
LATEX GLOVES: Protecting Browser Extensions
from Probing and Revelation Attacks

Alexander Sjösten∗, Steven Van Acker∗, Pablo Picazo-Sanchez and Andrei Sabelfeld
Chalmers University of Technology

{sjosten, acker, pablop, andrei}@chalmers.se

Abstract—Browser extensions enable rich experience for the
users of today’s web. Being deployed with elevated privileges,
extensions are given the power to overrule web pages. As a
result, web pages often seek to detect the installed extensions,
sometimes for benign adoption of their behavior but sometimes
as part of privacy-violating user fingerprinting. Researchers have
studied a class of attacks that allow detecting extensions by
probing for Web Accessible Resources (WARs) via URLs that
include public extension IDs. Realizing privacy risks associated
with WARs, Firefox has recently moved to randomize a browser
extension’s ID, prompting the Chrome team to plan for following
the same path. However, rather than mitigating the issue, the
randomized IDs can in fact exacerbate the extension detection
problem, enabling attackers to use a randomized ID as a reliable
fingerprint of a user. We study a class of extension revelation
attacks, where extensions reveal themselves by injecting their
code on web pages. We demonstrate how a combination of
revelation and probing can uniquely identify 90% out of all
extensions injecting content, in spite of a randomization scheme.
We perform a series of large-scale studies to estimate possible
implications of both classes of attacks. As a countermeasure, we
propose a browser-based mechanism that enables control over
which extensions are loaded on which web pages and present
a proof of concept implementation which blocks both classes of
attacks.

I. INTRODUCTION

Browser extensions, or simply extensions, enable rich ex-
perience for the users of today’s web. Since the introduction
of browser extensions in Microsoft Internet Explorer 5 in
1999 [42], they have been an important tool to customize
the browsing experience for all major browser vendors. To-
day, the most popular extensions have millions of users, e.g.
AdBlock [10] has over 10,000,000 downloads in the Chrome
Web Store [24]. All major web browsers now support browser
extensions. Mozilla and Chrome provide popular platforms
for browser extensions, with Mozilla having over 11.78%,
and Chrome over 66.1% of the browser’s market share (April
2018) [57].

Power of extensions: Firefox and Chrome provide
their extensions with elevated privileges [41]. As such, the

∗These authors contributed equally.

extensions have access to a vast amount of information, such
as reading and modifying the network traffic, the ability to
make arbitrary modifications to the Document Object Model
(DOM), or having the possibility to access a user’s private
information from the browsing history or the cookies. The ex-
tension models for both Firefox and Chrome allow extensions
to read and modify the DOM of the currently loaded web
page [44], [26]. In addition to the aforementioned scenarios,
some browser extensions like password managers, have access
to sensitive data such as the user’s passwords, which can
include credentials to email accounts or social networks.

Detecting extensions: Due to the increased power
that browser extensions possess, they have been target for
detection from web pages. Today, Chrome comes with a built-
in ChromeCast extension [31], which has Web Accessible
Resources (WARs), public files which exist in the extension
and can be accessible from the context of the web page. Web
pages, such as video streaming pages, can then probe for the
ChromeCast extension, and add a cast button which would
allow to cast the video player to the connected ChromeCast.
By doing this, the browsing experience of the user is improved.
On the other side, a web page might want to prevent DOM
modifications (e.g. by detecting ad blockers), prepare for an
attack against the user of a browser extension with sensitive
information (e.g. by performing a phishing attack [16]), or
even to gain access to the elevated APIs the browser extension
has access to [3]. With the possibility of detecting browser
extensions by web pages, users can be tracked based on their
installed browser extensions [22], [55], [53]. This motivates
the focus of this paper on the problem of protecting browser
extensions from detection attacks.

Probing attack: Previous works [55], [53] have focused
on non-behavioral detection, based on a browser extension’s
listed WARs. The WARs are public resources which can be
fetched from the context of a web page using a predefined
URL, consisting of a public extension ID (or Universally
Unique Identifier (UUID)) and the path to that resource. With
the predefined URL to fetch a WAR from an extension, a
web page can mount a probing attack, designed to detect an
extension by probing for WARs, since a response with the
probed WAR indicates the corresponding extension is installed.
This attack can be seen in Figure 1a where 1© denotes the
requests made by the attacker to probe for an installed browser
extension. If the browser extension is in the browser context,
the attacker will get a response consisting of the requested
WAR (denoted by 2©). This attack can be magnified by probing
for a set of browser extensions’ resources, thereby enumerating

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23309
www.ndss-symposium.org

http://domain.com

Web Page Title

▶ Item 1

▶ Item 2

▶ Item 3

▶ Item 4

▶ Item 5

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula
eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient
montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu,
pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla
vel, aliquet nec, vulputate eget, arcu.

In enim justo, ttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante,
dapibus in, viverra quis, feugiat a, tellus.

OK Cancel

1
extensionid

WAR
2

1

(a) Probing attack.

http://domain.com

Web Page Title

▶ Item 1

▶ Item 2

▶ Item 3

▶ Item 4

▶ Item 5

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula
eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient
montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu,
pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla
vel, aliquet nec, vulputate eget, arcu.

In enim justo, ttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante,
dapibus in, viverra quis, feugiat a, tellus.

OK Cancel

1
extensionid

WAR
2

3

(b) Revelation attack.

Fig. 1: Schematic overview of the extension probing attack and extension revelation attacks. In the probing attack, a web page
probes for the presence of an extension. In the revelation attack, the extension reveals itself to the attacker by injecting content
in the web page.

many or even all installed browser extensions.

Firefox defense against probing: As the probing
attack is possible when the URLs of a browser extension’s
WARs are fixed and known beforehand, Firefox implements
a randomization scheme for the WAR URLs in their new
browser extension model, WebExtensions. To make the probing
attack infeasible, each browser extension is given a random
UUID, as it “prevents websites from fingerprinting a browser
by examining the extensions it has installed” [50]. The Chrome
developers are considering to implement a similar random-
ization scheme, when they have “the opportunity to make a
breaking change” [8].

Revelation attack: Starov and Nikiforakis [56] show
that browser extensions can introduce unique DOM modifica-
tions, which allows an attacker to determine which extension is
active based on the DOM modification. In contrast to probing
attacks, these attacks are behavioral attacks because they are
based on detecting behavior of a browser extension via, e.g.,
DOM modifications.

This work puts the spotlight on revelation attacks, an
important subclass of behavioral attacks, first introduced by
Sánchez-Rola et al. in the context of Safari extensions [53].
The core of a revelation attack is to trick an extension to
inject content via WAR URLs, thereby giving up its random
UUID and provide a unique identifier of the victim. This
attack is displayed in Figure 1b. When the WAR is injected
by the browser extension (1©), the URL with the random
UUID becomes known to the attacker, who is monitoring
changes to the web page through JavaScript. With the random
UUID known, an attacker can construct WAR URLs to known
resources by initiating a probing attack (2© and 3©). The
probing in this case will be done for known unique resources
for browser extensions which have the injected WAR as a
resource, a set which can be precomputed by the attacker.
Upon finding one of the resources in this precomputed set,
the attacker can deduce which browser extension injected the
information, allowing derandomization of browser extensions.

Starov and Nikiforakis [56] show that browser extensions
can provide unique DOM modifications, allowing an attacker
to determine the active extension. However, it is not possible
to uniquely identify the victim only based on the browser
extensions [33]. This is the crucial part of the revelation

attack: as the random UUID becomes known to the attacker, it
enables them to uniquely identify the victim, based on that
installed extension alone. Furthermore, in most cases these
random WAR URLs can easily be used to derandomize an
extension, indicating the UUID randomization does not prevent
extension fingerprinting. In fact, since a malicious web page
in many situations can not only figure out which browser
extension has the random UUID, but also uniquely identify
the user, the randomization of UUIDs amplifies the effect of a
revelation attack rather than mitigating detection possibilities.
The problem with randomization of UUIDs is known, and has
been a topic of discussions among browser developers [1],
as well as presented as an attack against a built-in browser
extension which takes screenshots for Firefox [13]. Although
this attack requires user interaction, it is important to study how
many of the Firefox and Chrome extensions can be exploited
without the need for user interaction.

Empirical studies: To see how many extensions are
susceptible to the revelation attack without user interaction,
and how many web pages probe for extensions, we conduct
several empirical studies.

• We download all extensions for Firefox and Chrome
and determine that, in theory, 1,301 (≈94.41%) and
10,459 (≈89.91%) of the Firefox and Chrome extensions
respectively that might inject content are susceptible to
the revelation attack.

• We check how many of the extensions susceptible to
the revelation attack actually reveal themselves, where
the attacker model is a generic web developer with the
ability to host a web page visited by the victim. While
the victim is on the attacker web page, the attacker will
attempt to make the installed browser extensions inject
content to make them reveal themselves, with the hope of
determining exactly which browser extensions are being
executed based on the injected content. If the randomized
token proves stable enough, the attacker may also use it
to track the victim on the Web. This attacker model fits a
wide range of possible attackers, from small and obscure
web pages, to top-ranked web applications. To emulate
this, we check how many extensions reveal themselves
based on where the extension is defined to inject content,
and whether the actual content on the web page matters,
showing that 2,906 out of 13,011 (≈22.3%) extensions

2

reveal themselves on actual pages.
• We visit the most popular 20 web pages for each of the

Alexa top 10,000 domains, and find that 2,572 out of
those 10,000 domains probe for WARs.

“Latex Gloves” mitigation approach: In popular cul-
ture, crime scene investigators frequently use latex gloves
to avoid contaminating a crime scene with fingerprints. In
this work, our goal is to prevent that extensions leave any
“fingerprints” that are detectable by an attacker web page, be it
through a probing attack or a revelation attack. For this reason,
we named our approach “Latex Gloves” for extensions.

A key feature of our approach is its generality. The mecha-
nism is parametric in how whitelists (or, dually, blacklists) are
defined, with possibilities of both web pages and extensions
having their say. Extension manifest files can be used for
automatic generation of whitelists already. While it might be
suitable to let the advanced user affecting the whitelists, the
goal is to relieve the average user from understanding the
workings and effects of web pages and browser extensions.
For the whitelist, which defines which extensions are allowed
to reveal themselves to the web page, there are several options,
each with its own benefits and drawbacks. For example, a
mechanism similar to Google Safe Browsing [28] can be
employed, where browser vendors can provide blacklists for
our mechanism containing web pages known to perform exten-
sion fingerprinting. This would put the burden on the browser
vendors to keep the blacklist up to date. Another option would
be to allow web pages to specify a whitelist, similar to how a
Content Security Policy (CSP) [58] is defined. Naturally, there
is a big risk web pages would simply try to deny all extensions
any access, greatly limiting a user’s intentions. Another option
is a simple interface that allows users to classify websites
into sensitive (e.g., bank) and insensitive (e.g., news portal),
so that it is possible to configure whether an extension is
triggered on a(n) (in)sensitive website. Yet another option is
an all-or-nothing policy: either all extensions are triggered on
all insensitive websites or no extensions are triggered on any
sensitive websites. This would keep interaction with the user
to a minimum. Each option has advantages and disadvantages,
and usability studies can help determine the most suitable
alternatives.

Our vision is to have direct browser support for Latex
Gloves. However, in order to aid evaluation of the general
mechanism, we present a proof-of-concept prototype consist-
ing of a Chromium browser modification, a Chrome extension
and a web proxy. This prototype allows the whitelisting of
those web pages that are allowed to probe for extensions, and
the whitelisting of those extensions that are allowed to reveal
themselves to web pages.

Contributions: In this work, we present the first large-
scale empirical study of browser extensions on both Firefox
and Chrome based on the revelation attack, in order to de-
termine how fingerprintable the browser extensions — and
the users of browser extensions — are, in the presence of
a random WAR URL scheme. Additionally, we propose a
countermeasure based on two whitelists, defining which web
pages may interact with which extensions and vice versa,
thus allowing users to avoid being fingerprinted or tracked by
untrusted web sites. We finally give some guidelines to avoid
this security issue for browser developers.

The main contributions of this paper are:

Revelation attack on Firefox. We demonstrate how to de-
randomize Firefox extensions through revelation attacks
(Section IV).

Empirical studies of Firefox and Chrome extensions.
We present large-scale empirical studies of Firefox
and Chrome extensions regarding revelation attacks
(Section IV), where we determine how ≈ 90% out of all
extensions injecting content can be uniquely identified in
spite of a randomization scheme, as well as evaluating
how many extensions can be detected with a revelation
attack, based on the attacker model.

Empirical study of the Alexa top 10,000. We report on an
empirical study over the Alexa top 10,000 domains, with
up to 20 of the most popular pages per domain to
determine how widely the probing attack (Section III) is
used on the Web.

Resetting Firefox random UUID. We investigate the user
actions required to reset the random UUID of a Firefox
extension, in order to remove a unique fingerprint acci-
dentally introduced by Mozilla, on the most prominent
operating systems: Windows, Mac OSX and Linux.

Design of a mechanism against the two attacks. We give
the design for “Latex Gloves” (Section V), a mecha-
nism against both probing and revelation attacks using
whitelists to specify which web sites are allowed to inter-
act with which extension’s WARs, and which extensions
are allowed to interact with which web sites.

Proof of concept prototype. We implement a proof of con-
cept prototype (Section VI) consisting of a modified
Chromium browser, a browser extension and a web proxy,
all based on the whitelisting mechanism. Our prototype
is evaluated (Section VII) against two known attacks
(extension enumeration [55] and timing attack [53]).

Recommendations for browser developers. We use key in-
sights from our empirical studies to give recommenda-
tions (Section VIII) to browser developers for a browser
extension resource URL scheme.

II. BACKGROUND

An extension is a program, typically written in a combina-
tion of JavaScript, HTML and CSS. Browser extensions have
become a vital piece in the modern browser as they allow
users to customize their browsing experience by enriching the
browser functionality, e.g. by altering the DOM or executing
arbitrary scripts in the context of a web page.

JavaScript code in a browser extension can roughly be clas-
sified as background pages and content scripts. Background
pages are executed in the browser context and cannot access
the DOM of the web page. Instead, they are allowed to access
the same resources as the browser, e.g. cookies, history, web
requests, tabs and geolocation. However, in order to make use
of these capabilities the user has to explicitly grant most of
them.

Content scripts are files that is executed in the context
of a web page. Although the content scripts live in isolated
worlds, allowing them to make changes to their JavaScript
environment without conflicting with the web page or any other
content scripts, they have access to the same DOM structure

3

{
"manifest_version": 2,
"name": "Example",
"version": "1.0",
"background": {

"scripts": ["background.js"]
},
"content_scripts": [

{
"matches": ["*://*.example.com/*"],
"js": ["content_script.js"]

}
],
"web_accessible_resources": [

"images/img.png",
"scripts/myscript.js"

],
"permissions": ["webRequest"]

}

Fig. 2: Example of a manifest.json file

as the main web content. As content scripts are executed in
the context of the web page, the content scripts can read and
modify the DOM of the web page the browser is visiting, as
well as inject data such as images and other scripts into the web
page [44], [26]. Content scripts can only use a subset of the
extension API calls (“extension”, “i18n”, “runtime” and “stor-
age”), neither of which need approval from the user. In case
the content scripts need access to more privileged extension
APIs, they can only access them indirectly by communicating
with the background pages through message passing. As the
access of the privileged API calls goes through the background
page via message passing, the user must approve them upon
installing the extension.

The structure of an extension is defined in a manifest
file, called manifest.json, which is a mandatory file placed
in the extension’s root folder [46], [30]. The manifest file
contains, among other things, which files belong to the back-
ground page, which files belong to the content script, which
permissions the extension requires, and which resources can
be injected into the web page. An example of a manifest
file can be seen in Figure 2, which specifies the background
page to be the JavaScript file background.js and the con-
tent script (content_scripts) to use the JavaScript file
content_script.js, and be executed on all domains that
matches the domain example.com. It defines two WARs
(web_accessible_resources), which are resources that
can be injected into the web page from the content script.
The path for the WARs is the path from the extension’s
root folder to the resources. The extension also asks for
the permission webRequest, which indicates the extension’s
background page want the ability to intercept, block and
modify web requests.

Browser extensions scope: In the particular case of
content scripts, browser extensions insert their JavaScript files
in those web pages explicitly defined by the extension’s
developers in the manifest file. Concretely, there is a mandatory
property named matches which indicate the web pages the
content script should be injected into. URLs can be defined

following a match pattern syntax, which is reminiscent of
regular expressions, operating on a <scheme>://<host>
<path> pattern [18]. Background pages are not affected by the
matches property. Instead, they remain idle until a JavaScript
event such as a network request or message passing coming
from an arbitrary content script, triggers their code, after which
they return to an idle state.

Web Accessible Resources: If an extension wants
to inject a resource, such as an image or a script, into a
web page, the recommended way is to make the resource
“web accessible”. WARs are files that exist in a browser
extension but can be used in the context of a web page.
A browser extension must explicitly list all WARs through
the web_accessible_resources property in the manifest
file [50], [29].

WAR URLs are different for Firefox and Chrome:
moz-extension://<ext-UUID>/<path> and
chrome-extension://<ext-UUID>/<path> in Firefox
and Chrome, respectively. In Firefox, <ext-UUID> is
a randomly generated UUID for each browser instance,
and is generated when the extension is installed [50].
However, for Chrome, <ext-UUID> is a publicly known
32 character string derived from the RSA public key
with which the extension is signed, encoded using the
“mpdecimal” scheme. WAR URLs in Chrome have the
<ext-UUID> hardcoded as the “hostname” part. For both
Firefox and Chrome, the recommended way of getting the
URL of the resource is to use the built-in API, which is
browser.extension.getURL("path") in the case of
Firefox [45], and chrome.runtime.getURL("path") for
Chrome [25]. Since Chrome extensions have a publicly known
extension UUID, an attacker could enumerate all installed
extensions which have WARs (See Section III).

Browser profiles and extension UUIDs: In Chrome
and Firefox, data such as bookmarks, passwords and installed
extensions is stored in a browser profile [49]. A browser
installation may have several browser profiles, each with its
own data. Because Firefox’s extension UUIDs are randomized,
the same extension installed in multiple browser profiles will
have a different UUID for each profile. In Chrome, which
uses fixed extension UUIDs, an extension installed in multiple
browser profiles will use the same extension UUID in each
profile.

III. PROBING ATTACK

When probing for an extension, JavaScript running in
a web page tries to determine the presence of a browser
extension in the browser in which the web page has been
loaded.

One way of performing the extension probing is by re-
questing a browser extension’s WARs through the publicly
known URLs for these resources. This is schematically shown
in Figure 1a where 1© denotes the request made by the web
page to probe for a browser extension’s WAR. A successful
response to this request (denoted by 2©) indicates the presence
of the extension to which the WAR belongs.

Probing for an extension in itself does not mean an attack
is taking place. It is not an attack if, e.g., Google probes

4

TABLE I: Alexa top 10,000 domains probing for Chrome
extensions. Note that a domain may appear in several rows
and/or columns.

same domain other domain YouTube
top frame 185 15 4
sub frame 36 2,399 2,277

Total 2,572

for the ChromeCast extension on YouTube.com since this is
the extension developer who probes for their own extension.
However, if it is not the extension developer who is probing
for the browser extension, but rather a third party with the
intent of discovering installed extensions to, e.g., increase the
entropy for browser fingerprinting, the probing becomes a
probing attack. Attackers may use a probing attack to detect
the presence of any of the known browser extensions, thereby
enumerating the installed browser extensions in a victim’s
browser.

Sjösten et al. [55] explore the Alexa top 100,000 domains
to examine how many of them probe for WARs on their front
page and their reasons for doing so. Their research shows that
web developers and their applications may probe for WARs
for legitimate reasons. They find only 66 domains, none in the
top 10,000, and surmise that this is caused by the technique
not being widely known.

We repeat the experiment using a different detection
method, in order to study how this problem has developed
over time. Instead of the top 100,000, we limit ourselves to
the top 10,000, but perform a deeper study by visiting up to
twenty of the most popular web pages on each domain. We
also gather metrics that indicate whether the probing is due
to a third-party web origin, or whether it originates from the
domain itself.

Setup: We use a modified version of Chromium
63.0.3239.84, which allows us to monitor requests for WAR
URLs from a Chrome extension, as described in Section VI.
The entire process is automated using Selenium 3.8.1.

When visiting a web page, we wait for up to 10 minutes
for the web page to load. Once loaded, we wait an additional
20 seconds in order for any JavaScript on the web page to
execute.

During this time, a custom browser extension monitors any
requests made towards chrome-extension:// URLs and
logs them. In addition to the WAR URL itself, we also log
whether the request came from the parent frame or a sub frame,
as well as the web origin from which the request occurred.

Results: Starting from the list of top 10,000 domains
according to Alexa, we queried Bing to retrieve the most
popular twenty pages per domain. Bing returned 180,471
URLs for 9,640 domains. We further disregard domains for
which Bing did not return any results. Of the 180,471 URLs,
we were able to visit 179,952 spread over 9,639 domains.

An overview of the results is shown in Table I. In total,
out of the 10,000 domains, 2,572 probed for 45 different
extensions from either the top frame or a sub frame. Of the
domains that requested a WAR from the top frame, 185 had
not redirected the browser to another domain, while 15 did.

In the latter case, 4 redirected to YouTube.com. In the other
cases, WARs were requested from a sub frame: 36 domains
loaded the sub frame from the same domain, while 2,399
loaded it from a third-party domain. Strikingly, 2,277 of those
sub frames originated on YouTube.com where most of these
requests were probing for the ChromeCast browser extension.

Our results are different from Sjösten et al. [55], which
may be attributed to the different methodology or an increase
in extension probing. No matter the reason for the discrepancy,
probing is both common and relevant. Although YouTube.com
probing for ChromeCast is not a probing attack, most of the
remaining extensions being probed for (e.g. popular extensions
such as AdBlock [10], AdBlock Plus [2] and Ghostery [6])
constitute probing attacks.

IV. REVELATION ATTACK

In an effort to eliminate the extension probing attack,
Mozilla implemented a randomization scheme in its exten-
sions’ UUIDs. Since each extension is given a random UUID
upon installation, it is impossible to compose the URL of a
WAR to launch a probing attack without knowing that random
UUID. However, it is possible for an attacker to learn the
random UUID of an extension through an extension revelation
attack.

In an extension revelation attack, JavaScript running in
a web page tries to determine the presence of a browser
extension by monitoring the web page for new content which
references WARs. Although any introduced DOM modification
might uniquely identify an extension [56], an injected WAR
URL contain a unique UUID for each profile, which in turn
can be used to track users. Also, due to the nature of the WAR
URLs, a vast majority of all extensions injecting content with
WAR URLs can still be uniquely identifiable, in spite of the
randomization scheme, indicating it might make more harm
than good.

Figure 1b displays the revelation attack. JavaScript in a web
page detects that a browser extension has inserted a reference
to a WAR (1©), and can now deduce the presence of this
extension.

In the case of Firefox, the revelation attack reveals a WAR
URL, which consists of a random UUID and a path component.
While the random UUID itself is insufficient to derandomize
the extension, it can be used as a basis for a probing attack
(2© and 3©).

It is important to realize that a probing attack may not be
needed in order to derandomize Firefox’s random UUIDs. In
Section IV-A, we show that the path component of the WAR
URL, which is not randomized in Firefox, contains enough
information to derandomize an extension’s random UUID in
many cases. In addition, because an attacker can retrieve the
content of a WAR and compute a hash over it, it is possible
to derandomize an extension even if the full WAR URL is
randomized.

Furthermore, because the random UUID is unique per
“browser instance”, it can also be used as a unique fingerprint
to deanonymize web users through the revelation attack. As we
show in Section IV-B, it is not trivial to remove this unique
fingerprint from the browser.

5

The developers of Google’s Chrome browser have ex-
pressed interest in implementing a similar randomization
scheme [8]. In Section IV-C, we study the impact of adopting
this randomization scheme on Chrome extensions. The results
of both Section IV-A and Section IV-C are summarized in
Table II, where “Path” is the amount of extensions that can be
derandomized based on the path, “Hash” based on the sha256
hash digest of the content of the WARs, and “Path ∪ Hash”
the union of those sets.

Finally, in Section IV-D we perform an empirical study of
all available Firefox and Chrome extensions to determine how
many of them are affected by the revelation attack, revealing
themselves and their users to attackers simply by visiting an
attacker’s web page.

A. Derandomizing Firefox extensions

Since Firefox employs random UUIDs, the enumeration
techniques presented in [55], [53] cannot be used. Instead,
the extension must reveal itself for an attacker to get hold
of the random UUID. In order to derandomize a Firefox
extension, the extension must meet the following criteria. First,
the extension must have at least one defined WAR, indicating
it might inject a resource. Second, the extension must make a
call to either of the functions browser.extension.getURL,
chrome.extension.getURL or chrome.runtime.getURL,
which are functions that, given an absolute path from the
root of the extension to the WAR, will return the full moz-
extension://<ext-UUID>/<path> URL. For the rest of
this section, we will group those functions together as
getURL(). Although these API functions are executed in the
context of the extension, i.e. they cannot be called directly
from the web page, if the extension injects the WAR in this
manner, the random UUID will be revealed to the web page
as part of the WAR URL. If this happens, and the attacker
gets the UUID, then how many extensions can be uniquely
identified based on the injected WAR URL?

To determine this, we scraped and downloaded all free
Firefox extensions from the Mozilla add-on store [47]. The
extensions are valid for Firefox 57 and above, as it is the
first Firefox version to only support WebExtensions [51],
indicating all will receive a random UUID when installed.
The scrape was done on February 23, 2018, giving us 8,646
extensions. All of these extensions were unpacked, and their
manifest file examined for the web_accessible_resources
key, resulting in 1,742 extensions having at least one defined
WAR. The mere presence of a WAR in an extension does
not mean that this resource will ever be injected. We took the
1,742 extensions with declared WARs, and checked how many
of them call a getURL() function, as this will construct the
WAR URL to be injected to the web page. This resulted in a
total of 1,378 extensions, indicating ≈79.10% of all Firefox
extensions with declared WARs can reveal their random UUID.

Having access to only the random UUID is not sufficient.
The path component present in a WAR URL can give away the
identity of the extension, if there is a mapping between a path
and the corresponding extension. Out of the 1,378 extensions
that call a getURL() function, 1,107 extensions provide at
least one unique path, i.e. the full path to a resource. Aside
from the WAR URL, a potential attacker also has access to

TABLE II: Breakdown of the uniqueness detectability for
browser extensions, assuming a randomized schema with the
ability to probe.

Extensions total Path Hash Path ∪ Hash
Firefox 1,378 1,107 (80.33%) 1,292 (93.76%) 1,301 (94.41%)

Chrome 11,633 7,214 (62.01%) 10,355 (89.01%) 10,459 (89.91%)
Total 13,011 8,321 (63.95%) 11,647 (89.52%) 11,760 (90.39%)

the contents of the WAR. We investigated the contents of
the extensions’ WARs to determine how unique they are by
calculating a hash digest over the contents. A total of 1,292
browser extensions have a unique digest when hashing their
WARs, where a different hash digest indicate a difference in
content between the WARs of the different browser extensions.
We then took the union of the two sets of browser extensions
with at least one unique path and a unique digest, yielding a
total of 1,301 browser extensions to be uniquely identifiable.
Although only ≈15.05% of all extensions can be uniquely
identified, it is ≈94.41% of all extensions that have the
possibility to inject a WAR.

B. Resetting Firefox’s random UUID

For Firefox, each UUID is “randomly generated for every
browser instance” [50]. However, it is not clear what “browser
instance” means in this setting. In order to determine when the
random UUID of a browser extension is being reset in Firefox,
we tried different approaches on three operating systems: Win-
dows 10, Linux (Debian) and Mac OSX. The approaches were
restarting, updating and re-installing the browser, updating
and re-installing the extension, switching the browser tab to
incognito mode and clearing the cache and cookies of the
browser. The result can be found in Table III, and for the
rest of this subsection, we will briefly cover the differences
between the operating systems.

None of the operating systems change the internal UUIDs
upon restarting the browser, indicating “browser instance”
from the documentation does not mean “started browser pro-
cess”. When re-installing the browser, the default behavior for
the Windows 10 installer is to reset the standard options, which
includes removing the old browser extensions. As this would
force a user to re-install the browser extensions, each browser
extension would get a new random UUID. However, a user
has the option of not resetting the standard options, along with
not removing the old browser extensions. Hence, uninstalling
Firefox on Windows keeps all settings, and it is up to the
user to decide to keep or remove them when re-installing the
browser. This is not the case for Linux and Mac OSX. For both
operating systems, it is up to the user to manually remove
the profile folder (default is .mozilla in the home folder
for Linux, and Library/Application Support/Firefox
in Mac OSX) in order to remove the old browser extensions
upon re-installing the browser, as they are not prompted about
a default option of resetting the standard options.

For all operating systems, the UUID was regenerated when
reinstalling the extension, given that the browser was restarted
between uninstalling and reinstalling the extension. If the
browser was not restarted, the profile file containing the data
would not change, giving the new installation the same UUID.

6

TABLE III: Actions which result in UUID regeneration for
each of the major operating systems. “Yes” or “No” means that
the action did or did not cause UUID regeneration respectively.
Notes: (∗) Firefox’s installer on Windows prompts the user
to reset settings and remove extensions, which is enabled by
default, whereas for Linux and Mac OSX (+), the default is
to keep all settings.

Linux Mac OSX Windows
Restarting browser No
Updating browser No
Re-installing browser No+ Yes∗

Updating extension No

Re-installing extension w/ browser restart Yes
w/o browser restart No

Incognito mode No
Clearing cache and cookies No
Clearing the profile Yes

On all platforms, clearing the profile (i.e. removing the
actual profile folders) would force a user to re-install all
extensions, which means they would get a new random UUID.

C. Derandomizing Chrome extensions

As Chrome does not employ random UUIDs, the tech-
nique presented by Sjösten et al. [55] still works. However,
as Chromium developers plan to employ random UUIDs,
we performed the same experiment as for Firefox. In total,
we scraped 62,994 free extensions from the Chrome Web
Store [24]. Out of those, 16,280 defined web_accessible_
resources with at least one corresponding WAR. The amount
of extension that called either chrome.runtime.getURL or
chrome.extension.getURL was 10,764. We also checked
the extensions that called chrome.runtime.id (728 exten-
sions), which return the extension’s UUID, and the ones
that hardcoded their extension UUID into a resource URL
(141 extensions), with the assumption they will change to
call getURL() if Chrome adopts random UUIDs. With this,
the total amount of detectable extensions would be 11,633
extensions, which corresponds to ≈71.46% of all extensions
with at least one WAR declared. Assuming random UUIDs
for Chrome, we must check if a path can uniquely identify
an extension. We applied the same uniqueness procedure as in
Section IV-A, finding 7,214 extensions being unique without
the need for any content hashing. When hashing the content of
the WARs, we got a total of 10,355 browser extensions, and
the union of those two sets yield a total of 10,459 uniquely
identifiable browser extensions. While only being ≈16.60%
of all extensions, it is ≈89.91% of all browser extensions that
have the possibility to inject a WAR.

D. Extensions revealing themselves to web pages

As browser extensions can inject WARs into a web page to
allow it access in the domain of the web page, the WARs are
visible to JavaScript executed in the origin of this web page. A
web page can scan for these WARs in order to reveal installed
browser extensions, as well as to deanonymize the visitor: from
the WARs, an attacker can infer the installed extension, and
from Firefox browser extensions’ random UUIDs, the attacker
can identify the visitor.

For this experiment, we consider all 8,646 Firefox exten-
sions, but are also interested in the 62,994 Chrome extensions.

As Chrome are considering random UUIDs, the findings are
relevant to their future development plans.

Setup: We use Selenium 3.9.1 with Firefox 58.0.1 and
Chromium 64.0.3282.167 to automate the process.

For each browser extension, we visit a web page through
mitmproxy 2.0.2 [21] with a custom addon script. In order
to be able to manipulate web pages served over HTTPS, both
Firefox and Chromium were configured to allow untrusted SSL
certificates.

The mitmproxy addon script injects a piece of attacker
JavaScript code in the web page which walks through the
HTML tree and extracts any attributes that contain chrome-
extension:// or moz-extension:// present in the web
page. In addition, because the CSP may prevent the execution
of injected JavaScript, the mitmproxy addon script disables
CSP if present.

Because browser extensions may inject content only after
a while, the attacker script also installs a mutation observer
which repeats the scan every time a change to the web page
is detected. With this setup, we can detect the injection of
WARs at any point in the web page’s lifetime. For every page
visit, we wait for up to one minute for the page to load before
aborting that page visit. When a page is successfully loaded,
we wait for five seconds to let any JavaScript on the page run
its course.

Dataset extensions: Because of the way Firefox ex-
tensions work, we only consider those extensions which seem-
ingly make a call to getURL() and which have web accessible
resources. After this filtering step, 1,378 out of the 8,646
Firefox extensions remain for our study.

Similarly for Chrome, we retain 11,633 out of the total
62,994 Chrome extensions.

Dataset URLs: These 13,011 extensions (1,378 Firefox
+ 11,633 Chrome) will only execute on a web page if the
URL matches the regular expressions in their manifest file. For
instance, an extension which lists http://example.com/*
in its manifest file, will not execute when visiting, e.g.,
http://attacker.invalid/index.html. Extensions can
only reveal themselves when they are executing on a web page
they were designed for, e.g by checking for the presence of a
certain keyword in the URL. Because of this, it is important
to visit the right URLs.

To determine the set of URLs we should visit for a partic-
ular extension, we make use of the CommonCrawl dataset [5].
This dataset contains data about ≈4.57 billion URLs from
a wide variety of domains. From the 13,011 extensions, we
extracted 24,398 unique regular expressions and matched them
against the CommonCrawl dataset using the regular expres-
sion matching rules specific to the manifest file specification.
For each regular expression, we only consider the first 100
matches. For each extension, which can have many regular
expressions in its manifest, we combine all matching URLs
and take a random subset of maximum 1,000 URLs. In total
we obtained 506,215 unique URLs from the CommonCrawl
dataset that match the regular expressions from the extensions’
manifest files. We call this set of URLs the “real” URLs.

From the “real” URLs, we derive two extra sets of URLs by
considering that an attacker can host a copy of a real web page

7

on a different web host. For instance, the web page at http:
//www.example.com/abc could be hosted on an attacker-
controlled http://www.attacker.invalid/abc. We call
this cloned set of “real” URLs, where the hostname has been
replaced by attacker.invalid, the “attackerhost” URLs.

Extensions with more fine-grained regular expressions may
require the attacker to register a domain in DNS. For instance,
a regular expression http://*.com/abc does not match
the attacker.invalid domain which we assume is under
attacker control. Therefore, we also consider a URL set where
the hostname in each URL has been replaced by a hostname
with the same top-level domain, but with an attacker-controlled
domain name. For instance, for http://www.example.com/
abc we also consider http://www.attacker.com/abc.
Naturally, we chose a domain name of sufficient length and
consisting of random letters, to make sure it was not registered
yet. We call this cloned set of “real” URLs, the “buydns”
URLs.

In addition to the real CommonCrawl URLs which match
the regular expressions, we also generate URLs based on
those regular expressions by replacing all “*” characters
with “anystring”. For instance, we generate the URL http:
//*.example.com/anystring for the regular expression
http://*.example.com/*. We call this set of URLs the
“generated” URLs.

Dataset web page content: Aside from expecting a
certain URL, an extension may also depend on certain HTML
elements, HTML structure or particular text present on a
visited web page. To determine whether this is the case, each
web page visited through a URL in the “real” URLs set, as well
as the derived “attackerhost” and “buydns” sets, is also visited
with all content removed. We visit each of these URLs twice:
once with the real content, and once serving an empty page
instead of the real content. For the “generated” URL set, we
only serve empty pages, since there is no way to determine
what type of content should be present on such a URL. A
known practice from previous work is to use “Honey Pages”,
empty pages that create the DOM content of a web page
dynamically, based on what the extension is querying [56],
[35]. While “Honey Pages” can provide useful information to,
e.g., find malicious extensions, some extension behavior can be
difficult to trigger in an automated way, as it may not be only
nested DOM structures, but also events an extension acts on.
In this light, “Honey Pages” may not be representative of the
operation of actual web pages. As we are interested in whether
web pages would be able to employ a revelation attack with
their current structure, our experiments are not using “Honey
Pages”. Instead, we look at the current interaction between
web pages and extensions, providing an indication of how
many extensions that are currently vulnerable. For the best
coverage, it would be interesting to combine our results with
“Honey Pages”, but we leave that for future work.

Results: The results of the experiment are shown in
Tables IV to VI.

Out of 13,011 extensions, 2,906 revealed themselves on
actual pages. We suppose this behavior is intentional, but it
can be abused by the website owners to track the users. 9,543
did not reveal themselves and 562 could not be used in our
experiment because of issues with the third-party software we

TABLE IV: Breakdown of Chrome and Firefox extensions,
indicating which how many extensions revealed themselves,
how many didn’t, and how many we were unable to analyze
(broken).

Revealed Broken Not revealed Total
Chromium 2,684 412 8,537 11,633

Firefox 222 150 1,006 1,378
Total 2,906 562 9,543 13,011

used in our setup (Selenium, browser-specific or addon-specific
issues).

The other remaining 9,543 extensions which call
getURL() and have WARs, seemingly do not inject any
WARs into the web page, or probably more accurately: we
did not trigger the correct code path in the extension that
results in a WAR being injected into a web page. Analyzing
these remaining extensions via “Honey Pages” could reveal
they also inject WARs under the right circumstances, although
none of the web pages we visited would make them inject
content. Nevertheless, our analysis of web page and extension
interaction succeeded in exposing 2,906 extensions which
reveal themselves on web pages.

Of these 2,906 extensions triggered by real URLs, 2,330
depend only on the URL of the web page visited, and do not
depend on the content of that page, since they execute even
when the presented web page is empty. Moreover, out of the
2,906 extensions that reveal themselves on the right URLs,
1,149 can be tricked into executing on attacker-controlled web
pages. Only for 6 Chrome extensions (but none of the Firefox
extensions) does the attacker potentially have to register a new
domain to host the malicious website on.

Moreover, for 1,149 of the extensions that can be tricked
to execute on an attacker URL, 911 do not depend on the page
content, further easing the life of the attacker.

The numbers between brackets in Table V denotes the
total number of extension users affected by these revealing
extensions. Assuming there are no overlaps between the users
of the revealing extensions, a total of 38,604,160 web users are
vulnerable to the revelation attack through their installed exten-
sions. For the 792,038 affected Firefox users, this means that
they are uniquely identifiable through the unique fingerprint
exposed by their revealing extensions. The 37,812,122 affected
Chrome users do not suffer from this issue at this point in time,
but would also be uniquely identifiable if the Google Chrome
developers adopt Firefox’s UUID randomization scheme.

Furthermore, as seen in Table VI, out of the 2,906 revealing
extensions, 2,261 have at least one unique path, and 2,819 have
at least one WAR with a unique content. The union of those
sets contains 2,822 extensions, indicating that 97.11% of the
2,906 (97.09% of Chrome and 97.30% of Firefox) revealing
extensions can be uniquely identified.

V. MITIGATION DESIGN

From the introductory example in Section I, it is clear that
there is a legitimate use-case for being able to probe for WARs.
Extensions that want to be detectable through their WARs,
e.g. ChromeCast, would become dysfunctional if probing for

8

TABLE V: Breakdown of extensions that reveal themselves. The number between brackets indicates the amount of potentially
affected users, assuming no overlaps.

Content-dependent Any content
“real” URL “attackerhost” URL “buydns” URL “real” URL “attackerhost” URL “buydns” URL Total

Chromium 289 (3,227,947) 217 (2,680,324) 2 (110) 1,281 (17,301,512) 891 (14,601,057) 4 (1,172) 2,684 (37,812,122)
Firefox 49 (39,780) 19 (75,940) 0 (0) 138 (649,236) 16 (27,082) 0 (0) 222 (792,038)

Either browser 338 (3,267,727) 236 (2,756,264) 2 (110) 1,419 (17,950,748) 907 (14,628,139) 4 (1,172) 2,906 (38,604,160)

TABLE VI: Breakdown of revealing Chrome and Firefox
extensions, indicating how many of the extensions revealing
themselves that could be uniquely identified, either through
the path, through the content of the WARs, and the union of
those sets.

Revealed Unique path Unique hash Unique path ∪ hash
Chromium 2,684 2,063 2,603 2,606 (97.09%)

Firefox 222 198 216 216 (97.30%)
Total 2,906 2,261 2,819 2,822 (97.11%)

WARs was blocked in general. Therefore, preventing the
extension probing attack through a blanket ban on extension
probing, is not an option.

In similar vein, preventing extensions from revealing them-
selves to web pages is also not an option. The data from
Section IV-A implies that many extensions may inject content
into a web page, and could become dysfunctional if this
functionality was no longer available. Extensions ill intent on
revealing themselves may be unstoppable, and we consider
them out of scope, only focusing on those extensions that
accidentally reveal themselves.

Our experiments show the different ways through which
extensions reveal themselves by injecting content. From an
unrandomized WAR URL injected in a page, as is the case
for Chrome extensions, it is trivial to extract the UUID to
determine the installed extension. As is shown in Table II,
from a WAR URL where just the UUID has been randomized
and probing is possible, as is the case for Firefox extensions,
we can deduce the installed extension with a 80.33% accuracy
by considering only the path of the URL, and the paths tied
to each extension. Similarly, we would be able to deduce the
installed extension with a 93.76% accuracy by only looking
at the contents of the resources tied to the extensions, and
combining the two approaches, we can deduce the installed ex-
tension with a 94.41% accuracy. Similarly, we detect Chrome
extensions with a 62.01% accuracy based on the path, 89.01%
accuracy based on the content of the resource, and 89.91%
accuracy when we combine the path and the content.

Without breaking the intended functionality provided by
existing extensions, we cannot prevent extension probing at-
tacks and extension revelation attacks in general.

Our envisioned solution, which we call “Latex Gloves”
since the goal is to prevent extensions from leaving finger-
prints, is depicted in Figure 3.

We prevent extension probing attacks (Figure 3a) by allow-
ing a whitelist to specify a set of web pages that may probe
for each individual extension.

For instance, YouTube.com may be allowed to probe for the
ChromeCast extension, so that the extension’s functionality can

be used with YouTube videos. In that case, a request for a WAR
in the ChromeCast extension will be allowed by the policy.
However, when the same WAR is requested by another web
page, such as attacker.com, the request is blocked. Similarly, if
YouTube.com would request a WAR from another extension,
e.g. AdBlock, it would be blocked with this particular policy.

We prevent extension revelation attacks (Figure 3b) by
allowing a whitelist to specify a set of web pages on which
each extension is allowed to execute.

For instance, the AdBlock extension may be allowed to run
on example.com. In that case, when example.com is visited,
the AdBlock extension can remove any advertisements from
the page. However, the same extension may be disallowed
from running on a website which is trusted by the whitelist
policy, thereby not interfering with the revenue stream of
that website. Similar to the probing defense example, the
policy here also blocks other extensions from executing — and
thereby potentially revealing themselves — on example.com.

Conceptually, the policies for both defenses can be visual-
ized in a matrix, with extensions and web origins as rows and
columns respectively. Each element in this matrix would then
indicate whether access is allowed between the extension and
the web origin.

However, such a matrix would make the assumption that
policies for the probing and revelation defenses cannot conflict,
which is not necessarily the case.

For instance, consider a configuration where AdBlock is
installed, and a banking website bank.com, which is trusted
by the whitelist policy. Because this trust, bank.com should be
allowed to probe for AdBlock. However, due to the sensitive
nature of the data on bank.com, the whitelist policy does
not allow AdBlock to operate on the bank.com web pages,
although AdBlock want to execute on every web page.

This conflict between the policies for a particular web ori-
gin and extension illustrates the need for separate whitelisting
mechanisms for both the probing and revelation defenses.

VI. PROOF OF CONCEPT IMPLEMENTATION

Our prototype implements defenses against both the ex-
tension probing and extension revelation attacks as a proof of
concept. Because changing browser code can quickly get very
complicated, we opted to implement only the core functionality
in the actual browser code, while the bulk of our prototype
is implemented separately as a browser extension and a web
proxy. For adoption in the real world, the full implementation
should of course be embedded in the web browser’s C++ code.
However, our proof of concept implementation still allows to
test the effectiveness of our solution. For simplicity, the proof
of concept is designed to allow a security-aware end user to

9

(a) Probing defense (b) Revelation defense

Fig. 3: Concept design of our proposed defenses for the extension probing and revelation attacks. Our solution mediates access
from the web page to the extension WARs for the probing defense, and from the extensions to web pages for the revelation
defense. In each case, access is mediated based on a specified policy.

arbitrarily modify the whitelists. While this is not something
one should assume an arbitrary user would do, we deem it to
be good in order to show the functionality of the whitelisting
mechanisms. In a full implementation, the end user should be
queried as little as possible.

As depicted in Figure 4, our prototype implementation
consists of three components: a slightly modified Chromium
browser, a browser extension named “Latex Gloves” and a
web proxy based on mitmproxy. Our modifications to the
Chromium 65.0.3325.181 code consist of nine lines of code
spread over four files. The patches to Chromium, as well as
binary packages compiled for Ubuntu 16.04, our browser ex-
tension and our addon script for mitmproxy 3.0.4 are available
upon request to the authors.

A. Preventing the probing attack

Chrome extensions can use the webRequest API to observe,
modify and block requests from web pages. The requests
that an extension can observe through the webRequest API,
include requests with the chrome-extension:// scheme.
However, requests to chrome-extension://<ext-UUID>
URIs where <ext-UUID> is not its own extension ID, will
be hidden. Even though requests to non-installed extension
resources, or to chrome-extension:// URIs with an invalid
extension ID are hidden from observation with the webRequest
API, those URIs are replaced by chrome-extension://
invalid internally.

Our prototype needs the ability to monitor requests to
all chrome-extension:// URIs, even for other installed
extensions, non-installed extensions or invalid extension IDs.
In addition, we also want to avoid that Chromium replaces
the URI with chrome-extension://invalid, since we are
interested in the originally requested URI.

To achieve this, we modified the Chromium source code
and changed just two lines of code in two files. First, we
disable the check that determines whether the extension ID of
the requested URI matches that of the extension observing the

request. Second, we disable Chromium’s behavior of replacing
invalid chrome-extension:// URIs.

The remainder of this part of the prototype is implemented
as a browser extension which uses this modified webRequest
API. Requests to all chrome-extension:// URIs are mon-
itored by the extension and matched against a predefined but
customizable whitelist. The whitelist maps a web origin O to a
list of allowed extension IDs L. When the browser visits a web
page located in the given web origin O, the extension checks
any requested chrome-extension:// URIs and determines
whether they target an extension in L. In case of a match, the
request is allowed, otherwise it is canceled. In the latter case,
it will appear to the web page as if the requested resource is
not accessible, whether the extension is installed or not.

B. Preventing the revelation attack

By design, Chrome extensions can specify which URLs
they want to operate on, by listing those URLs in the
permissions and content_scripts properties of the man-
ifest.json file. Restricting the list of URLs on which an exten-
sion is allowed to operate, would help prevent the extension
revelation attack on arbitrary attacker pages, since the exten-
sion would not execute on those pages, and thus not reveal
itself. However, this whitelist of URLs is at the discretion of
the extension developer and cannot easily be altered by the
whitelist policy provider.

Our implementation, schematically depicted on the right
side of Figure 4, exposes the whitelist on which URLs the
extension operates to the whitelist policy provider, allowing
the restriction of the set of URLs on which the extension
operates. Instead of implementing new functionality in the
browser to modify this whitelist, and then exposing it to our
browser extension, we decided to modify the browser extension
CRX [19] files, which are packaged and signed versions of
browser extensions, “in flight” when they are installed or
updated from the Chrome web store.

Because extensions from the Chrome web store are signed

10

Fig. 4: Overview of the prototype implementation of our proposed defenses: a modified Chromium browser with the Latex
Gloves extension and mitmproxy.

with a private key, which we cannot obtain, we modified
the Chromium browser to not strictly verify an extension’s
signature. This modification consists of six lines of code in a
single file, and disables signature verification on both version
2 and 3 of the CRX file format. It is important to note that,
for a real-world implementation, this should not be done, but
rather have the full mechanism implemented in the browser.
We only use this to show and evaluate the core whitelisting
mechanism in the proof of concept prototype.

Since the browser no longer verifies CRX signatures, we
are free to modify web traffic between the browser and the
Chrome web store, and can update the manifest files in
extensions’ CRX files “in flight” and restrict the permissions
and content_scripts properties according to the wishes of
the whitelist. This CRX rewriting process is implemented in a
web proxy as a mitmproxy addon script.

When the policy changes the hostname whitelist associated
with an extension, the new whitelist is communicated to the
proxy. When the auto-update process in the browser queries
the Chrome web store whether the extension has been updated,
we inform the browser that a new version exists. The browser
then downloads the new version of the extension from the
Chrome web store, which gets rewritten by our mitmproxy
addon script, and includes the new whitelist.

Taking over the extension auto-update process for our proof
of concept prototype in this manner, requires us to make
more frequent changes to the version number of an extension
than the extension’s developer would. Because of the way the
versioning system works, we need to keep track of a parallel
versioning scheme that is only visible between the browser
and the proxy. The details of this process are too technical
to detail in this paper, but require us to change the version
property of the manifest file in addition to the permissions
and content_scripts properties.

By default, the Chromium auto-update process can take up

to seven days, which we deem too infrequent to be of practical
use in our proof of concept. An optional modification of one
line of code in one file of the Chromium source code changes
this update interval to five seconds, so that updates to the policy
whitelist are implemented more promptly.

In addition, it should be noted that the original extension
update mechanism will prompt the end user whenever the
extension requests additional permissions compared to the
previous version. Our proof of concept implementation does
not alter this default behavior.

C. Discussion and future work

Our prototype implementation is a proof of concept, show-
ing that it is possible to use whitelisting policies to defend
against extension probing and revelation attacks. As mentioned
before, an actual production-quality implementation of these
defenses would require more changes to browser code and
result in better performance and a nicer user experience with
regards to e.g. the user interface.

A real-world implementation in the browser would not need
to rewrite the extensions on the fly, and would not have to
disable security checks. Similar to how the browser checks if,
e.g., a WAR should be allowed to be injected, the browser can
check if the extension should be allowed to execute on any
given domain.

Recently, Google released the plan to allow end users to
restrict the host permissions for an extension [7], indicating
the core mechanism for modifying browser extension behavior
within the browser is possible, and something which can be
used to control the extension whitelist. In this case, the browser
extension can provide a whitelist which can be modified
without the need to re-install the extension.

It is also crucial for a real-world implementation to not
have an early-out mechanism, which is what was exploited

11

in the timing attack presented by Sánchez-Rola et al. [53],
and subsequently removed [20]. In the situation an attacker
is allowed to probe for an extension, and that extension is
present, an early-out from the whitelisting mechanism during
a probing attack would allow for the attacker to measure the
elapsed time, and deduce whether the request was blocked
based on the whitelist. If an attacker knows the time it takes
to get a response from an installed extension which they are
allowed to probe for, and an extension which is blocked by the
whitelist, the attacker can, for each negative probing attempt,
deduce which extensions that are not installed, and which that
are blocked based on the whitelist.

For our prototype, we made the rather arbitrary choice to
limit whitelists to web origins and hostnames in the probing
and revelation defense respectively. While these choices serve
us well for a proof of concept, it could prove interesting to
refine these whitelists to use e.g. regular expressions on URLs
instead.

Additionally, for the probing defense, when a web page
contains an embedded subframe, we disregard the web origin
of the subframe and enforce the whitelist associated with the
web origin of the main frame. Our prototype is very well
capable of applying a different whitelist for the subframe, in
case the end user would wish to do so. However, we regarded
this particular refinement of the prototype as out of scope for
a proof of concept implementation.

In our proof of concept implementation, only the end-user
can specify policy whitelists for both the probing and reve-
lation defenses. In a production implementation, one should
consider a system where both web applications and browser
extensions can suggest a policy, which the end-user could
then refine or even override. Another possibility is to have
a system similar to Google Safe Browsing [28], keeping the
user interaction to a minimum.

Finally, our prototype implementation displays information
to the user about which extensions are being probed for on
any visited web page. We do not display similar information
regarding revelation attacks. We also consider these visual
markers to be out of scope to prove the functionality of the
concept.

VII. EVALUATION

We have evaluated the functionality of our proof of concept
implementation to ensure that it works as intended. Using
the data from Sections III and IV, we randomly selected
and visited several dozen web pages that perform probing
attacks, and also visited our attacker web page with the top
ten (Chrome) extensions that reveal themselves on any web
page with any content. As expected, our proof of concept
implementation stops both the probing attacks and revelation
attacks.

We also perform two evaluations against known old attacks,
the enumerating probing attack presented by Sjösten et al. [55]
(Section VII-A) and the enumerating timing probing attack
presented by Sánchez-Rola et al. [53] (Section VII-B).

A. Enumerating probing attack

We visited two known web pages that employed the enu-
merating probing attack [54], [32] twice: the first time with an

TABLE VII: Enumeration timing probing attack.

Chromium Patch Patch +
53.0.2785.135 Extension

<realExtUUID>/<realPath> 8.53ms 9.67ms 8.95ms
<realExtUUID>/<fakePath> 12.59ms 9.71ms 9.17ms
<fakeExtUUID>/<fakePath> 7.86ms 10.16ms 9.3ms

unmodified Chromium browser, and the second time with the
modified Chromium browser and with our browser extension
installed. We used browser extensions which we know can be
detected both times: AdBlock [10], Avast Online Security [4],
Ghostery [6] and LastPass [39]. When visiting with the modi-
fied Chromium browser with our browser extension, we set the
policy to a ”block all” policy, meaning we expect no WARs
to be accessible to the web page.

As expected, with our unmodified Chromium browser, the
probing attack was successful against all four extensions. Note
that although the database was last updated in December 2016
for [54], it could still detect the popular extensions, which
might indicate browser extensions do not change internally
very often. Using our proof of concept implementation, the
probing attacks failed for all extensions. Although the ex-
ecution time increased significantly, due to the handling of
over 11,000 requests for our JavaScript code in the browser
extension, we note that this is something that will improve if
the mechanism is fully implemented in the source language of
the browser. We also set policies to allow for the probing of
each extension, one at a time, indicating that the overall idea
explained in Section V is sound.

B. Enumerating timing probing attack

To be consistent with prior work, we determined
whether our modification of Chromium’s core might
reintroduce the enumerating timing probing attack —
already fixed from versions higher than 61.0.3155.0
— presented by Sánchez-Rola et al. [53]. This timing
attack makes a distinction between two types of requests:
1) chrome-extension://<fakeExtUUID>/<fakePath>,
and; 2) chrome-extension://<realExt-UUID>
/<fakePath>. The attacker uses the User Timing API [59],
which allows to take time measurements with high precision,
to check the response times for each of these requests. If the
measured times do not differ more than 5%, the attacker can
conclude that the requested extension is not installed in the
client’s browser.

In order to reproduce this timing attack, we downloaded
and built Chromium 53.0.2785.135 on a virtual machine with
Ubuntu 16.04.

We identified three scenarios: 1) using the origi-
nal Chromium 53.0.2785.135 source code; 2) Chromium
66.0.3359.117 with our patch applied, but without the Latex
Gloves extension, and; 3) Chromium 66.0.3359.117 with our
patch applied and the Latex Gloves extension installed.

For each scenario, we had Avast Online Security installed
and used it as the <realExt-UUID>. When executing with
our patch and Latex Gloves installed, we had set the whitelist
to allow all requests to extension WARs, apart from to Avast
Online Security and AdBlock. Table VII shows the results

12

TABLE VIII: Breakdown of the amount of Chrome and Firefox
extensions that would be uniquely identifiable through the
content of a WAR, given that no probing could take place.

Extensions Total WARs Unique WARs Detection probability
Firefox 1,378 95,920 23,687 24.69%

Chromium 11,633 12,499,335 127,054 1.02%
Revealing 2,906 4,027,046 35,478 0.88%

of our experiment, where the time measurement for each
request was averaged over 1,000 runs. From these results, it is
clear that Chromium 53.0.2785.135 is vulnerable to the timing
attack, since there is more than 5% difference between the
time measurement for an existing extension and a non-existing
extension. However, with our modification (with or without
extension), that difference is no longer present.

VIII. RECOMMENDATIONS

Based on the experiments in Sections III and IV, we
recommend several improvements to the browser extension
ecosystem, addressed to browser developers and extension
developers.

Recommendations for browser developers: Chrome
extensions are vulnerable to the extension probing attack
because their UUIDs are static and publicly known. Firefox
extensions combat this vulnerability by having randomized
extension UUIDs. However, Firefox extensions can still be
identified through the revelation attack. Worse, because Fire-
fox’s random UUIDs are not easily changed after an extension
is installed, they can be used to fingerprint the extension user.

Our first recommendation is to re-generate Firefox’s ran-
dom UUIDs more often, either upon starting the browser or for
each domain visited. Similarly, if a user enables private brows-
ing mode [48], [23], each active browser extension should
be provided with a new random UUID. Although this would
not prevent detecting which browser extensions are executed,
it would limit the tracking to a specific instance, making it
infeasible to use this technique for long-term tracking of users.

Our second recommendation is to randomize the full
URL of a WAR, and not just the UUID. With this
change, a WAR URL seen by an attacker would be
shaped as moz-extension://<random-UUID>/<random-
path> for Firefox and chrome-extension://<random-
UUID>/<random-path> for Chrome. Without any recogniz-
able path components, the attacker would be forced to read
and fingerprint the contents of the WAR to determine which
extension is installed. As depicted in Table VIII, without
the ability to probe, this would decrease the probability of
detecting Firefox extensions to 24.69% (compared to 93.76%,
as shown in Table II), and 1.02% for Chrome (compared
to 89.01%) and probability of detecting the extensions we
know reveal themselves would drop to 0.88% from 89.52%.
The random path approach can be taken one step further by
implementing the WAR URLs to be of single use, i.e. the
same WAR will have different paths each time it is injected or
fetched. Such a change to core extension infrastructure would
make it impossible for an attacker to fetch a recently injected
resource in order to analyze the content. However, it would
also require an overhaul of the browser implementation and
possibly most browser extensions, which is very impractical.

Recommendations for browser extension developers:
Both Mozilla [43] and Google [27] provide guidelines for
browser extension developers, e.g. “never ask for more permis-
sion than needed”, and “properly secure sensitive or personal
data when transmitting over the network”. However, neither
provide specific guidelines on how to handle WARs in a secure
way.

Our only recommendations fall in the “least privilege”
category, where no more privileges than needed to perform
a certain task should be requested. Firstly, to help prevent the
revelation attack, extension developers should not arbitrarily
inject content with the random UUID. As seen in Table V,
several extensions currently inject content on any arbitrary web
page, including blank pages. Secondly, to help prevent the
probing attack, extensions should not expose unused WARs.
A non-existent WAR cannot be used in a probing attack,
thus reducing the chances that an extension can be identified
through a probing attack.

IX. RELATED WORK

User fingerprinting by using web browsers has been widely
studied in the literature [12], [9], [11], [38], [15], [34]. As
an example, Cao et al. [15] were able to fingerprint 99.24%
of web users — being completely web browser agnostic —
by using hardware features such as those from GPUs or
CPUs. More recently, Gómez-Boix et al. [34] performed a
large scale experiment to determine whether fingerprinting is
still possible nowadays. They reached the conclusion that in
desktop web browsers, both plugins (e.g. Flash, NPAPI, etc)
and fonts are the most representative features to fingerprint
users. However, none of the aforementioned works have taken
browser extensions into consideration.

Nikiforakis et al. [52] showed that implementation dif-
ferences between browsers can be fingerprinted. There exist
several extensions that attempt to erase those fingerprints, but
those extensions in turn allow a user to also be fingerprinted.
In the same vein, Acar et al. [9] state that browser extensions
can be exploited to fingerprint and track users on the Web.

Starov and Nikiforakis [56] presented a method to fin-
gerprint browser extensions using a behavioral attack. They
show browser extensions can provide unique, arbitrary DOM
modifications, and analyzes the top 10,000 of most down-
loaded browser extensions, concluding 9.2% to 23% of those
extensions are detectable. Contrarily to the experiments they
performed — they only analyzed the manifest file of 1,665
browser extensions and they found that more than a 40% of
them do make use of WARs, in this work we have scrutinized
62,994 browser extensions and concluded that 16,280 explic-
itly declare some WARs in their manifest.json file (≈26%).

In 2011, Kettle [36] demonstrated that all Chrome ex-
tensions could be enumerated by requesting their manifest
file, which was explained in 2012 by Kotowicz [37]. Google
solved this problem by introducing WARs, but Sjösten et
al. [55] showed that all Chrome extensions with WARs can be
enumerated without them being active on the attacker page.
They demonstrated that approximately 28% of all Chrome
extensions and approximately 6.7% of all non-WebExtension
Firefox extensions could be enumerated from a web page.
Gulyás et al. [33] combine known fingerprinting techniques

13

with the Chrome extension enumeration attack presented by
Sjösten et al. [55], along with a login-leak which determines
the web pages that a user is logged in to [40]. They conclude
that 54.86% of users which have installed at least one de-
tectable extension and 19.53% of users which have at least one
detectable active login, are unique. A combination of at least
one detectable extension installed, and at least one detectable
active login make the uniqueness number go up to 89.23%,
indicating that installed browser extensions can make a good
fingerprint, further showing the necessity of a mechanism to
prevent extension fingerprinting.

Sánchez-Rola et al. [53] presented a timing attack against
Chrome and Firefox by using the fact that the internal branch-
ing time for WARs differs between installed and non-installed
extensions, thus detecting 100% of all extensions. A temporary
solution has been implemented in Chrome [20], and the plan
is to implement a randomization scheme similar to Firefox’s,
when they can make “a breaking change” [8]. In [53], Sánchez-
Rola et al. also presented the revelation attack against Safari,
which was the first browser to use randomized UUIDs. Based
on a static analysis of 718 extensions, they estimated more than
40% of the extensions could leak the random UUID. They
manually analyzed 68 security extensions, finding one false
negative and 20 out of 29 extensions flagged as suspicious
indeed leaked the random UUID. Contrarily to Sánchez-Rola
et al, we investigate all Chrome and Firefox extensions to see
which leak their UUID on actual web pages.

Chen and Kapravelos [17] developed a taint analysis frame-
work for browser extensions to study their privacy practices.
From sources, such as DOM API calls (e.g. document.
location), and extension API calls (e.g. chrome.history),
they find 2.13% of Chrome and Opera extensions to potentially
be leaking privacy-sensitive information to sinks such as
XMLHttpRequest and chrome.storage. However, they do
not seem to consider extension UUIDs as part of the privacy-
sensitive information.

Finally, it is worth mentioning that an attacker might
use any of the attacks presented in this paper to detect
browser extensions and thus, perform more harmful attacks.
Buyukkayhan et al. [14] for instance, exploit the lack of non-
isolation worlds on the previous version of the Firefox add-ons
architecture, allowing legitimate extensions which make use of
Cross Platform Component Object Model (XPCOM) to access
system resources such as the file system and the network. A
prerequisite for this attack is that there must be a mechanism
to disclose installed extensions in the victim’s browser. Thus,
the attacks described in our work may be used as a stepping
stone to escalate the attacker’s privileges in the browser.

X. CONCLUSION

We have investigated the problem of detecting browser
extensions by web pages. With the intention to prevent probing
for browser extensions by web pages, Mozilla Firefox recently
introduced randomized extension UUIDs. A similar move is
currently being discussed by the Google Chrome developers.
We have demonstrated that the randomized UUIDs can in
fact hurt user privacy rather than protect it. To this end,
we have studied a class of attacks, which we call revelation
attacks, allowing web pages to detect the randomized browser

extension UUIDs in the code injected by extensions into the
web pages, which, due to the design of the randomization of
UUIDs, giving the ability to uniquely track users.

We have conducted an empirical study assessing the fea-
sibility of revelation attacks. Our experiments show that com-
bining revelation and probing attacks, it is possible to uniquely
identify 90% out of all extensions injecting content, in spite
of a randomization scheme. Furthermore, we have conducted a
large-scale study assessing the pervasiveness of probing attacks
on the Alexa top 10,000 domains, providing new evidence for
probing beyond what was captured by previous work.

As a countermeasure, we have designed a mechanism that
controls what extensions are enabled on what pages. As such,
our mechanism supports two types of whitelists: specifying
which web pages are allowed to probe for which extensions
and specifying which extensions are allowed to inject content
on which web pages. We have presented a proof of concept
prototype that blocks both probing and revelation attacks,
unless explicitly allowed in the whitelists.

For future work, it would be interesting to consider
XHOUND [56] and Hulk [35] to make a comparison on the
different extensions that provide arbitrary DOM modifications
(XHOUND), extensions that are deemed malicious (Hulk), and
that inject WAR URLs. Unfortunately, the tools are unavailable
at present.

Next steps for Firefox and Chrome: We have reported
the details of our study and our suggestions for mitigation to
both involved browser vendors.

The issue with the randomized UUIDs has been confirmed
by Firefox developers [1]. They agree that attacks like the
revelation attack defeat anti-fingerprinting measures. While
the problem is clear to the developers, the discussion on
countermeasures is still ongoing.

As mentioned earlier, Google has recently announced that
Chrome will allow users to restrict extensions from accessing
websites by a whitelisting mechanism in line with ours [7].
Users will be able to restrict the host permissions for an
extension, paving the way for an in-browser mechanism to
control the extension whitelist.

Acknowledgments: This work was partly funded by
the Swedish Foundation for Strategic Research (SSF) under
the WebSec project and the Swedish Research Council (VR)
under the PrinSec and PolUser projects.

REFERENCES

[1] https://bugzilla.mozilla.org/show bug.cgi?format=default&id=1372288,
accessed July-2018.

[2] “AdBlock Plus,” https://chrome.google.com/webstore/detail/adblock-
plus/cfhdojbkjhnklbpkdaibdccddilifddb, accessed Aug-2018.

[3] “Adobe: Adobe Acrobat Force-Installed Vulnerable Chrome Exten-
sion,” https://bugs.chromium.org/p/project-zero/issues/detail?id=1088,
accessed May-2018.

[4] “Avast Online Security,” https://chrome.google.com/webstore/detail/
avast-online-security/gomekmidlodglbbmalcneegieacbdmki, accessed
May-2018.

[5] “Common Crawl,” http://commoncrawl.org/, accessed May-2018.
[6] “Ghostery – Privacy Ad Blocker,” https://chrome.google.com/webstore/

detail/ghostery---privacy-ad-blo/mlomiejdfkolichcflejclcbmpeaniij, ac-
cessed Aug-2018.

14

https://bugzilla.mozilla.org/show_bug.cgi?format=default&id=1372288
https://chrome.google.com/webstore/detail/adblock-plus/cfhdojbkjhnklbpkdaibdccddilifddb
https://chrome.google.com/webstore/detail/adblock-plus/cfhdojbkjhnklbpkdaibdccddilifddb
https://bugs.chromium.org/p/project-zero/issues/detail?id=1088
https://chrome.google.com/webstore/detail/avast-online-security/gomekmidlodglbbmalcneegieacbdmki
https://chrome.google.com/webstore/detail/avast-online-security/gomekmidlodglbbmalcneegieacbdmki
http://commoncrawl.org/
https://chrome.google.com/webstore/detail/ghostery---privacy-ad-blo/mlomiejdfkolichcflejclcbmpeaniij
https://chrome.google.com/webstore/detail/ghostery---privacy-ad-blo/mlomiejdfkolichcflejclcbmpeaniij

[7] “Trustworthy Chrome Extensions, by Default,” https://security.
googleblog.com/2018/10/trustworthy-chrome-extensions-by-
default.html, accessed Nov-2018.

[8] “WebAccessibleResources take too long to make a decision about
loading if the extension is installed,” https://bugs.chromium.org/p/
chromium/issues/detail?id=611420#c19, accessed Feb-2018.

[9] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens, and
B. Preneel, “FPDetective: Dusting the Web for Fingerprinters,” in CCS,
2013, pp. 1129–1140.

[10] “AdBlock,” https://chrome.google.com/webstore/detail/adblock/
gighmmpiobklfepjocnamgkkbiglidom, accessed Aug-2018.

[11] P. Baumann, S. Katzenbeisser, M. Stopczynski, and E. Tews, “Disguised
Chromium Browser: Robust Browser, Flash and Canvas Fingerprinting
Protection,” in WPES, 2016, pp. 37–46.

[12] K. Boda, A. M. Földes, G. G. Gulyás, and S. Imre, “User Tracking
on the Web via Cross-browser Fingerprinting,” in NordSec, 2012, pp.
31–46.

[13] M. Brinkmann, “Firefox WebExtensions may be used to iden-
tify you on the Internet,” https://www.ghacks.net/2017/08/30/firefox-
webextensions-may-identify-you-on-the-internet/, 2017.

[14] A. S. Buyukkayhan, K. Onarlioglu, W. K. Robertson, and E. Kirda,
“CrossFire: An Analysis of Firefox Extension-Reuse Vulnerabilities,”
in NDSS, 2016.

[15] Y. Cao, S. Li, and E. Wijmans, “(Cross-)Browser Fingerprinting via OS
and Hardware Level Features,” in NDSS, 2017.

[16] S. Cassidy, “LostPass,” https://www.seancassidy.me/lostpass.html,
2018.

[17] Q. Chen and A. Kapravelos, “Mystique: Uncovering Information Leak-
age from Browser Extensions,” in CCS 2018, 2018, pp. 1687–1700.

[18] Chrome, “Match Patterns,” https://developer.chrome.com/extensions/
match patterns, accessed Apr-2018.

[19] ——, “Webstore Hosting and Updating,” https://developer.chrome.com/
extensions/hosting, accessed Apr-2018.

[20] Chromium Code Reviews, “Issue 2958343002: [Extensions] Change
renderer-side web accessible resource determination (Closed),”
accessed Feb-2018. [Online]. Available: https://codereview.chromium.
org/2958343002

[21] A. Cortesi, M. Hils, T. Kriechbaumer, and contributors, “mitmproxy: A
free and open source interactive HTTPS proxy,” https://mitmproxy.org/,
2010–, [Version 3.0], accessed May-2018.

[22] U. Fiore, A. Castiglione, A. De Santis, and F. Palmieri, “Countering
Browser Fingerprinting Techniques: Constructing a Fake Profile with
Google Chrome,” in NBiS, 2014, pp. 355–360.

[23] Google, “Browse in private,” https://support.google.com/chrome/
answer/95464, accessed May-2018.

[24] ——, “Chrome Web Store,” https://chrome.google.com/webstore/
category/extensions? feature=free, accessed Feb-2018.

[25] ——, “chrome.runtime,” https://developer.chrome.com/extensions/
runtime#method-getURL, accessed Feb-2018.

[26] ——, “Content Scripts,” https://developer.chrome.com/extensions/
content scripts, accessed Feb-2018.

[27] ——, “Developer Program Policies,” https://developer.chrome.com/
webstore/program policies, accessed May-2018.

[28] ——, “Google Safe Browsing,” https://safebrowsing.google.com/, ac-
cessed July-2018.

[29] ——, “Manifest - Web Accessible Resources,” https://developer.
chrome.com/extensions/manifest/web accessible resources, accessed
Apr-2018.

[30] ——, “Manifest File Format,” https://developer.chrome.com/extensions/
manifest, accessed Feb-2018.

[31] ——, “New Cast functionality in Chrome,” https://support.google.com/
chromecast/answer/6398952, accessed Apr-2018.

[32] G. G. Gulyás, D. F. Somé, N. Bielova, and C. Castelluccia, “Browser
Extension and Login-Leak Experiment,” https://extensions.inrialpes.fr/,
accessed Apr-2018.

[33] ——, “To Extend or not to Extend: On the Uniqueness of Browser
Extensions and Web Logins,” in WPES@CCS, 2018, pp. 14–27.

[34] A. Gómez-Boix, P. Laperdrix, and B. Baudry, “Hiding in the Crowd:
an Analysis of the Effectiveness of Browser Fingerprinting at Large
Scale,” in WWW, 2018.

[35] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and
V. Paxson, “Hulk: Eliciting Malicious Behavior in Browser Extensions,”
in USENIX Sec., 2014, pp. 641–654.

[36] J. Kettle, “Sparse Bruteforce Addon Detection,” http://www.
skeletonscribe.net/2011/07/sparse-bruteforce-addon-scanner.html,
2011.

[37] K. Kotowicz, “Intro to Chrome addons hacking: fingerprinting,”
http://blog.kotowicz.net/2012/02/intro-to-chrome-addons-hacking.html,
2012.

[38] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the Beast: Di-
verting Modern Web Browsers to Build Unique Browser Fingerprints,”
in S&P, 2016, pp. 878–894.

[39] LastPass, “LastPass: Free Password Manager,” https:
//chrome.google.com/webstore/detail/lastpass-free-password-
ma/hdokiejnpimakedhajhdlcegeplioahd, accessed May-2018.

[40] R. Linus, “Your Social Media Fingerprint,” https://robinlinus.github.io/
socialmedia-leak/, 2016.

[41] L. Liu, X. Zhang, V. Inc, G. Yan, and S. Chen, “Chrome extensions:
Threat analysis and countermeasures,” in NDSS, 2012.

[42] Microsoft, “Internet Explorer Browser Extensions,” https:
//docs.microsoft.com/en-us/previous-versions/windows/internet-
explorer/ie-developer/platform-apis/aa753587(v%3dvs.85), 2018.

[43] Mozilla, “Add-on Policies,” https://developer.mozilla.org/en-US/Add-
ons/AMO/Policy/Reviews, accessed May-2018.

[44] ——, “content scripts,” https://developer.mozilla.org/en-US/Add-ons/
WebExtensions/manifest.json/content scripts, accessed Feb-2018.

[45] ——, “extension.geturl(),” https://developer.mozilla.org/en-US/Add-
ons/WebExtensions/API/extension/getURL, accessed Feb-2018.

[46] ——, “manifest.json,” https://developer.mozilla.org/en-US/Add-ons/
WebExtensions/manifest.json, accessed Feb-2018.

[47] ——, “Most Popular Extensions,” https://addons.mozilla.org/en-US/
firefox/search/?sort=updated&type=extension, accessed Feb-2018.

[48] ——, “Private Browsing - Use Firefox without saving history,”
https://support.mozilla.org/en-US/kb/private-browsing-use-firefox-
without-history, accessed May-2018.

[49] ——, “Profiles - Where Firefox stores your bookmarks, passwords and
other user data,” https://support.mozilla.org/en-US/kb/profiles-where-
firefox-stores-user-data/, accessed Mar-2018.

[50] ——, “web accessible resoruces,” https://developer.mozilla.org/en-
US/Add-ons/WebExtensions/manifest.json/web accessible resources,
accessed Feb-2018.

[51] Mozilla Add-ons Blog, “WebExtensions in Firefox 57,” https://blog.
mozilla.org/addons/2017/09/28/webextensions-in-firefox-57/, accessed
Feb-2018.

[52] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna, “Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting,” in S&P, 2013, pp. 541–555.

[53] I. Sánchez-Rola, I. Santos, and D. Balzarotti, “Extension Breakdown:
Security Analysis of Browsers Extension Resources Control Policies,”
in USENIX Security Symposium, 2017, pp. 679–694.

[54] A. Sjösten, S. Van Acker, and A. Sabelfeld, “Non-behavioral exten-
sion detector,” http://blueberry-cobbler-11673.herokuapp.com, accessed
May-2018.

[55] ——, “Discovering Browser Extensions via Web Accessible Re-
sources,” in CODASPY. ACM, 2017, pp. 329–336.

[56] O. Starov and N. Nikiforakis, “XHOUND: Quantifying the Fingerprint-
ability of Browser Extensions,” in S&P, May 2017, pp. 941–956.

[57] StatCounter, “Desktop Browser Market Share Worldwide,” http://
gs.statcounter.com/browser-market-share/desktop/worldwide, accessed
May-2018.

[58] W3C, “CSP2,” https://www.w3.org/TR/CSP2/, accessed Nov-2018.
[59] ——, “User Timing,” https://www.w3.org/TR/user-timing, accessed

May-2018.

15

https://security.googleblog.com/2018/10/trustworthy-chrome-extensions-by-default.html
https://security.googleblog.com/2018/10/trustworthy-chrome-extensions-by-default.html
https://security.googleblog.com/2018/10/trustworthy-chrome-extensions-by-default.html
https://bugs.chromium.org/p/chromium/issues/detail?id=611420#c19
https://bugs.chromium.org/p/chromium/issues/detail?id=611420#c19
https://chrome.google.com/webstore/detail/adblock/gighmmpiobklfepjocnamgkkbiglidom
https://chrome.google.com/webstore/detail/adblock/gighmmpiobklfepjocnamgkkbiglidom
https://www.ghacks.net/2017/08/30/firefox-webextensions-may-identify-you-on-the-internet/
https://www.ghacks.net/2017/08/30/firefox-webextensions-may-identify-you-on-the-internet/
https://www.seancassidy.me/lostpass.html
https://developer.chrome.com/extensions/match_patterns
https://developer.chrome.com/extensions/match_patterns
https://developer.chrome.com/extensions/hosting
https://developer.chrome.com/extensions/hosting
https://codereview.chromium.org/2958343002
https://codereview.chromium.org/2958343002
https://mitmproxy.org/
https://support.google.com/chrome/answer/95464
https://support.google.com/chrome/answer/95464
https://chrome.google.com/webstore/category/extensions?_feature=free
https://chrome.google.com/webstore/category/extensions?_feature=free
https://developer.chrome.com/extensions/runtime#method-getURL
https://developer.chrome.com/extensions/runtime#method-getURL
https://developer.chrome.com/extensions/content_scripts
https://developer.chrome.com/extensions/content_scripts
https://developer.chrome.com/webstore/program_policies
https://developer.chrome.com/webstore/program_policies
https://safebrowsing.google.com/
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest
https://developer.chrome.com/extensions/manifest
https://support.google.com/chromecast/answer/6398952
https://support.google.com/chromecast/answer/6398952
https://extensions.inrialpes.fr/
http://www.skeletonscribe.net/2011/07/sparse-bruteforce-addon-scanner.html
http://www.skeletonscribe.net/2011/07/sparse-bruteforce-addon-scanner.html
http://blog.kotowicz.net/2012/02/intro-to-chrome-addons-hacking.html
https://chrome.google.com/webstore/detail/lastpass-free-password-ma/hdokiejnpimakedhajhdlcegeplioahd
https://chrome.google.com/webstore/detail/lastpass-free-password-ma/hdokiejnpimakedhajhdlcegeplioahd
https://chrome.google.com/webstore/detail/lastpass-free-password-ma/hdokiejnpimakedhajhdlcegeplioahd
https://robinlinus.github.io/socialmedia-leak/
https://robinlinus.github.io/socialmedia-leak/
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753587(v%3dvs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753587(v%3dvs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753587(v%3dvs.85)
https://developer.mozilla.org/en-US/Add-ons/AMO/Policy/Reviews
https://developer.mozilla.org/en-US/Add-ons/AMO/Policy/Reviews
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json/content_scripts
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json/content_scripts
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/API/extension/getURL
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/API/extension/getURL
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://addons.mozilla.org/en-US/firefox/search/?sort=updated&type=extension
https://addons.mozilla.org/en-US/firefox/search/?sort=updated&type=extension
https://support.mozilla.org/en-US/kb/private-browsing-use-firefox-without-history
https://support.mozilla.org/en-US/kb/private-browsing-use-firefox-without-history
https://support.mozilla.org/en-US/kb/profiles-where-firefox-stores-user-data/
https://support.mozilla.org/en-US/kb/profiles-where-firefox-stores-user-data/
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://blog.mozilla.org/addons/2017/09/28/webextensions-in-firefox-57/
https://blog.mozilla.org/addons/2017/09/28/webextensions-in-firefox-57/
http://blueberry-cobbler-11673.herokuapp.com
http://gs.statcounter.com/browser-market-share/desktop/worldwide
http://gs.statcounter.com/browser-market-share/desktop/worldwide
https://www.w3.org/TR/CSP2/
https://www.w3.org/TR/user-timing

	Introduction
	Background
	Probing attack
	Revelation attack
	Derandomizing Firefox extensions
	Resetting Firefox's random *UUID
	Derandomizing Chrome extensions
	Extensions revealing themselves to web pages

	Mitigation design
	Proof of concept implementation
	Preventing the probing attack
	Preventing the revelation attack
	Discussion and future work

	Evaluation
	Enumerating probing attack
	Enumerating timing probing attack

	Recommendations
	Related work
	Conclusion
	References

