it with a binary matrix
M , given by:
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M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0


Note that all the rounds are identical, and in particular that no whitening keys are used.
The Sboxes are defined as follows:

/* SKINNY-64 Sbox */
const unsigned char S4[16] = {12,6,9,0,1,10,2,11,3,8,5,13,4,14,7,15};

/* SKINNY-128 Sbox */
uint8_t S8 [256] = {
0x65, 0x4c, 0x6a, 0x42, 0x4b, 0x63, 0x43, 0x6b, 0x55, 0x75, 0x5a, 0x7a, 0x53, 0x73, 0x5b, 0x7b,
0x35, 0x8c, 0x3a, 0x81, 0x89, 0x33, 0x80, 0x3b, 0x95, 0x25, 0x98, 0x2a, 0x90, 0x23, 0x99, 0x2b,
0xe5, 0xcc, 0xe8, 0xc1, 0xc9, 0xe0, 0xc0, 0xe9, 0xd5, 0xf5, 0xd8, 0xf8, 0xd0, 0xf0, 0xd9, 0xf9,
0xa5, 0x1c, 0xa8, 0x12, 0x1b, 0xa0, 0x13, 0xa9, 0x05, 0xb5, 0x0a, 0xb8, 0x03, 0xb0, 0x0b, 0xb9,
0x32, 0x88, 0x3c, 0x85, 0x8d, 0x34, 0x84, 0x3d, 0x91, 0x22, 0x9c, 0x2c, 0x94, 0x24, 0x9d, 0x2d,
0x62, 0x4a, 0x6c, 0x45, 0x4d, 0x64, 0x44, 0x6d, 0x52, 0x72, 0x5c, 0x7c, 0x54, 0x74, 0x5d, 0x7d,
0xa1, 0x1a, 0xac, 0x15, 0x1d, 0xa4, 0x14, 0xad, 0x02, 0xb1, 0x0c, 0xbc, 0x04, 0xb4, 0x0d, 0xbd,
0xe1, 0xc8, 0xec, 0xc5, 0xcd, 0xe4, 0xc4, 0xed, 0xd1, 0xf1, 0xdc, 0xfc, 0xd4, 0xf4, 0xdd, 0xfd,
0x36, 0x8e, 0x38, 0x82, 0x8b, 0x30, 0x83, 0x39, 0x96, 0x26, 0x9a, 0x28, 0x93, 0x20, 0x9b, 0x29,
0x66, 0x4e, 0x68, 0x41, 0x49, 0x60, 0x40, 0x69, 0x56, 0x76, 0x58, 0x78, 0x50, 0x70, 0x59, 0x79,
0xa6, 0x1e, 0xaa, 0x11, 0x19, 0xa3, 0x10, 0xab, 0x06, 0xb6, 0x08, 0xba, 0x00, 0xb3, 0x09, 0xbb,
0xe6, 0xce, 0xea, 0xc2, 0xcb, 0xe3, 0xc3, 0xeb, 0xd6, 0xf6, 0xda, 0xfa, 0xd3, 0xf3, 0xdb, 0xfb,
0x31, 0x8a, 0x3e, 0x86, 0x8f, 0x37, 0x87, 0x3f, 0x92, 0x21, 0x9e, 0x2e, 0x97, 0x27, 0x9f, 0x2f,
0x61, 0x48, 0x6e, 0x46, 0x4f, 0x67, 0x47, 0x6f, 0x51, 0x71, 0x5e, 0x7e, 0x57, 0x77, 0x5f, 0x7f,
0xa2, 0x18, 0xae, 0x16, 0x1f, 0xa7, 0x17, 0xaf, 0x01, 0xb2, 0x0e, 0xbe, 0x07, 0xb7, 0x0f, 0xbf,
0xe2, 0xca, 0xee, 0xc6, 0xcf, 0xe7, 0xc7, 0xef, 0xd2, 0xf2, 0xde, 0xfe, 0xd7, 0xf7, 0xdf, 0xff
};

Round Constants. As explained in Section 4, we use 7-bit round constants. For completeness
Table 2 give the value used in each round.

Table 2: Constants used in ForkSkinny.

Rounds Constants

1 - 16 01,03,07,0F,1F,3F,7E,7D,7B,77,6F,5F,3E,7C,79,73

17 - 32 67,4F,1E,3D,7A,75,6B,57,2E,5C,38,70,61,43,06,0D

33 - 48 1B,37,6E,5D,3A,74,69,53,26,4C,18,31,62,45,0A,15

49 - 64 2B,56,2C,58,30,60,41,02,05,0B,17,2F,5E,3C,78,71

65 - 80 63,47,0E,1D,3B,76,6D,5B,36,6C,59,32,64,49,12,25

81 - 87 4A,14,29,52,24,48,10

Tweakey. Again, the tweakey schedule works similarly to what is done in SKINNY, that is based
on the TWEAKEY framework [37]. The first operation consists in filling the tweakey state, which
is view as a collection of 4 × 4 matrices of the same cell-size as the considered internal state. If
the cipher uses material that is not the key (that is, strictly a tweak), this one is positioned first
in TK1, row wisely, and then is set the key (if that leaves an incomplete matrix we fill it with
zeros). We denote these matrices by TK1, TK2 and TK3 (if any). As suggested in the SKINNY

specification, when there is some tweak material, we add an extra 1 in the constant matrix from
AddConstants, every round at line 0, column 2, to the second bit).

If the tweakey size is not a multiple of the state size but leaves 2 empty rows in the last tweakey
matrix (as it is the case for ForkSkinny-128-192), instead of filling the remaining cells with zeros
we simply don’t use these cells, which allows to save some memory, some LFSR applications and
also some XORs.

As can be seen on Figure 19, during the AddRoundTweakey step the first two rows of each
tweakey are exclusive-ored together and then to the internal state. To update the tweakey arrays
for the next round, each tweakey word is first modified by a cell-permutation PT , given by:

PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]
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and which effect on the cell positioning is as follows:
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

 PT−−→


9 15 8 13
10 14 12 11
0 1 2 3
4 5 6 7


Each cell (except the ones in TK1) is then linearly modified by a LFSR, following the definitions

given in Table 3.

Table 3: LFSR used to update TK2 and TK3.

TK cell size LFSR

TK2 4 (x3||x2||x1||x0)→ (x2||x1||x0||x3 ⊕ x2)
8 (x7||x6||x5||x4||x3||x2||x1||x0)→ (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)

TK3 4 (x3||x2||x1||x0)→ (x0 ⊕ x3||x3||x2||x1)
8 (x7||x6||x5||x4||x3||x2||x1||x0)→ (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

Extracted
8s-bit subtweakey

PT

LFSR

LFSR

Fig. 19: Tweakey schedule of ForkSkinny, replicating the one of SKINNY. (Figure credits: [36])

We further detail here the other proposed variants given in Table 1:

ForkSkinny-64-192: This member of ForkSkinny has block size n = 64 and tweakey size t = 3n bits.
The 192-bit tweakey contains 64-bit tweak and the rest are key bits.

ForkSkinny-128-192: This has block size n = 128 and tweakey size t = 3n/2 bits. The 192-bit
tweakey contains 64-bit tweak and the rest are key bits. Note that the design of SKINNY allows to
use tweakey such that n < t < 2n. In such cases, the 2n− t bits of the tweakey are set to 0.

ForkSkinny-128-256: For this version of ForkSkinny we use n = 128 with tweakey size t = 2n. The
256-bit tweakey contains 128 bits of tweak and the rest are key bits.

ForkSkinny-128-288: For this version of ForkSkinny we use n = 128, with tweakey size t = 9n/4.
The 288-bit tweakey contains 160 bits of tweak and the rest are key bits. Note that the design of
SKINNY allows to use tweakey such that 2n < t < 3n. In such cases, SKINNY proposal recommends
to set the 3n− t bits of the tweakey to 0.

ForkSkinny-128-384: This member also has a block and a key of 128 bits. It uses 3 blocks of tweakey
(t = 3n).

G Security Analysis of ForkSkinny

G.1 Arguments deduced from the Security of SKINNY

As noted previously, the security analyses of SKINNY directly transfer to ForkSkinny in the scenario
where an attacker try to attack the cipher from the knowledge of both M and C0. Consequently,
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to justify the security of this part of our construction we give an overview of the main attacks
published so far: Table 4 details how many rounds can be reached together with the complexities
of the attacks (note that we focus our review on the versions of SKINNY with the same parameters
as in our ForkSkinny candidates).

Table 4: Complexities of the main previous cryptanalyses of SKINNY-64-192, SKINNY-128-256 and
SKINNY-128-384. The letters indicate if it is in the Related (R) or Single (S) tweakey scenario.

Version Technique Rounds Time Data Memory ref.

SKINNY-64-192 Rect.(R) 27/40 2165.5 263.5 280 [44]

SKINNY-64-192 Impossib.(S) 22/40 2183.97 247.84 274.84 [61]

SKINNY-128-256 Impossib.(R) 23/48 2251.47 2124.47 2248 [44]

SKINNY-128-256 Impossib.(S) 20/48 2245.72 292.1 2147.1 [61]

SKINNY-128-384 Rect.(R) 27/56 2331 2123 2155 [44]

SKINNY-128-384 Impossib.(S) 22/56 2373.48 292.22 2147.22 [61]

SKINNY-128-384 DS-MITM.(S) 22/56 2382.46 296 2330.99 [57]

Other previous works discussed distinguishers only, without converting them into attacks. We
summarize them in Table 5.

Table 5: Probabilities of the main previous distinguishers of SKINNY-64-192, SKINNY-128-256 and
SKINNY-128-384. The letters indicate if it is in the Related (R) or Single (S) tweakey scenario.

Version Type of distinguisher Rounds Probability ref.

SKINNY-64-192 Boomerang (R) 22/40 2−42.98 [58]

SKINNY-64-192 Differential (S) 20/40 2−176.74 [12]

SKINNY-64 Truncated (S) 10/40 2−40 [47]

SKINNY-64 Integral (S) 10/40 n/a [68]

SKINNY-64 zero-correlation (S) 10/40 n/a [56]

SKINNY-128-256 Boomerang (R) 18/48 2−77.83 [58]

SKINNY-128 zero-correlation (S) 10/48 n/a [56]

SKINNY-128-384 Boomerang (R) 22/56 2−48.30 [58]

SKINNY-128 zero-correlation (S) 10/56 n/a [56]

We also recall in Table 6 the bounds on the number of active Sboxes that were provided in the
SKINNY specification.

G.2 Truncated Attacks

Truncated attacks are a variant of differential attacks where an attacker focuses on the activity
pattern of differences instead of on their exact value. In most cases, these patterns correspond to
stating which Sbox-size words are inactive and which are potentially active. A truncated differential
can be easily used in an attack if its probability is higher than the probability to observe such an
input and output patterns for a random permutation.

The resistance of SKINNY against truncated differential attacks has been studied in a recent
ePrint report that uses Milp techniques [47]. The authors proved that the best truncated differential
trails existing on 10-round SKINNY-64 have a probability of 2−40. This implies that on 20 rounds
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Table 6: Lower bounds on the number of active Sboxes in SKINNY, in the single key (SK) and
Related-tweakey (TK1, TK2 and TK3) models, as given in [17].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SK 1 2 5 8 12 16 26 36 41 46 51 55 58 61 66
TK1 0 0 1 2 3 6 10 13 16 23 32 38 41 45 49
TK2 0 0 0 0 1 2 3 6 9 12 16 21 25 31 35
TK3 0 0 0 0 0 0 1 2 3 6 10 13 16 19 24

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
SK 75 82 88 92 96 102 108 (114) (116) (124) (132) (138) (136) (148) (158)
TK1 54 59 62 66 70 75 79 83 85 88 95 102 (108) (112) (120)
TK2 40 43 47 52 57 59 64 67 72 75 82 85 88 92 96
TK3 27 31 35 43 45 48 51 55 58 60 65 72 77 81 85

there are no truncated differential trails of probability higher than 2−80, so no straightforward
distinguisher of this type can be deduced for 20 rounds. In a similar way to what we did for simple
differentials, these results can be used to prove the resistance of ForkSkinny. The result in [47]
combined with the large number of rounds of the instances we consider (our proposal derived from
SKINNY-64 has parameters rinit = 17 and r0 = r1 = 23), make us confident that our proposals are
immune to this type of attacks.

G.3 Impossible Differential

Impossible differential attacks [28, 39] make use of a couple of differences (α, β) that verifies that
for all possible keys two messages with a Xor difference equal to α cannot produce two messages
that differ by β after a given number of rounds r of encryption.

To turn this distinguisher into a key recovery, an attacker appends some rounds before and
after the impossible differential. She then makes a guess on the value of some key bits to check if
the differences α and β are observed together. If this is the case, the guess is wrong for sure (since
it leads to a situation that is impossible), so the corresponding keys are discarded. Once the search
space has been sufficiently reduced, the attack is usually finalised with an exhaustive search.

In case the impossible differential is of the truncated type, we can easily give an upper bound
on its number of rounds. This study was provided in the SKINNY specification, where it was shown
that a miss-in-the-middle (in the special case where the contradiction is that one cell is active for
sure from one direction but inactive from the other direction) can at most reach 11 rounds in the
single-tweakey model.

In following works, the study was extended to the related-tweakey scenario, and for this the
number of rounds covered by the distinguisher was extended to 12 rounds for TK1, 14 rounds for
TK2 and 16 rounds for TK3 [44].

What remains to be done is the study of the case where the impossible differential is positioned
around the forking point. A good first estimate consists in looking at the single key truncated
impossible differential case, where the contradiction comes from one active cell obtained from
one direction and one inactive cell coming from the other direction. We start by looking for the
maximum number of rounds for which one word at least remains inactive or active, both for the
cases:

1. decryption rounds only (corresponding to going from C0 or C1 up to before the forking point)

2. decryption rounds followed by encryption rounds (corresponding to going from C0 or C1 and
decrypting and then continuing over the forking point with encryption.)

To evaluate the second case, we look at all the possibilities for the number of rounds before the
forking point.

The results are provided in Table 7. If we leave out the necessary requirement that the position
of the active cell of one path has to correspond to the position of the inactive path of the other
cell, we obtain that no truncated impossible differential can cover more than 7 + 5 = 6 + 6 = 12
rounds.
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Table 7: Maximum number of rounds covered with a truncated differential path until we lose all
information.

information case 1 case 2

inactive 5 6

active 6 7

Since this approximation (that is optimistic for the attacker) is close to what was obtained for
SKINNY (and that SKINNY has comfortable security margins), we are confident about the resistance
of ForkSkinny against this type of attacks.

In the related tweakey scenario, an attacker can easily increase the number of rounds of the
distinguisher by creating blank rounds (that is with no differences at all), simply by choosing
carefully the value of the tweakey difference. However, this trick is limited by the properties of
SKINNY Tweakey Schedule, namely the p− 1 cancellation property of [37]: only a single difference
cancellation can happen every 15 rounds for TK2, and only two difference cancellations can happen
for TK3. Since only half of the tweakey material is used every round this implies that at most 3
consecutive rounds with no tweakey differences can be constructed every 30 rounds for TK2, and
5 for TK3. Even in the case where these free rounds can be exploited both at the beginning and
at the end, the securiy margins chosen in SKINNY are sufficient.

G.4 Boomerang Attacks

In the classical boomerang attack [62] the adversary produces a quartet of plaintexts/ciphertexts
{(Pi)}4i=0 such that

⊕
Pi = 0, satisfying

⊕
E(Pi) = 0, where E is typically a block cipher.

Boomerang attacks can also be adapted in the related-key model, which are known as the related-
key boomerang attacks. The success of classic boomerang attacks depends on the probability of
differential propagation in a block cipher. Usually a boomerang attack combines two high proba-
bility differentials which exist on reduced number of rounds. Suppose that in a block cipher two
differentials exist with probabilities p and q on r1 and r2 round respectively. Then as a first ap-
proximation we can evaluate the probability of the boomerang distinguisher for r1 + r2 rounds of
Er2◦Er1 to p2q2, where Er denotes r round of the encryption function E. In ForkSkinny such attacks
can not be applied to the full version due to the large number of active Sboxes. The related-key
boomerang attack is more relevant, since it may lead to a forgery attack against the AE scheme.
In ForkSkinny, we can always find a difference between the round-tweakeys (immediately after the
forking step) which are used in the two different branches of the forkcipher. Using such related
round-tweakeys if an adversary can find RTK boomerang attack then it will lead to the forgery
of the AE scheme. The idea of such attack is depicted in the Fig 20. Such an attack [16] was also
found on an earlier forkcipher instantation. However, it is not possible to find a similar boomerang
attack on ForkSkinny which may lead to forgery attack.

G.5 Meet-in-the-Middle Attack

In a (basic) Meet-in-the-Middle attack, the attacker looks for a decomposition of the cipher in two
parts so that the computation of each part only requires a fraction of the master key. She then
computes a part of the internal state from the plaintext up to the end of the first part of the
cipher, and computes the same part from the ciphertext up to the beginning of the second part.
The correct value for the guessed key bits is among the hypotheses that lead to a match. A good
starting point to obtain a first approximation of the resistance of a cipher to Meet-in-the-Middle
attacks consists in looking at its diffusion.

The diffusion of a cipher corresponds to the number of rounds d that are required for any input
bit to influence all the bits of the internal state. In case the key size corresponds to the block size
and that all the key material is used in every rounds, having a cipher with diffusion equal to d
means that any output bit after d rounds is an expression depending on all the key bits, which
prevents the previous MitM attacks when more than (d− 1) + (d− 1) rounds are used.
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Fig. 20: RTK boomerang attack against forkcipher producing forgery for single block. Here tk1r and
tk2r are two round keys after forking which introduce the tweakey difference. X and Y are states
of the ForkSkinny after forking.

For SKINNY the diffusion delay is equal to 6, which would lead to a first estimate of 10 rounds
for a partial matching. However, we must take into account the fact that only half of the tweakey
material is used in each round, that the key addition is made after the non-linear operation and
that the forking point in a reconstruction operation has a lower diffusion12), which adds some
rounds to the first estimate.

In any case the obtained numbers are far from the chosen number of rounds. Moreover, recent
results by Shi et al. [57] showed that with the improvements resulting from the Demirci-Selçuk
techniques a total of 22 rounds out of the 56 of SKINNY-128-384 can be attacked. This supports
that the number of rounds we chose are sufficient to thwart these types of attacks.

G.6 Integral Attack

ForkSkinny has two components ForkSkinny0 and ForkSkinny1 which produce C0 and C1, respec-
tively from M . The security of these components follow directly from the analysis of SKINNY.
The integral cryptanalysis against SKINNY can be directly applied to ForkSkinny0 and ForkSkinny1.
SKINNY specification describes an integral distinguisher for 10 rounds. This can be applied to both
reduced round ForkSkinny0 and ForkSkinny1. When applied to these components, the integral dis-
tinguisher can only cover less than rinit rounds prior to forking step. For the key recovery attack,
it is possible to add 4 rounds to this integral distinguisher which allows an adversary to mount
an attack against 14 rounds of SKINNY. Again, this key recovery attack can only cover less than
rinit rounds, prior to forking in different ForkSkinny-n-t. In the reconstruction, an adversary has to
cover at least 27 rounds in the encryption direction (following the forking point). Hence, it is not
possible to use the integral attack against the full reconstruction in ForkSkinny. Complexities of the
integral attacks against round reduced ForkSkinny remain the same as described in the specification
of SKINNY [17].

Division Property. The division property was introduced as a generalization of the integral property
by Todo [60]. SKINNY specification analyses show that the division property has significant margin
against an attack that uses it. The generic analysis of SPN ciphers described in [60] leads to only 6
rounds of division property. Taking the resistance of SKINNY against division property into account,
we are confident that ForkSkinny has a sufficient security margin against the same type of attacks.

G.7 Algebraic Attack

By following the analysis of SKINNY we can show that algebraic attacks pose no threats to full
ForkSkinny. ForkSkinny uses the same Sboxes of sizes 4 bits and 8 bits with algebraic degree a = 3

12 The diffusion delay could also increase if the forking point chains two tweakeys that depend on the same
half of the tweakey material. To avoid this we opted for values of r1 that are odd.
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and a = 6, respectively, as in SKINNY. In a single key setting, 7 consecutive rounds of SKINNY have
26 active Sboxes, so for all variants of ForkSkinny, we obtain that every output bit after r rounds
has an expected degree of at least a · 26 · b r7c≫ n. As it has been shown in the specification [17],
writing the set of quadratic equations corresponding to the encryption under the smaller SKINNY

variant leads to more equations in more variables than what is obtained for a fixed-key AES
permutation, an observation that transfers to ForkSkinny rounds. One could fear that the fork
structure might help simplifying the system (by taking into account the plaintext and the two
ciphertexts all together), but we believe that the resulting gain does not compensate the very large
number of rounds that each version count.

G.8 Invariant Subspace Cryptanalysis

As its name indicates, this type of attacks relies on subspaces that remain invariant while going
through the round functions. As stated in SKINNY specification, this cryptanalysis was shown
efficient in cases where the cipher has no key schedule, that is when the same key is added every
round. Given the fact that the tweakey schedule in ForkSkinny is not of this form and that round
constants are used, we believe that our proposal is safe against this kind of attacks.

G.9 On the applicability of the Techniques Devised on ForkAES to ForkSkinny

The recent article [16] provided a series of techniques to attack reduced versions of ForkAES. Their
best result breaks ForkAES with r0 = r1 = 4 (independently of the number of rounds in rinit),
while the initial proposal for the parameters of ForkAES were rinit = r0 = r1 = 5. The techniques
used were of various types: rectangle, impossible differential, reflection differential and (impossible-
differential) yoyo. Note that ForkAES makes use of a tweak in the way KIASU [34] does, and that
these attacks reach one more round than the best results published so far on KIASU-BC.

To achieve this, their authors took advantage of the sequence of operations that are done at the
forking point in the reconstruction scenario, and in particular of the fact that the diffusion at this
point is weaker than in encryption rounds. Second, they combined this with the freedom provided
by the simple tweak used in the cipher to obtain inactive rounds.

The main thing that differs between ForkAES and ForkSkinny is the security margin: the se-
quence of operations linking M to C0 (and C0 to C1) in ForkAES has 10 rounds, while 8 rounds of
KIASU-BC have previously been attacked. On the other hand, the security margin for SKINNY is
much more important, which should render an attack impossible on the full version of the cipher.
Moreover, we fixed the parameters so that the number of rounds connecting C0 to C1 is higher
than the number of rounds of the corresponding version of SKINNY, compensating a bit the weaker
diffusion at the forking point. Additionally we also introduce a branch constant so that the state of
the two branches after forking has a difference. The security analysis we conducted confirms that
the set of parameters we chose are reasonable.

H Games for Defining Nonce-based AEAD Security

The games priv-realΠ , priv-idealΠ and authΠ can be found in Figure 21
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proc initialize priv-realΠ

K ←$ K
X ← ∅

proc Enc(N,A,M)
if N ∈ X then

return ⊥
X ← X ∪ {N}
C ← E(K,N,A,M)
return C

proc initialize priv-idealΠ

X ← ∅

proc Enc(N,A,M)
if N ∈ X then

return ⊥
X ← X ∪ {N}
C ←$ {0, 1}|M|+τ
return C

proc initialize authΠ
K ←$ K
X ← ∅, Y ← ∅

proc Enc(N,A,M)
if N ∈ X then

return ⊥
X ← X ∪ {N}
C ← E(K,N,A,M)
Y ← Y ∪ {(N,A,C)}
return C

proc Dec(N,A,C)
if (N,A,C) ∈ Y then

return ⊥
return D(K,N,A,C)

Fig. 21: Security games for a nonce-based AE Π = (K, E ,D) with ciphertext expansion τ .
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