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Abstract—Service workers boost the user experience of modern
web applications by taking advantage of the Cache API to
improve responsiveness and support offline usage. In this paper,
we present the first security analysis of the threats posed by
this programming practice, identifying an attack with major
security implications. In particular, we show how a traditional
XSS attack can abuse the Cache API to escalate into a person-
in-the-middle attack against cached content, thus compromising
its confidentiality and integrity. Remarkably, this attack enables
new threats which are beyond the scope of traditional XSS. After
defining the attack, we study its prevalence in the wild, finding
that the large majority of the sites which register service workers
using the Cache API are vulnerable as long as a single webpage
in the same origin of the service worker is affected by an XSS.
Finally, we propose a browser-side countermeasure against this
attack, and we analyze its effectiveness and practicality in terms
of security benefits and backward compatibility with existing web
applications.

I. INTRODUCTION

Progressive Web Applications (PWAs) are the latest trend
in the tremendous evolution of web applications [27]. PWAs
offer a user experience similar to traditional mobile / desktop
applications by providing extreme responsiveness and support-
ing offline usage, e.g., in absence of connectivity, while taking
full advantage of inherently online features whenever possible.
Service workers [28] are the key enabler of PWAs, since they
can act as client-side web application proxies able to intercept
HTTP requests and immediately serve previously cached HTTP
responses. This practice, enabled by the Cache API [22], greatly
improves usability, yet its security implications are unclear.

In this paper, we analyze the design of the Cache API
available to service workers and we identify new security
threats enabled by its adoption. In particular, we discuss how
the Cache API can exacerbate the dangers normally posed by
malicious scripts running in the web application origin, e.g.,
as the result of a successful XSS exploitation. By tampering
with cached HTTP responses, a traditional web attack like XSS
can achieve results equivalent to a person-in-the-middle attack,
which normally requires network capabilities and the lack (or
misuse) of transport layer defenses. The attack presented in
this paper breaks the confidentiality and the integrity of cached
content, which can lead to a wide range of severe threats.
Remarkably, the ability to corrupt cached HTTP responses
allows the attacker to bypass the protection of security headers
and defensive programming practices, which normally mitigate
the impact of a successful XSS exploitation. Moreover, since

the attack corrupts client-side data, it is persistent and naturally
amplified to all pages serving content from the cache on the
same origin.

These issues are not purely theoretical, but can easily affect
any web application which registers a service worker using
the Cache API, as long as the attacker can get active scripting
capabilities even on a single page of the web application. While
automated testing for script injection is beyond the scope of
our study, XSS is the most common web vulnerability, which
affects around two-thirds of vulnerable web applications and
is routinely discovered even on high-profile websites [13]. Our
large-scale analysis on 150,000 websites from the Tranco list
identifies that 95.8% of the 3,436 websites which register a
service worker using the Cache API are potentially vulnerable
to the threats described in our paper, including prominent sites
such as Google Developers and WhatsApp. By simulating script
injection at scale on these sites via a browser extension, we
assess that 65% of the 2,796 sites caching HTML or JavaScript
files would be affected by this attack in presence of just a
single XSS vulnerability in their codebase.

Based on our security analysis, we argue that the key design
flaw of the Cache API is that the cache used by service workers
is shared with any script running in the same origin of the web
application. To prevent the newly identified threats, we propose
as a countermeasure a redesign of the Cache API so that it is
only available to service workers. Of course, this major overhaul
might lead to the breakage of existing web applications, hence
we also discuss a simple mechanism to relax the scope of
the cache to include scripts when needed. We experimentally
confirm through a web measurement that the large majority of
the websites using the Cache API (93.1% out of 3,537) do not
need to make the cache accessible to scripts, and they would
thus transparently get automated protection against the attack.
As to the remaining websites, we identify caching patterns that
could be revised to avoid the need of exposing the cache to
scripts in most cases. We also discuss a simple programming
practice that web developers can immediately implement to
detect and discard tampered entries in the service workers
cache.

Contributions: To the best of our knowledge, this work
presents the first security analysis of the threats posed by the
use of the popular Cache API in service workers, proposing
an effective and practical browser-side technique to secure its
usage in modern web applications. Specifically, we make the



following contributions:
1) We demonstrate that the current design of the Cache API

poses major security threats, since it allows a web attacker
with scripting capabilities to act as a person-in-in-middle
against cached content (Section III), thus exacerbating
the dangers of standard XSS and enabling new attacks
(Section IV).

2) We perform a large-scale empirical study on the top
150,000 websites from Tranco to confirm that the dangers
posed by the Cache API are real. Our analysis found
that 95.8% of the 3,436 websites using the Cache API
in service workers are potentially vulnerable, including
high-profile websites, as long as a single webpage in the
same origin of the service worker is affected by an XSS
vulnerability. By simulating script injection via a browser
extension, we confirm that the majority of these sites
would be vulnerable to the attack described in this work
(Section V).

3) We propose countermeasures to prevent the new threats
presented in our work. In particular, we argue that the
Cache API should be made accessible only to service
workers by default. We quantify the websites that are
using the cache outside of service workers (7.2% out of
3,537 sites using the Cache API), and we identify caching
patterns that would be affected by the proposed redesign.
To ensure compatibility with existing web applications,
we outline a server-defined mechanism that allows site
operators to instruct the browser to expose the Cache API
to other same-origin contexts (Section VI).

II. BACKGROUND

In this section, we provide an overview of service workers
and their use for caching remote content.

A. Service Workers

A service worker is an event-driven and browser-handled
JavaScript program, which can be programmatically registered
by a web application. It plays the role of a client-side proxy,
since it can intercept and modify the HTTP requests issued by
the web application and the corresponding HTTP responses.
Coupled with the Cache API, it can also be used to store HTTP
responses and then serve them even in absence of connectivity.
Figure 1 shows the proxy-like position of a service worker.

The service worker life-cycle is managed by the browser,
which can put it to sleep or wake it up depending on whether
there are events to handle or not. Although service workers
share the same origin1 of the web application they manage,
they execute in a separate and isolated context, different from
that of other same-origin web pages and workers. For example,
service workers do not have access to the DOM.

For security reasons, service workers can only be registered
on HTTPS websites. Also, the location of the service worker
script used during its registration must be from the same origin

1An origin is a triple including protocol, domain, and port. It operates as
the standard security boundary in web browsers, by virtue of the Same Origin
Policy (SOP).
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Figure 1: Service workers sit between web applications and web
servers. They can store HTTP content in the cache and serve them to
web pages, e.g., to speedup the navigation.

of the web application. However, the service worker script can
further import and execute third-party scripts within its context.
Since service workers are registered to offer functionality to
a set of same-origin pages, a site with multiple subdomains
may actually need to register multiple service workers (one
for each origin of its subdomains).

B. Caching Content in Service Workers

Using the Fetch API, a service worker can intercept all
HTTP requests made by the web application it was registered
for, and modify responses with arbitrary content. When an
HTTP response is obtained from the network, a service worker
can cache its content by means of the Cache API, as shown
in Figure 1. Therefore, the next time a request for the same
resource is made, the service worker can serve the cached
response immediately, instead of – or before – fetching it over
the network again. More specifically, the CacheStorage
interface provides a global directory of all the named caches
in an origin. Each cache name is mapped to a Cache object
that represents a list of cached requests/responses.

A typical use case for the Cache API, in combination with
the Fetch API, is shown in Listing 1. This strategy, usually
referred to as cache first [26], is used to minimize network
requests and to provide offline capabilities. Intuitively, the
service worker intercepts all the HTTP requests (Line 1) and
checks whether a corresponding response is already present
in a cache (Line 3). If this is the case, the cached response is
used (Line 4), otherwise the resource is first fetched from the
remote server (Line 5), then added to the cache (Line 7), and
served to the web application (Line 8). Notice that if the HTTP
response is accessible from the service worker (same-origin or
CORS-compliant cross-origin [23]), it can also be arbitrarily
modified before caching.

III. ABUSING THE CACHE API

In this section, we present an attack that can affect web
applications registering a service worker making use of the
Cache API. We first define our threat model and identify the
preconditions for the attack, then we explain in detail how the
attack works. We discuss its security implications in Section IV
and present the results of a large-scale measurement of potential
security issues found in the wild in Section V.



1 self.addEventListener(’fetch’, (event) => {
2 event.respondWith(async function() {
3 cResponse = await caches.match(event.request);
4 if(cResponse) return cResponse;
5 response = await fetch(event.request);
6 cache = await caches.open(’static’);
7 cache.put(event.request, response.clone());
8 return response;
9 }());

10 });

Listing 1: Service worker implementing a cache first strategy.

A. Threat Model and Attack Preconditions

We consider a traditional web attacker operating a malicious
website at attacker.com. The attack we present here is enabled
by the following conditions:

1) The attacker has active scripting capabilities on a page
p of the target website. For example, this might happen
when p suffers from an injection vulnerability and does not
correctly deploy Content Security Policy (CSP) to mitigate
the potential XSS. This is a reasonable assumption,
considering that XSS is still one of the most prevalent
web security vulnerabilities and is routinely found even
on high-profile websites [13].

2) There exists a service worker using the Cache API
registered on the same origin of the page p. This means
that the attacker has active scripting capabilities in the
same origin where the service worker was registered.

B. Attack Description

The attack is enabled by the fact that the service worker cache
is accessible from scripts running in the same origin where the
service worker was registered. If the attack preconditions are
met, the attacker can abuse the Cache API to get unrestricted
read and write access to all the HTTP responses in the cache
served from the same origin of the service worker (or from
CORS-compliant third-party origins). This means that the
attacker can operate as a person-in-the-middle against cached
HTTP responses, going beyond the traditional capabilities of a
web attacker. In particular, the attacker can exfiltrate secrets
from the cache or arbitrarily corrupt the cached content before
it is served to the target web application.

Secret exfiltration can be performed by abusing the match

method of the Cache API, which grants access to the response
object bound to an arbitrarily chosen request. We exemplify the
attack at work in Listing 2. Intuitively, a secret in the response
to /secret.json is stored in the cache named v1. Hence, the
attacker opens the cache v1, reads /secret.json and sends it to
an attacker’s controlled endpoint at https://attacker.com/sniffer
by using the fetch API. Note that reading cached content is
subject to the SOP. Here, the resource /secret.json comes from
the same origin as the attacked site, so the attacker can read
the secret data.

Arbitrary corruption of the cache content can be done by
abusing the put method of the Cache interface, which allows
the attacker to set an arbitrary response object to a cache
entry bound to any chosen request. We exemplify the attack

1 (async () => {
2 cache = await caches.open(’v1’);
3 res = await cache.match(’/secret.json’);
4 fetch(’https://attacker.com/sniffer’, {
5 method: "POST",
6 headers: {
7 "content-type": "application/json"
8 },
9 body: await res.json()

10 });
11 }) ();

Listing 2: Leaking secrets from the cache. The attacker extracts from
the cache the response containing the secrets, then exfiltrates them to
a malicious server.

1 (async () => {
2 cache = await caches.open(’v1’);
3 originalContent = await cache.match(’/login.html’);
4 cParser = document.createElement(’html’);
5 cParser.innerHTML = originalContent
6 cParser.getElementsByTagName(’head’)[0].prepend(
7 ’<script src="https://attacker.com/keylogger.js"></

script>’);
8 await cache.put("/login.html",
9 new Response(cParser.outerHTML, {

10 status: 200,
11 statusText: "OK",
12 headers: {
13 "content-type": "text/html"
14 }
15 })
16 );
17 }) ();

Listing 3: Corrupting the cache. A keylogger is injected in the
cached page login.html and all security headers are stripped out of
the tampered response.

at work in Listing 3. In this example, the attacker reads the
cached /login.html page, modifies its content in order to inject
a keylogger from https://attacker.com, then writes back the
modified content in the cache by taking care of stripping
out potential security headers from the response. When the
user navigates this page, the attacker payload will record and
exfiltrate the user login credentials. Moreover, given that the
attacker script is injected first in the page, as discussed in the
next section, it can break defensive programming practices that
rely on the order in which scripts are loaded [6].

IV. SECURITY IMPLICATIONS

In our scenario, we require the attacker to be able to get active
scripting capabilities on a page of the target web application.
When this happens, the protection offered by SOP is already
bypassed, and most security guarantees are voided anyway.
However, the presented abuses of the Cache API are particularly
dangerous, as they exacerbate the threats of traditional XSS.

A. Comparison with Traditional XSS

To understand the threats caused by the presented attack,
we start by comparing it against traditional XSS. The first
observation we make is that the attack by itself is extremely
powerful since it breaks the confidentiality and the integrity of
cached content. Technically speaking, the security implications
of tampering with cached content are reminiscent of persistent



client-side XSS [14], [35]. In this attack, client-side data like
cookies and web storage are corrupted so as to lead to script
injection every time the web application is accessed from the
same client. As already reported by Vela [37] in 2015 (see
Section VII), corrupting the service workers cache similarly
gives the attacker the possibility of achieving persistent script
injection capabilities. Even an ephemeral attack like reflected
XSS can be turned into a persistent client-side XSS, which is
triggered every time the victim visits a page fetching content
from the cache using the same client where the reflected XSS
took place. Moreover, the attacker could mount a persistent
denial-of-service attack by manipulating cache content to affect
the website functionality.

Note that injections on client-side storage are also dangerous
because data therein might be used across multiple pages
and sessions (within the same origin), which amplifies the
attack surface against the web application. For instance, a
simple reflected XSS on an error page, where the site operator
inadvertently forgot to deploy appropriate CSP headers, might
turn into an attack against the cached copy of the login
page, where the attacker could inject a script to leak the
victim’s password. Furthermore, the attacker could exfiltrate
sensitive resources cached during an authenticated session,
even if the XSS occurs when the user does not hold an
active session with the website anymore. In fact, the attacker
could access leftover secrets from a previous session, such as
personally identifiable information, passwords, security tokens,
and multimedia content, just by reading them directly from
the cache.

Besides all these threats, there is a distinctive feature of this
attack that uniquely exacerbates the dangers of traditional XSS,
i.e., the ability of the attacker to perform person-in-the-middle
attacks against cached HTTP responses. This opens up novel
attack scenarios, e.g., the attacker can bypass the protection of
security headers and defensive programming practices, which
normally mitigate the impact of a successful XSS exploitation.
We discuss this below.

B. Bypassing Security Headers

By corrupting the service workers cache, the attacker
does not just get access to the HTML of the cached pages,
which they can already control upon XSS by interacting with
the DOM, but to entire response objects. This means that
the attacker can inspect and arbitrarily modify the content
of HTTP headers, which is normally not possible unless
the attacker can control HTTP traffic or exploit an HTTP
response splitting vulnerability [29]. This is a major concern,
especially given the increasing popularity of client-side security
mechanisms based on HTTP headers. Prominent security head-
ers such as Content-Security-Policy, Feature-Policy,
and X-Frame-Options can be tampered with by an attacker to
nullify their effect on protected webpages. We discuss concrete
examples of attacks in the following. None of these attacks
can be mounted via traditional XSS, since the attacker has no
access to security headers in that scenario.

1) Content Security Policy: CSP was originally designed
to mitigate the dangers of XSS by restricting script execution.
Since the presented attack already requires active scripting
capabilities to take place, one may think that the attacker has
no gain in manipulating CSP headers. However, attackers might
be prevented from executing malicious payloads injected into
cached pages, whenever the corresponding response objects
are protected by a CSP. In this case, attackers must also strip
or modify the Content-Security-Policy header from the
cached response to allow for the inclusion of the malicious
content. Furthermore, CSP has evolved to support many more
use cases [32], which can be targeted by the attacker. We
discuss selected examples:

• Let us assume a page sets the CSP directive
frame-ancestors to ’none’ to prevent framing on
any page. An attacker abusing XSS could strip away the
CSP directive from the cached copy of the page to void the
protection enforced by the security header. A similar attack
is discussed below for the X-Frame-Options header.

• The CSP sandbox directive, configured without the
option allow-same-origin, can be deployed on a
page to isolate it from other pages by creating a unique
origin. Since CSP-sandboxed pages can still be cached,
the attacker can tamper with cached content to inject
malicious content in normally sandboxed contexts.

• CSP can be used to monitor security violations to a
given policy without actually enforcing it, e.g., to test
compliance with a policy without breaking functionality.
If a policy is not enforced but only monitored, attackers
abusing XSS could remove the policy from cached pages
to hide the presence of policy violations and go incognito
in their attack attempts.

2) Feature Policy: The Feature Policy [11], very recently
renamed to Permission Policy, is a relatively new security
mechanism that allows one to control which features are
enabled on a page and in embedded frames. Policy directives set
via the Feature-Policy header are defined as a combination
of a feature name and a list of origins that can use that feature.
Feature Policy is typically used to selectively disable security
critical APIs (such as Media Capture and Streams [16] or
the Generic Sensor API [38]) to prevent abuses. Although
the activation of some of these features requires the explicit
permission of the user, e.g., by clicking on a popup, disabling
the Feature-Policy header may have severe security and
privacy consequences, given that the attacker can potentially
escalate privileges to, e.g., get control of webcams, microphones
or other devices.

3) X-Frame-Options: The X-Frame-Options header, even
though deprecated by the frame-ancestors directive of
CSP, is still widely used for framing control in order to fight
UI Redressing attacks [33], [15] and to mitigate certain classes
of XS-Leaks [36]. For example, by setting its value to DENY, a
webpage is normally ensured that it will not be framed, not
even by same-origin pages. Removing this security header
disables the protection and, interestingly, allows an attacker to



also embed the cached page on an arbitrary origin. This is a
peculiarity of our attack scenario, given that any request in the
scope of the service worker is intercepted, even if it is caused
by the inclusion of an iframe from a cross-origin position.

Discussion: The previous list of threats is not intended to be
exhaustive, yet it is worth mentioning a few notable exclusions.
The Set-Cookie header is not strictly speaking a security
header, yet it contains security attributes for cookies, hence
the attacker might profit from tampering with it; however, this
header is not accessible from the Fetch API, which defines
a list of forbidden response header names [5]. Moreover,
we experimentally observed that HSTS headers of cached
responses cannot be modified in major browsers, including
Google Chrome and Mozilla Firefox. All the attacks discussed
in the present section have been confirmed to work correctly
by implementing appropriate proofs of concept.

C. Bypassing Defensive Programming

By tampering with cached response objects, the attack
also allows one to bypass defensive programming [9]. In
particular, popular APIs and coding conventions used to
improve the security and the robustness of JavaScript code can
be circumvented. Examples of such practices include:

• Frozen objects obtained by calling the Object.freeze

method are immutable objects which can no longer
be changed. This method prevents adding or removing
properties, changing property values, or altering the
object’s prototype.

• Sealed objects, as created by the Object.seal method,
are a weaker variant of frozen objects. The main difference
with respect to frozen objects is that changing the values
of existing properties is still possible.

• Other methods, such as Object.preventExtensions

or even the descriptors of Object.defineProperty

method, can serve to protect sensitive JavaScript objects
from manipulations by malicious code.

By redefining methods like Object.freeze in cached
HTTP responses, an attacker can void all the protections
intended to defend sensitive objects. This cannot be achieved
by traditional XSS, since the presented techniques build
on language features specifically designed to constrain the
execution of JavaScript code. The reason why this attack
sidesteps such protection mechanisms is its privileged person-
in-the-middle position on cached responses, which allows it to
arbitrarily modify code before it is executed. This implies that
attacker-controlled scripts run first and can perform damage
before defensive programming practices are enabled.

We show the attack in Listing 4, where Object.freeze is
used as a hardening measure against prototype pollution [8],
[18]. This dangerous class of attacks refers to the ability
of an attacker, under certain circumstances, to overwrite the
properties of an object to execute malicious code once the
tampered property is used by the application. The code listed
between lines 2 and 5 represents a standard object creation
procedure in JavaScript taking advantage of Object.freeze
to prevent the prototype of the object from being modified.

1 Object.freeze = (x) => x; // Cache-based injection
2 let objProto = Object.freeze({
3 foo() { console.log(’foo’); }
4 });
5 let obj = Object.create(objProto);
6 obj.__proto__.foo = () => alert("XSS"); // Injection
7 obj.foo();

Listing 4: Sidestepping protections against prototype pollution.

Therefore, the injection at line 6 has no effect on the prototype
of the object, and the attacker payload is not executed.
Conversely, an attacker with the ability to run code at the
beginning of the snippet (Line 1) can redefine Object.freeze
with an arbitrary function and disable the intended protection
mechanism. As a result, the prototype of the object is modified
by the injection at line 5, and the attacker’s payload is executed.

D. Examples

In the rest of the paper, we report on the results of a
large-scale measurement in the wild of the dangers of the
Cache API in combination with service workers. To better
motivate our study, we provide in Appendix A examples of
real-world attacks enabled by abuses of the Cache API that
we found on prominent sites which, in presence of an XSS
vulnerability, would satisfy our attack preconditions. All the
reported vulnerabilities have been tested in an ethical manner:
XSS execution on a page was simulated by injecting a script
through a browser extension called TamperCache, without
attempting to exploit cross-site scripting vulnerabilities on the
analyzed websites. The code used to mount the attack is directly
adapted from Listing 3. Moreover, we developed a mock web
application called SafeNotes to showcase the attack at work
and help understanding its security implications. We make both
TamperCache and SafeNotes publicly available, also providing
short videos of attack simulations.2

V. WEB MEASUREMENT

We perform an empirical study to assess the deployment of
service workers and identify websites that fall into our threat
model, because they use the Cache API and do not deploy CSP
to mitigate XSS. We first explain how we evaluated the CSP
deployment on the crawled sites and present the data collection
methodology. Then, we report on the security impact of the
presented attack in the wild.

A. Assessing CSP Deployment

To clarify the minimum requirements that a CSP should
satisfy to mitigate XSS, we introduce a definition of safe CSP
inspired by prior work [10], yet adapted to the latest version
of CSP. The definition provides a baseline to evaluate the
robustness of policies, meaning that a CSP that is not safe can
be trivially bypassed. Nevertheless, a safe CSP does not ensure
protection against the full spectrum of bypasses, including
script gadgets [21] and the presence of allow-listed JSONP
endpoints.

2Companion site: https://swcacheattack.secpriv.wien/



Definition (Safe CSP). A CSP is safe iff it contains a
script-src directive (or a default-src directive in its
absence) bound to a value v satisfying these conditions:

1) v does not contain the ’unsafe-inline’ keyword,
unless nonces or hashes are also present in v;

2) v does not contain the wildcard * or any of the
http:, https: and data: schemes, unless the
’strict-dynamic’ keyword is also present in v.

Intuitively, clause 1 prevents XSS attacks based on the
injection of inline scripts by means of <script> tags, event
handlers, and javascript: URLs. Clause 2, instead, ensures
that <script> tags are subject to meaningful restrictions on
what they can load, e.g., it prevents script inclusion from
arbitrary HTTPS websites. The side-conditions of the “unless”
form account for subtleties in the CSP semantics, coming
from the existence of multiple CSP versions with backward-
compatible syntax. We assume here the adoption of a modern
browser supporting the latest version of CSP (Level 3).

B. Data Collection

Our data collection procedure consists of 3 phases. First,
we use a browser automation framework for Chrome to crawl
websites and to identify those registering service workers. Then,
we extend the code of service workers with Mitmproxy [3] to
track access to the Cache API. Finally, for those sites which are
potentially vulnerable because they do not deploy CSP correctly,
we perform a controlled experiment where we simulate an XSS
attack abusing the Cache API. This allows us to identify those
cases that would be exploitable upon XSS.

1) Websites Deploying Service Workers: We consider the
top-ranked sites (domains) according to the Tranco list [31],
as well as subdomains found on the Bing search engine. We
visit the homepage of each origin to extract links related to the
website. We combine those links with those found on Bing.
We group the links per origin, then we randomly select and
navigate up to 50 links per origin. In the end, we isolate origins
deploying service workers and monitor them.

Service Worker

SW Cache

Web Application Mitmproxy Network

Database

Figure 2: Automation framework to record accesses to the Service
Worker Cache.

2) Monitoring Service Workers: The monitoring methodol-
ogy is summarized in Figure 2. For each origin deploying
service workers, we use Puppeteer [4] with Chrome v79
to simulate a navigation under the scope of the service
worker, with the browser configured to redirect all HTTP(S)

communications to a local Mitmproxy instance. Mitmproxy is
an interactive HTTPS proxy for intercepting and manipulating
HTTP requests and responses [3]. In our case, we are interested
in intercepting and modifying service workers code. More
specifically, we instruct Mitmproxy to prepend our own
JavaScript code (referred to as the service worker monitor)
to the original code of the intercepted service workers. Our
monitor runs first within the service worker context and records
all the operations performed by the original service worker
(i.e., read/write to the Cache API). The monitor is largely
implemented by means of the JavaScript Proxy API [25],
which allows one to passively watch other JavaScript APIs
without changing their original semantics. By doing so, we
fully preserve the original functionality of service workers,
while still effectively monitoring the different operations they
perform, i.e., cache accesses.

In addition to monitoring the cache accesses from service
workers contexts, we also monitor cache accesses from web
pages. This is specifically done to support the discussion on
the countermeasures we propose (see Section VI).

3) Controlled Cache Attacks: For origins that register service
workers making use of the Cache API without deploying CSP
to mitigate XSS, we carry out a controlled experiment by
simulating an XSS attack to assess the magnitude and impact
of the threats reported in this work. The simulation consists of
the following steps:

(i) We navigate a random selection of links under the scope
of the service workers using the Cache API. This step is
performed to preliminary fill the cache with content.

(ii) Then, we infect the cache by replacing all originally
cached HTML and JavaScript content with our own
content (attacker-controlled content) and by removing all
security headers from originally cached HTML pages.

(iii) Once the cache is infected, we navigate the tampered
HTML pages to load our injected content and the infected
JavaScript files. If the service worker returns our attacker-
controlled content, the attack is successful.

(iv) To measure persistence, we also uninstall and reinstall
the service worker, and navigate again the previously
infected pages. If the service worker still returns the
attacker-controlled content, then we achieve persistence.

The attacks are performed in a controlled setting, using a
methodology similar to the one used for the service workers
monitoring (see Figure 2). Our sole goal is to probe the service
workers, locally installed in our test environment, to check
whether they would serve payloads that we carefully crafted
to replace the original HTML and JavaScript content in the
cache. The simulated attack happens locally, and no malicious
payload is sent to remote servers.

There are a number of reasons for which our approach may
not succeed in loading attacker-controlled content in tampered
pages. By manually investigating a subset of websites, we
noticed that some service workers are constantly refreshing
the cached content, thus overwriting our tampered files. Fur-
thermore, read operations on the cache may be performed
exclusively after specific user actions, e.g., clicking a button



on the page. This is a limitation of our navigation pattern that
simply visits URLs without interacting with elements in the
page. Despite these limitations, we observe that our strategy is
quite effective in practice (see below).

C. Prevalence of the Attack

The experimental evaluation was performed between May
24 and June 18, 2020. We found service workers deployed
on 9,153 origins from 6,709 (4.6%) websites out of 150,000
sites that we crawled from the Tranco List generated on 23
May 2020.3 Among those, 3,436 sites (51.2%) make use of
the Cache API in a service worker for storing and reading
all sorts of content, including HTML pages, JavaScript files,
AJAX data, images, stylesheets, etc. Out of the 3,436 websites
registering a service worker using the Cache API, the very large
majority of them (95.8%) contains at least one page which does
not deploy a safe CSP, and hence is vulnerable to the threats
described in this work if the attacker can find an injection
therein. Only a few prominent websites such as Google News,
Twitter, or Pinterest covered all their crawled pages with safe
CSPs, appropriately protecting against content injection attacks.
The other sites either did not use CSP, used it for other use
cases than script content restriction, or failed to properly restrict
scripts, e.g., due to the use of ’unsafe-inline’. We also
found a few websites deploying a combination of safe and
unsafe CSPs on their pages [34].

Considering the controlled experiments, we were able to
successfully mount the attack against 65% of the 2,796 sites
caching HTML or JavaScript. This means that the related
service workers blindly served the cached HTML or JavaScript
content we have tampered with. This is an under-approximation
of the sites where the attack would be possible in presence of
XSS, due to the limitations of our automated testing strategy.
We now provide more details about our findings.

D. Security Implications

We explained that websites vulnerable to the attack described
in this work are already exposed to significant danger since
the confidentiality and the integrity of cached content can be
arbitrarily compromised, which leads to persistent client-side
XSS. However, we also mentioned two new capabilities enabled
by the attack, i.e., bypassing security headers and circumventing
defensive programming practices, which we investigate below.

1) Bypassing Security Headers: Because security policies
are deployed on web pages, we consider only the results of
the attack against the 2,040 sites with service workers caching
HTML resources. For those cases, by tampering with the
cached HTML content, we successfully simulated the attack
by injecting our own scripts and by stripping out security
headers on 792 (38.8%) sites. This percentage is already
significant, yet it provides an under-approximation of the
potentially exploitable sites as previously discussed.

Figure 3 presents the security policies on the cached
pages belonging to origins whose service workers have been

3https://tranco-list.eu/list/J32Y/full
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Figure 3: Security policies found on cached HTML content.
These policies can be bypassed by altering cached responses,
thereby voiding their effects on the security of the page. The
most widespread policies include Content-Security-Policy
(CSP), X-Frame-Options (XFO), Feature-Policy (FP) and
Content-Security-Policy-Report-Only (CSPRO).

successfully attacked. Table I further breaks down the policies
into a selection of their most used directives. We comment
on these numbers in the following. It is important to note
that the relatively low number of policies found in the cache
of service workers reflects general statistics about the usage
of those policies in the wild [32]. The more these security
mechanisms gain traction, the more the practical significance
of the presented attack increases.

CSP is primarily used for framing control, as shown by
the prevalence of the frame-ancestors directive on 53
sites (6.7%). The popularity of XFO confirms that framing
control is considered important by site operators: we found
137 sites (17.3%) using the header, out of which 108 only
allow same-origin framing and 29 completely block framing.
By stripping out these security headers, normally protected
pages may become vulnerable to clickjacking and other frame-
based attacks [33], [15]. We also found cases where CSP
is deployed according to its original design, i.e., to mitigate
script injection: we discussed how attackers can circumvent
this protection on cached HTTP responses, so as to amplify
the attack surface against the web application. Finally, we
found a small number of sites caching HTML pages with a
Feature-Policy header. This policy is very recent, which

Directive Value Sites Origins

CSP
script-src 24 29
default-src 27 28
frame-ancestors 53 61

X-Frame-Options
SAMEORIGIN 108 116
DENY 29 31

Feature-Policy

gyroscope 3 4
geolocation 5 6
camera 4 5
payment 4 5
fullscreen 3 4

Table I: Directives and Values of Cached Security Policies.



API Sites Origins

freeze 1,411 1,677
seal 895 1,026
preventExtensions 993 1,149
Total (90.5%) 1,472 (89.6%) 1,748

Table II: Usage of defensive APIs on sites rendering tampered cached
JavaScript content. Total represents the sites using at least one of the
considered methods.

explains why it is not yet widespread among existing sites.
Nonetheless, we have observed websites using it to restrict
access to the camera or the geolocation, which are privacy-
critical resources.

2) Bypassing Defensive Programming: Among the 2,148
sites caching JavaScript files, we found that 1,626 (75.7%)
blindly serve JavaScript content that we have tampered with.
Among those, 1,472 (90.5%) make use of at least one form of
the defensive APIs shown in Table II.

As one can observe, websites are freezing objects in order
to make them non-modifiable by bugs or potentially malicious
scripts. Recall that freezing objects puts drastic restrictions on
them since properties cannot be added, changed, or removed,
likewise the prototype. Methods for sealing and preventing
extensions of objects are also widely used and provide similar
protections against sensitive objects. Since in our attack
simulation we have successfully replaced the cached scripts
with content that we controlled, an attacker in the same position
could entirely bypass the protections of those APIs.

An assessment of what those defensive APIs are used for
in the vulnerable websites would be extremely challenging
and beyond the scope of this paper, since it would require
the definition of a custom static analysis for JavaScript. Yet,
the prevalence of the use of defensive APIs, coupled with an
evaluation of service workers blindly serving attacker-controlled
content, demonstrates the dangerous impact of the presented
attack on defensive programming practices.

VI. COUNTERMEASURES

All the attacks discussed in this work are related to the
fact that the service workers cache is accessible from the
entire origin, and thus can be read or modified by potentially
malicious scripts running in same-origin web pages. This issue
could be prevented by making the Cache API inaccessible
from other same-origin browsing contexts, i.e., by allowing
only service workers to access the cache. This simple solution
would effectively address all the attacks discussed in this work.

A. Caching Patterns from Web Pages

Clearly, such redesign of the service workers cache would
introduce compatibility issues on existing web applications that
are making use of the Cache API from web pages. As part
of the automated large-scale analysis presented in Section V,
we quantified the websites that access the cache outside of
a service worker. For each of the origins that we found, we
performed a manual assessment to better understand the access

pattern for the cache and possibly identify other usages of the
Cache API that we could not detect with the automated scan.
This is the case, for instance, of amaro.com: the automated
analysis and the manual navigation of the website only detected
calls to caches.keys(), giving scarce information on its
behavior. A manual assessment, instead, revealed that the site
performs a cleanup of outdated cached content by deleting
caches older than 30 days.

Overall, we identified 293 origins on 254 different sites that
make use of the Cache API from page context. A significant
part of these sites is due to a small number of companies
that deployed the same web framework on multiple websites
under their control. For instance, we discovered a network of
40 British online newspapers that are sharing the same cache
access pattern as found on mirror.co.uk. Localized versions of
airbnb.com count up to 39 websites, while the same portal used
by developers.google.com has been found in other 18 websites
hosted by Google, such as tensorflow.org and developer.android.
com. Similarly, websites such as banggood.com have separate
subdomains for each language, all of them sharing the same
cache access pattern. This explains the discrepancy between
the number of origins and sites.

On the one hand, we found several websites making use of
the Cache API from page context that could be easily migrated
to service worker context only. In particular, 49 websites have
been found clearing the cache from a script instead of deleting
outdated caches during the service worker activation phase [1].
On the other hand, we noticed legitimate use cases that require
script access to complement the functionalities offered by
service workers. We also investigated online web development
resources to identify additional caching patterns of this kind and
to provide a more systematic overview of the ones discovered
in the wild.

We discuss below the most relevant caching patterns which
would be affected by the proposed redesign of the Cache API.
The following is by no means an exhaustive list of all possible
use cases for the service workers cache in page context, but
it provides evidence of the usefulness of this practice, and it
motivates the relaxation mechanism in Section VI-B.

Cache on user interaction: This is a pattern described
in [7] that does not require the presence of a service worker. It
is useful to make specific resources available offline instead of
caching the whole site. Users can be given a save offline button
that, when clicked, fetches the resource from the network and
adds it to the cache to make it available at a later time. It is
worth noting that, since this flow does not make use of service
workers, requests cannot be intercepted to provide a fallback
page while the user is offline. Assuming that a page of the
website is still open in the user’s browser, a script running on
that page must render the cached resources.

Cache then network: The idea of this pattern is to display
the cached data first and then update the page when fresh
content is retrieved from the network [7]. More specifically,
at first a script in the page attempts to fetch a resource from
the network. While the network request is being processed
by the service worker, the requested resource is loaded from



the cache, if available. In this case, the cached resource is
rendered immediately by the script, while the page is updated
with fresh content retrieved from the network at a later time.
This is useful to render content that is frequently updated, as
in the case of social media timelines or news feeds.

Cache on network response: Similarly to the cache on
user interaction approach, this pattern does not necessarily
require a service worker. Resources that are not found in the
cache are fetched from the network and then cached. If they
are requested again, then they are loaded from the cache to
lower the rendering time and to avoid the same resource from
being fetched from the network multiple times. This pattern
is typically used to serve resources that are not frequently
updated. For instance, we noticed that the popular Mapbox
GL JS library [2] takes advantage of this approach to render
interactive maps from vector tiles that are cached and drawn
using WebGL.

B. Cache Access Relaxation

Out of 4,679 origins using the Cache API, only 6.3%
have been found to access the cache from scripts in web
pages. Although this percentage is low, we identified some
legitimate cache patterns adopted by web applications that
are not implemented via service workers. Hence, restricting
the Cache API to service workers would lead to breakage in
existing websites. To prevent the attacks described in this paper,
while ensuring compatibility with existing web applications,
we propose to 1) expose by default the Cache API exclusively
to service workers, but 2) relax the scope of the cache to other
same-origin contexts upon request. To this end, we envision a
simple server-defined mechanism that allows site operators to
instruct the browser to make the Cache API accessible from
other same-origin contexts.

The mechanism could be implemented via a custom HTTP
response header that loosens the Cache API restrictions on
the origin of the requesting website. By incorporating this
change in web browsers, the large majority of websites would
be protected by default, while other sites that need to use
the Cache API from page context could choose to opt in
for the current behavior by adding the custom header on
the affected pages. Notice that browsers already support an
HTTP response header that directly affects the service workers
cache: Clear-Site-Data mandates the browser to clear
data associated with the requesting website, such as cookies,
storage (including the service workers cache), and the browser
cache.

Alternatively, the directive could land into one of the
emerging mechanisms that are used to enforce server-provided
security policies in supporting browsers. For instance, the
Feature Policy [11] allows website operators to selectively
disable certain features, e.g., to lock down their applications
by avoiding security critical APIs from being abused, or to
enable browser features and APIs that might be disabled by
default. Interestingly, the Feature Policy does not only apply to
the top-level page received from the origin that specified the
security header, but it is also enforced on embedded content.

For the Cache API, this would allow a malicious website to
enable access to the cache on cross-origin pages which are
framed by the attacker’s website, thus voiding the protection
of embedded origins not under the control of the attacker.
This issue is specifically addressed by the newborn Document
Policy [12], which is similar to the Feature Policy, but does
not automatically propagate to embedded browsing contexts. A
document served with a Document-Policy HTTP header may
embed other same or cross-origin documents, but embedded
documents are not affected by the parent’s policy, unless they
explicitly comply with it. Although the Document Policy is
perfectly tailored to include our proposal, this mechanism is
still under development and only supported by Google Chrome.
In this regard, we did not provide any specific implementation
details for our approach at the moment. Instead, we outlined
possible directions that browser vendors and web standards
developers could follow to mitigate the attack discussed in this
work.

Security Considerations: The proposed redesign of the
Cache API would transparently protect all the websites that are
accessing the cache exclusively from service workers (93.7% of
4,679 origins, covering 93.1% of the 3,537 websites using the
Cache API). It is worth noting that our attack scenario requires
the target origin to register a service worker which interacts
with the Cache API. For this reason, origins accessing the
cache exclusively from page context (2.6% of the origins) are
protected by design against the attack and could benefit from
the relaxation mechanism without suffering from additional
security issues. The remaining part of the origins which have
been found to perform mixed access to the cache from service
workers and other same-origin contexts (3.6% of the origins)
should enable the relaxation mechanism with care and deploy
other countermeasures against XSS attacks, such as a strict
CSP [39] or Trusted Types [19].

C. Self-protecting Service Workers
Besides the Cache API redesign discussed in this section,

we point out a simple countermeasure that web developers
can adopt to protect their websites against malicious cache
modifications from the page context. As explained in Section III,
corrupting the cache implies the creation of a synthetic
Response object that replaces the original entry in the
service worker’s cache. Since the Response constructor does
not allow to instantiate the url attribute with an arbitrary
value [24], the url attribute is set to the empty string.
Therefore, a service worker could put a restriction before
rendering cached responses, such that on matched cache objects,
the URL of the response in the cache is compared against the
URL of the request: the cached response is rendered if the
URLs are equivalent, otherwise the service worker discards
the cached entry and fetches the resource from the network.
A practical demonstration of this programming practice is
available on our companion website.

This simple solution has already been proposed in the past,4

but our experimental evaluation shows that this practice has not

4See https://github.com/w3c/ServiceWorker/issues/698



been adopted at scale (see Section V). Although this approach
is effective against tampering from the page context, it does not
prevent malicious scripts from violating the confidentiality of
cached contents. Furthermore, this practice is incompatible with
websites using caching patterns based on synthetic responses.

VII. RELATED WORK

The Cache API has been reported as a potential attack
vector by Vela [37] in a blog post soon after the introduction
of service workers in 2015. At the time of submission of the
present paper, we were not aware of that research which was
pointed out by one of the anonymous reviewers. Although
Vela described a cache pollution attack that is reminiscent of
persistent client-side XSS, he did not discuss the exclusive
capabilities that are enabled by this attack vector, i.e., bypassing
security headers and defensive programming practices (see
Section IV). Compared to our work, Vela also did not perform
an evaluation of the threat at scale and did not propose
a countermeasure to the attack. Instead, he investigated an
instance of the attack where persistent XSS execution can be
obtained on targets caching the response of open redirectors.
This specific attack has been mitigated by restricting redirected
responses inside service workers.5 However, the design of the
Cache API remained unchanged, leaving it vulnerable to the
security issues discussed in this paper.

Since then, there has been little research around service
workers. A recent paper by Steffens et al. [35] quantified the
prevalence of persistent client-side XSS in the wild by taint
tracking. However, their work did not consider the Cache API
as a possible sink and, remarkably, even proposed the use of
service workers to secure problematic programming patterns
related to caching. Unfortunately, our analysis shows that the
use of the Cache API in service workers is not a silver bullet
against XSS and might even exacerbate its impact in specific
cases.

The first and most notable security analysis of service
workers is the one by Lee et al. [20]. Their work extensively
focused on the Push Notification API, which they have shown
could be used to mount phishing attacks. They also abused the
lifespan of service workers to mine cryptocurrencies (Monero),
and used push messages to distribute transactions. Finally,
the paper considered the Cache API in a privacy setting to
discover whether a victim visited a target PWA from a pool. To
do so, the victim is tricked into visiting an attacker-controlled
PWA that, when the victim is offline, opens multiple iframes
whose sources are the URLs of the target PWAs. Frames whose
content successfully loads while the victim is offline, identify
PWAs which have been visited by the victim in the past. This
attack has been recently improved by Karami et al. [17], who
presented techniques based on timing information to probe
whether specific resources have been cached by the victim’s
browser. These techniques rely on realistic assumptions, i.e.,
the victim is not required to be offline, and enable to infer
sensitive application-level information.

5See https://crbug.com/669363

Another work on the security implications of service workers
by Papadopoulos et al. [30] demonstrated a sophisticated
resource abuse scenario, where a remote entity makes use
of current web technologies to perform harmful computations
and operations, such as mining cryptocurrencies. The authors
leveraged the fact that the life cycle of service workers is not
tied to that of webpages to demonstrate how to turn browsers
into bots, remotely controlled by the attacker. In particular,
they leveraged the Push and Sync APIs to keep the service
workers alive, so that computations can continue until the user
closes the browser. However, there is no mention of particular
attacks on the Cache API of service workers.

VIII. CONCLUSION

In PWAs, service workers make use of the Cache API
in order to improve the responsiveness of web applications
and possibly offer an offline browsing experience when the
network is unavailable. In this work, we showed that since
the cache is accessible from the entire origin of a service
worker, malicious scripts running in web pages can achieve
person-in-the-middle capabilities against cached content. This
allows an attacker with scripting capabilities to mount an
attack reminiscent of persistent client-side XSS, and yet more
powerful. In particular, the person-in-the-middle position of
the attacker exacerbates the threats of traditional XSS to a new
level since the attacker obtains the ability to bypass security
headers and circumvent defensive programming practices.
These vulnerabilities represent a new class of attacks that
are only possible with service workers caching content. We
performed an empirical study on 150,000 sites from the Tranco
list and found that the large majority of the sites which register
a service worker using the Cache API are vulnerable to the
presented attack, as long as it is possible to identify an XSS
vulnerability on them. As a countermeasure, we suggested
a simple redesign of the Cache API to avoid exposing it to
scripts and same-origin contexts other than service workers.
We quantified that the majority of sites would get immediate
security benefits from this change and proposed a relaxation
mechanism to ensure backward compatibility with websites
which deliberately accept the security risks, or mitigate them
by deploying appropriate XSS countermeasures.
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APPENDIX

We discuss examples of potential attacks identified in real-
world sites which do not deploy a safe CSP on all their
pages. These attacks have been confirmed by simulating script
injection via a browser extension, i.e., they would work in
presence of an XSS vulnerability.

A. Persistence and DoS

The web client of WhatsApp (web.whatsapp.com) enforces a
surprisingly weak CSP which allows for the execution of unsafe
scripts in the page, due to the unsafe-inline directive
and the lack of nonces or hashes. An excerpt of the policy is
reported in Listing 5. Despite the extreme popularity of this web
application, the risk of XSS is real, and the lack of appropriate
mitigations could lead to vulnerabilities being exploited in
practice.6 We found that the service worker registered by the
website stores a number of resources in the cache to increase the
responsiveness of the application. Cached resources include
icons, images, fonts, stylesheets, and scripts. The presence
of scripts in the cache is particularly dangerous, given that
an attacker could modify the code stored in the cache and
persistently infect all the pages which are including them. As
shown in Listing 6, we experimentally verified that tampering
with one of the cached scripts causes our payload to be
persistently included by the web application, even after closing
and restarting the browser.

6https://www.perimeterx.com/tech-blog/2020/
whatsapp-fs-read-vuln-disclosure/



default-src ’self’ data: blob:;
script-src data: blob: ’self’ ’unsafe-eval’

’unsafe-inline’
https://ajax.googleapis.com
https://api.search.live.net
https://maps.googleapis.com

...

Listing 5: CSP cached on web.whatsapp.com.

1 caches.open("wa2.2025.6").then((cache) => {
2 cache.put("https://web.whatsapp.com/app2.0

edf20df3a4aa9395226.js",
3 new Response("alert(’CACHE-XSS’);", {
4 status: 200,
5 statusText: "OK",
6 headers: {
7 ’Content-Type’: ’text/javascript’
8 }
9 })

10 );
11 });

Listing 6: Attack on web.whatsapp.com. The modified script is
included from the cache by the website, whichs persistently executes
the malicious payload.

This allows an attacker to subvert the intended behavior of
the web application for an indefinite amount of time, i.e., until
the user manually clears the service worker cache or until the
service worker script invalidates the cached resources due to
a version upgrade. A well-orchestrated attack could silently
monitor the entire activity of a WhatsApp user, circumventing
end-to-end encryption to exfiltrate all the exchanged messages
and the network of contacts of the user for weeks. Alternatively,
the attacker could DoS the web application to divert the user
towards other less secure communication platforms.

B. Privilege Escalation

The website computerbase.de makes use of a service worker
to provide offline capabilities to its users. It stores a set of pages
in the cache which are served to the browser when the user is
offline. Listing 7 shows the Feature Policy set for the website,
which is also attached to cached pages. This policy disallows

all scripts running in the page and iframes from requesting
access to critical APIs and devices. Unfortunately, an XSS on
any of the pages in the site’s origin would enable an attacker
to arbitrarily modify the cached resources and strip away the
Feature-Policy header, thereby removing the restrictions
during offline navigation. This would cause the attacker to
achieve persistent access to the webcam or the microphone
when the user is offline, and potentially exfiltrate the captured
data as soon as the user is online again. This can be done,
for instance, by injecting a script that runs in the offline page
which continuously attempts to upload the recording to an
attacker’s controlled endpoint.

C. Framing Protection Bypass

The hosting provider accuwebhosting.com adopts the cache
first strategy outlined in Listing 1. To minimize network
requests, the service worker on this website returns cached
pages first, instead of loading fresh resources from the network.
If the page is not available, it is loaded from the network and
then cached. The CSP enforced by the website (Listing 8) is
clearly not intended as a countermeasure against XSS attacks,
but it prevents same and cross-origin framing. A malicious
script could abuse the Cache API to entirely remove the
Content-Security-Policy header from cached resources
and disable the framing protection, clearing the way for UI
Redressing attacks. Furthermore, framing resources from a
same-origin position allows an attacker to amplify the scope
of the vulnerability by accessing the DOM to exfiltrate secrets
from framed pages, even if those pages are not cached.

camera ’none’; document-domain ’none’;
geolocation ’none’; microphone ’none’;
payment ’none’; sync-xhr ’none’

Listing 7: Feature Policy cached on computerbase.de.

1 frame-ancestors ’none’

Listing 8: CSP cached on accuwebhosting.com.


