
Discovering Browser Extensions via
Web Accessible Resources

Alexander Sjösten
Chalmers University of

Technology
Gothenburg, Sweden

sjosten@chalmers.se

Steven Van Acker
Chalmers University of

Technology
Gothenburg, Sweden

acker@chalmers.se

Andrei Sabelfeld
Chalmers University of

Technology
Gothenburg, Sweden

andrei@chalmers.se

ABSTRACT
Browser extensions provide a powerful platform to enrich
browsing experience. At the same time, they raise impor-
tant security questions. From the point of view of a website,
some browser extensions are invasive, removing intended fea-
tures and adding unintended ones, e.g. extensions that hi-
jack Facebook likes. Conversely, from the point of view of
extensions, some websites are invasive, e.g. websites that by-
pass ad blockers. Motivated by security goals at clash, this
paper explores browser extension discovery, through a non-
behavioral technique, based on detecting extensions’ web ac-
cessible resources. We report on an empirical study with
free Chrome and Firefox extensions, being able to detect
over 50% of the top 1,000 free Chrome extensions, including
popular security- and privacy-critical extensions such as Ad-
Block, LastPass, Avast Online Security, and Ghostery. We
also conduct an empirical study of non-behavioral extension
detection on the Alexa top 100,000 websites. We present the
dual measures of making extension detection easier in the
interest of websites and making extension detection more
difficult in the interest of extensions. Finally, we discuss a
browser architecture that allows a user to take control in
arbitrating the conflicting security goals.

Keywords
Web security; Browser extensions; Large-scale study

1. INTRODUCTION
Browser extensions provide a powerful platform to enrich

browsing experience. The Chrome web store currently con-
tains around 43,000 free extensions, with many of these ex-
tensions, such as AdBlock, Adobe Acrobat, and Skype, hav-
ing more than 10,000,000 users.

From the security point of view, browser extensions are
deployed as a “man in the browser” [27], implying that ex-
tensions have privileges to arbitrarily alter the behavior of
webpages. Naturally, the power of browser extensions cre-
ates tension between the security goals of the webpages and
those of the extensions themselves. Let us consider some rep-
resentative scenarios to illustrate the challenges in balancing
these goals.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CODASPY’17, March 22-24, 2017, Scottsdale, AZ, USA
c© 2017 ACM. ISBN 978-1-4503-4523-1/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3029806.3029820

The first and second scenarios present an exclusive point
of view of websites, concerned with malicious extensions.
The third scenario presents an exclusive view of extensions,
concerned with malicious websites. The fourth scenario illus-
trates legitimate synergies between websites and extensions.
Finally, the fifth scenario illustrates the security goals of
websites and extensions at outright clash.
Bank scenario Bank webpages manipulate sensitive in-
formation whose unauthorized access may lead to financial
losses. It is desirable to detect potentially insecure and vul-
nerable extensions and prevent extensions from injecting
third-party scripts into the bank’s webpages. The latter tech-
nique is in fact a common practice for many extensions [28,
31]. This scenario motivates the goal of discovering browser
extensions, as the knowledge of what extensions run on the
webpage can be used for tuning the defense.
Facebook scenario With over a billion daily users [15],
Facebook is a popular target for attacks. Since the Facebook
application itself is relatively well protected from attacks like
cross-site scripting, attackers look for attacks elsewhere. A
prevalent threat to user integrity and confidentiality is the
use of browser extensions to inject scripts into the Facebook
application to gain full access to the user’s account [12].
Jagpal et al. [31] identify Facebook as the number one target
for malicious extensions, reporting on the proliferation of
attacks such as fake content (ad or otherwise) injection and
information stealing.

This scenario motivates the need for recognizing browser
extensions by webpages. Having an extension detection tech-
nique available, the webpage can adapt its behavior to the
extensions installed. Research by Facebook’s anti-abuse team
confirms that this is a realistic scenario [12].
LastPass scenario LastPass [34] is a password manager
that permits users to only remember one master password
while automatically generating, storing, and filling in pass-
words for the individual services. The LastPass Chrome ex-
tension has currently over 4,000,000 users. Being a sensitive
extension, LastPass has been subject to attacks. For exam-
ple, LostPass [35] is a “pixel-perfect phishing” attack that
exploits the fact that LastPass displays its notification in
the browser viewport. LostPass fakes a message of an ex-
pired session and redirects users to a fake login page where
it harvests the master password. (LastPass subsequently re-
sponded by interface measures and asking for email confir-
mation for all logins from new IPs [33].)

This scenario motivates the need to protect sensitive ex-
tensions. Being able to detect LastPass is a trigger for phish-
ing attacks via a malicious webpage, as in the case of Lost-
Pass. It is in the interest of LastPass to stay undetected.
Similar scenarios arise with extensions such as Avast Online
Security and Ghostery, popular security- and privacy-critical
extensions that can be targeted by malicious websites.

http://dx.doi.org/10.1145/3029806.3029820

Google Cast scenario Google Cast [26] is a popular ex-
tension to play content on a Chromecast device from Chrome.
Upon detecting the Google Cast extension, websites like
Twitch.tv adjust their functionality and offer richer features.

This scenario highlights the benefit of browser extension
detection, as motivated by enriching functionality rather
than by security considerations.

AdBlock scenario With over 40,000,000 users, AdBlock
is currently the most popular Chrome extension [10]. It is in
the very nature of ad blocking to modify webpages, looking
for ads and blocking them. These goals are clearly at odds
with the webpages’ goals. Consequently, some webpages try
to detect ad blockers.

This scenario motivates both the need for extension de-
tection from the point of view of webpages and the need for
evading discovery from the ad blockers’ point of view. As we
detail in Section 2, the state of the art for this scenario is
much of a cat-and-mouse game.

Security goals at clash The above scenarios demonstrate
that the different stakeholders (websites vs. browser exten-
sions) have different interests, resulting in the clash of the
respective security goals. Motivated by these security goals,
this paper focuses on discovering browser extensions and
pursues the following research questions: (i) How to dis-
cover browser extensions from within a webpage, i.e, without
modifying the browser? and (ii) How can extensions evade
detection?

We emphasize that this paper does not assume the inter-
est of webpages over the interest of extensions or vice versa.
Instead, we recognize that these different interests are legiti-
mate, even if conflicting. We seek to better understand these
interests, conceptually and empirically, and suggest steps to
improve the state of the art on both sides.

Non-behavioral extension discovery We refer as behav-
ioral to extension discovery techniques that require analyz-
ing the behavior of browser extensions. Behavioral detection
is sometimes desirable, when a particular behavior needs
to be detected, regardless of what extension triggers it. On
the other hand, non-behavioral discovery detects extensions
without having to analyze their behavior. Non-behavioral
detection is attractive when it can be done with low efforts.
This motivates our focus on non-behavioral techniques.

In similar vein, when we consider measures against exten-
sion discovery, our goal is to stop non-behavioral detection
and force attackers to do behavioral analysis of extensions.

Discovery via web accessible resources We explore a
non-behavioral technique for discovering extensions, based
on so called web accessible resources and implement it for
detecting Chrome and Firefox extensions. Web accessible
resources are the resources accessible in the context of a
webpage. These resources enable interaction of extensions
with the user via the underlying webpages.

While there are other, more elaborate, ways to set up this
kind of interaction without web accessible resources (see
Sections 3.2 and 6.2), web accessible resources provide a
straightforward mechanism of direct access via URIs. In-
deed, as we will see later, web accessible resources are used
by many popular extensions.

Our detection is precise, in the sense of no false positives,
and robust, as long as extensions require web accessible re-
sources. While behavioral techniques may mistakenly detect
an extension based on a monitored behavior, our technique
is based on detecting resources that are bound to unique ex-

tension ids, implying that we never report an extension that
is not present.
Contributions To the best of our knowledge, this work
is the first comprehensive effort on non-behavioral exten-
sion detection, putting the spotlight on a largely unexplored
area and systematically studying the technique and its ap-
plicability at large scale. To this end, the paper offers the
following contributions:
Precise non-behavioral extension discovery We inves-

tigate a non-behavioral extension detection technique,
based on web accessible resources (Section 3). Based
on unique extension ids, our detection is precise, in
the sense of no false positives, and robust, as long as
extensions require web accessible resources.

Empirical studies of Chrome and Firefox extensions
We report on a empirical study with Chrome’s free ex-
tensions where we detect over 50% of the top 1,000
free Chrome extensions, including popular security-
and privacy-critical extensions such as AdBlock, Last-
Pass, Avast Online Security, and Ghostery, and 28% of
the Chrome extensions in the study overall (Section 4).

We report on a similar study with Firefox’s free ex-
tensions (Section 4). Due to Firefox’s lax architecture,
extensions are not prevented from direct modifications
to the UI of the browser. This explains the lesser need
for web accessible resources in Firefox extensions and,
therefore, lower discovery rates.

Demo webpage for Chrome and Firefox We provide a
demo webpage [55] to demonstrate discovery of Chrome
and Firefox extensions in practice. This proof-of-concept
webpage lists detected extensions once a user visits the
page with Chrome or Firefox. This page serves as a
starting point, providing a core that can be further
developed either as a standalone service or a library
for inclusion into other webpages. In fact, our code is
already used by INRIA’s Browser Extension Experi-
ment [30].

Empirical studies of the Alexa top 100,000 websites
We conduct an empirical study of non-behavioral ex-
tension discovery on the Alexa top 100,000 websites.
Our findings suggest that the technique is not widely
known, although we do discover several websites that
try to find extensions for types that include fun, pro-
ductivity, news, weather, search tools, developer tools,
accessibility, and shopping (Section 5).

Measures We discuss two types of measures that corre-
spond to the interests of webpages and extensions, re-
spectively. For webpages, we discuss a solution based
on extension whitelisting. For extensions, we have rec-
ommendations to restrict APIs related to web acces-
sible resources and webpage whitelisting (Section 6).
We also discuss behavioral techniques and argue that
to be effective, they need to be extension-specific.

2. STATE-OF-THE-ART ARMS RACE
The state of the art is best illustrated with the arms race

between ad blockers and ad blocker detectors, with its ri-
val spirit captured by the (blatantly explicit) naming of the
respective libraries.

Whenever an extension manipulates the webpage’s DOM,
it can be discovered using behavioral analysis. For instance,
a webpage can discover an ad blocker when the latter re-
moves an ad from the webpage. Since ad blockers act as

<script src="showads.js">
<script >

if(window.canRunAds === undefined)
{

// Ad blocking detected
}

</script >

(a) HTML part of fake ad

var canRunAds = true;

(b) showads.js (fake ad)

Figure 1: Ad-blocking behavioral detection

AdBlock Remove ads
FAB Injects bait for AdBlock and analyzes be-

havior
FFAB Exploits global property in window object

set by FAB
FFFAB Detects if FFAB has done anything, reverts

the changes
Table 1: Ad blocking arms race

good examples of security goals at clash, the rest of this sec-
tion will focus on the arms race between webpages and ad
blockers. Table 1 summarizes the steps in this arms race.

A straightforward approach to check for ad blockers is to
create a fake ad which sets a global variable and then check
for that specific variable. Figure 1 displays a current solu-
tion [29] which works in AdBlock, AdBlock Plus and Ad-
Block Pro for Chrome, as well as AdBlock Plus for Firefox,
where the default behavior is to block the execution of the
file showads.js.

Such a useful behavioral technique is often prepackaged
as a JavaScript library marketed for detecting ad blockers,
called ”anti ad blockers”. One such example is F***AdBlock
(FAB) [11], which helps the users do behavioral analysis dur-
ing a user-specified time interval. If a certain (user defined)
amount of negative results in a row occurs, no ad-blocking
tools are deemed to be running. This means the check can
be run multiple times, making it harder for ad blockers to
hide their presence by delaying their interaction.

Just as there are tools designed to help detect ad blockers,
there are also tools that detect anti ad blockers. The library
F***F***AdBlock (FFAB) [37] is an anti anti ad blocker
created as a response to the anti ad blocker FAB. FFAB re-
defines some JavaScript function objects used during FAB’s
execution, overriding FAB’s ad blocker detection mechanism
and claims no ad blockers are detected.

But just as FAB is sensitive to behavioral analysis, so is
FFAB. In turn, F***F***F***AdBlock (FFFAB) [13], is a
response to FFAB. FFAB itself is not careful enough when
overriding FAB’s code, which gives FFFAB an opportunity
to detect when FAB’s code has been tampered with. When
FFFAB detects this manipulation, it restores the original
FAB functionality.

Detection of extensions by webpages is possible if the ex-
tension somehow modifies the DOM. In addition, behavioral
detection is usually cross-browser, as the same behavior will
take place no matter which browser is used.

If webpages are forced into behavioral extension detec-
tion, they cannot easily determine which extension is caus-
ing the behavior, and the extension detection loses precision.
If they instead find extensions using unique ids, the exten-
sion name for Firefox extensions or a 32-character textual

token for Chrome extensions, the extension can be uniquely
determined and the detection is exact.

As this arms race indicates, behavioral extension detec-
tion is both error-prone because it is imprecise, and costly
because it requires time and effort to keep up with the lat-
est evasion techniques. These reasons motivate the need for
a more robust and cheaper technique, bringing us to the
study of non-behavioral extension detection in the following
sections.

3. FINDING EXTENSIONS VIA WEB AC-
CESSIBLE RESOURCES

This section provides background on how browser exten-
sions work in Chrome and Firefox, the role of web accessible
resources, how they can be used for finding extensions and
the attacker models considered in this work.

3.1 Extensions
An extension is a program, typically written in a combi-

nation of JavaScript, HTML and CSS to extend the browser
functionality. Extensions are not to be confused with browser
plugins, such as Flash and Java, that are compiled and load-
able modules that may live outside the browsers’ process
space. Extensions may alter the content of a webpage (e.g. ad
blockers) or add features such as executing personal scripts
(e.g. Greasemonkey). Browser extensions are built using ar-
chitectures defined by the browser vendors. Mozilla is cur-
rently working on WebExtensions [48], a new API which will
have a similar structure as the Chrome extension API.

Chrome extensions Chrome extensions can consist of
three different parts [25]: (i) a background page, which is
an invisible page containing the main logic of the extension;
(ii) UI pages, ordinary HTML pages that display the exten-
sion’s UI (”browser actions” [19] and ”page actions” [20]);
and (iii) a content script, JavaScript which executes in the
context of the webpage. The content script makes the inter-
action with the webpage and runs in an isolated world [21].
It has access to some Chrome APIs and can communicate
with the background page using message passing [24].

Each Chrome extension must have a manifest file, man-
ifest.json, which contains important information about
the extension [23]. For this work, the only interesting sec-
tion in the manifest file is web accessible resources, which
defines which resources are accessible in the context of a
webpage [22]. The content of the web accessible resources
section is paths to files. They can be URLs or a path to files
relative to the package root and can contain wildcards.

Firefox extensions Firefox extensions written using We-
bExtensions will have the same structure as Chrome exten-
sions. This is because Chrome extensions should be easy to
port to Firefox [46], as well as having a more unified cross-
browser architecture.

For the rest of this section, we will focus on XUL/XPCOM
extensions. As this is how most Firefox extensions currently
are written, we will refer to them as ”Firefox extensions”.
These extensions also uses manifest files. The extensions au-
tomatically read the file chrome.manifest in the extension’s
root [40, 43]. Differently from Chrome, manifest files in Fire-
fox are not mandatory and one manifest file can refer to
other manifest files in sub folders.

Similarly to Chrome, a content script can inject and alter
content on the webpage and communicate with the back-
ground pages using message passing [42, 41]. In the file

chrome.manifest, a flag contentaccessible, which when
set to yes, makes the specified content web accessible [40].

Differently from Chrome and WebExtensions, Firefox ex-
tensions have powerful features such as overlay, to describe
extra content to the UI [49] and override, to override a
chrome file provided by the application [40].

3.2 Web accessible resources
Both Chrome and Firefox require that extension resources

that are referenced in a regular webpage, are flagged as web
accessible in the manifest files. In Chrome and WebExten-
sions this is done with the key ”web accessible resources” [22,
47] and in Firefox extensions with ”contentaccessible=yes”
[40].

If a Chrome content script injects resources into a web-
page, the resource must be flagged as web accessible. This
makes the resource available using the following schema:
chrome-extension://<extensionid>/<pathToFile>, where
<extensionid> is a unique identifier for each extension and
<pathToFile> is the same as the relative URL from the pack-
age root [25].

Similarly for Firefox, if resources from the extension are to
be referenced by an untrusted part using or <script>
tags, the corresponding registered content package must be
flagged with contentaccessible=yes. Doing this would al-
low for the webpage to load resources from the extension, e.g.
images to an tag [40]. The content can then be ac-
cessed using the chrome://packagename/content/ schema
[40], where the packagename should be unique for all exten-
sions. For WebExtensions, the content can be accessed with
moz-extension://<extensionid>/<pathToFile> [47].

Examples of web accessible resources in practice To
illustrate web accessible resources and how they differ in
Firefox and Chrome, consider two real-world examples: Ad-
Block and LastPass.

AdBlock for Chrome displays an icon in the browser tool-
bar which seemingly triggers a popup. This popup is actu-
ally an HTML page which loads JavaScript code to interact
with the user. Both the HTML and JavaScript files are web
accessible resources and must be listed as such [22].

When logging in to a new website with a password, Last-
Pass for Chrome will prompt the user whether this pass-
word should be stored. This prompt is actually an “overlay”
injected and rendered into the viewport of the visited web-
page. The overlay is an HTML resource provided by the
extension and marked as web accessible. LastPass for Fire-
fox uses a slightly different approach because Firefox exten-
sions have the ability to modify the browser chrome through
XML User Interface Language (XUL). Because this XUL file
is only part of the browser chrome it does not need to be
accessible from the visited webpage. Therefore, it does not
need to be marked as a web accessible resource.

Benefits with web accessible resources While web ac-
cessible resources are a convenience, it is possible to do with-
out them. Resources can be represented as strings using data
URIs [36], which can be added to the created DOM ele-
ment before injecting it to the webpage. It is also possible
to store the resources on an external server and fetch them
from there. However, both of these approaches have disad-
vantages. Encoding and injecting resources as strings can be
difficult to maintain, and storing resources on an external
server has potential privacy and security issues.

By using web accessible resources, the resources are stored
within the extension. This make them easier to maintain and
access with extension APIs.
Finding extensions via web accessible resources Be-
cause web accessible resources can be accessed in the context
of a given webpage, they can be abused to detect the pres-
ence of browser extensions to which the resources belong. As
mentioned above, LastPass for Chrome has the overlay file
overlay.html marked as web accessible, making it possible
to make a request for the file using e.g. XMLHttpRequest.
If the resource is present, the request will receive a positive
answer, indicating that the extension is installed.

In Firefox, the extension Firebug has contentaccessi-

ble=yes set. Similarly to LastPass in Chrome, this makes
Firebug detectable without behavior analysis, as the resource
can be loaded to a script tag, using onsuccess and onerror

to check if the extension is present or not.
Note that thanks to the uniqueness of the extension ids, we

obtain a detection technique without false positives. While
there is no guarantee that the behavioral techniques pre-
cisely detect a given extension, we never report an extension
that is not present. Compared to behavioral techniques that
may have both false positives and negatives, finding exten-
sions via web accessible resources may have false negatives
but no false positives.

3.3 Two attacker models
Recall that we are interested in two perspectives on ex-

tension detection: that of a webpage with the goal to enable
extension detection (as in the Bank and Facebook scenarios)
and that of an extension with the goal to remain hidden (as
in the LastPass scenario). Consequently, this yields two at-
tacker models. The first attacker model corresponds to a ma-
licious extension that has been installed on a user’s browser,
e.g., to leak bank data or hijack likes. The challenge is to de-
tect such extensions. The second attacker model corresponds
to a malicious webpage that tries to thwart the functionality
of a legitimate extension, e.g., by blocking ads or phishing.
The challenge here is to prevent detection of such exten-
sions. In this paper, we address both perspectives, even if
their goals are by nature conflicting.

4. EMPIRICAL STUDY OF CHROME AND
FIREFOX EXTENSIONS

This section reports on an empirical study to analyze how
susceptible free extensions are to be found via web accessible
resources.

The study was performed by downloading all free ex-
tensions from Chrome web store [18] and Mozilla’s add-on
store [44], extracting and analyzing their manifest files. The
extensions were downloaded in September 2016.

4.1 Chrome
As mentioned in Section 3.1, web accessible resources in

the manifest file can be used to determine extension detec-
tion via web accessible resources. If the manifest file does
not contain the section web accessible resources, the exten-
sion cannot be detected using this technique. If the only
accessible resources of an extension are URLs, we deem the
extension non-detectable without behavioral analysis.

A total of 43,429 extensions were downloaded. However,
the total amount of extensions where the user statistics were
found by the scraper was 43,197 (≈99.5% of all downloaded
extensions). The reason for this drop is that some extensions

Category Chrome Firefox
Empty accessible resources 148 –
Only URLs 54 –
No manifest file – 7,396
Detectable 12,154 1,003
No accessible resources 31,073 6,497
Total amount of extensions 43,429 14,896

Table 2: Chrome and Firefox extension results

were removed from the Chrome web store before the scraper
had the time to retrieve the user statistics, whereas some
extensions (like Google Cast) did not display user statistics.
Results Table 2 displays the results of testing all down-
loaded Chrome extensions for web accessible resources. The
parsing of the manifest files yielded parse errors for 36 ex-
tensions, for which we manually edited the manifest files to
remove the errors.

We note that 148 extensions have web accessible resources
set to an empty array in the manifest file, which implies that
these extensions have no web accessible resources. Similarly,
the 54 extensions which only have URLs as web accessible
resources cannot be found with our technique as they do
not have resources that should run in the context of the
website stored locally in the extension. The “No accessi-
ble resources” in Table 2 are all the extensions where the
web accessible resources field was missing in the manifest
file, including 146 extensions which had only non-existing
resources listed.

In total, 12,154 extensions out of 43,429 could be found
using non-behavioral extension detection, which corresponds
to ≈28%. Figure 2 shows the amount of detectable exten-
sions sorted by popularity, based on the reported number of
users in the Google Chrome web store. For this, we only use
the set of extensions for which we could find user statistics,
yielding 12,112 extensions detectable out of 43,197. We di-
vide the sorted extensions in groups of 1000, which we call
“intervals”. We find 70% of the top 10, 62% of the top 100
and 52.7% of the top 1000 extensions with a non-behavioral
technique. These extensions include popular security- and
privacy-critical extensions such as AdBlock, LastPass, Avast
Online Security, Ghostery and Disconnect. The graph also
shows a descending trend, indicating that more popular ex-
tensions have on average more web accessible resources.

0 5k 10k 15k 20k 25k 30k 35k 40k 44k

0
200
400 Chrome Firefox

Figure 2: Amount of discoverable browser extensions (y-axis,
not stacked) based on extensions’ popularity rank (x-axis)

4.2 Firefox
As mentioned in Section 3.1, manifest files for Firefox ex-

tensions can be located in several different sub folders of an
extension. The manifest files in the sub folders are referenced
from chrome.manifest in the root directory. For this study,
all manifest files were analyzed, including the manifest files
in the sub folders.

The contentaccessible flag indicates web accessible re-
sources, but we found that a webpage cannot perform a
normal XMLHttpRequest in order to retrieve the resource.
However, it is possible to create a script tag with the cor-
responding script.src attribute set to the resource in order

to retrieve it. By attaching onload and onerror event han-
dlers to this script element, it is possible to learn whether
the resource could be retrieved. In addition, because the ab-
sence of a resource is gracefully handled with the onerror

handler, no error is reported and this method in Firefox is
more discrete than the method used with Chrome.

The amount of Firefox extensions was 17,375. However,
some extensions were duplicated in the list on Mozilla’s add-
on page based on the extension name and the extension id.
The scraper found a total of 14,925 unique extensions, but
was redirected to a dead link for 29 extensions, yielding the
total number of analyzed extensions to 14,896.

Results The results of the study can be seen in Table 2.
7,396 did not have a chrome.manifest file in the extension’s
root directory and 6,381 extensions did not have the flag
contentaccessible in the chrome.manifest file in the root
directory. 116 out of the 1,119 extensions who had set con-

tentaccessible linked it to non-existing files. We also de-
tected a total of 775 extensions who use WebExtensions. Out
of those 775 extensions, 11 also defined chrome.manifest.
221 had web_accessible_resources set, indicating ≈ 28,5%
of those extensions should be detectable. Unfortunately, We-
bExtensions extension ids are not stored publicly. One could,
in theory, manually install all those extensions and see if
they have e.g. an options page [45], which when browsed to
would give the extension id. Due to this, we do not consider
WebExtensions detectable in this experiment.

1,003 out of 14,896 can be found with web accessible re-
sources, which corresponds to 6.73%. The trend for the de-
tectable extensions can be seen in Figure 2. The interval
with the most extensions that are detectable was the top
1000 extensions with 121 detectable extensions (i.e. 12.1%).
These extensions include Firebug, Easy Screenshot and Web
of Trust. However, no ad blockers nor the popular script
blocker Ghostery can be found in Firefox without behavioral
analysis. As explained in Section 3.2, Firefox extensions have
the ability to directly add to the UI using XUL, so that they
do not require web accessible resources like Chrome exten-
sions. Therefore, Firefox extensions need less web accessible
resources.

4.3 Comparison of results
One major difference between Chrome and Firefox is how

XMLHttpRequest is handled. In Firefox, it is not allowed to
access chrome:// with XMLHttpRequest, whereas it is pos-
sible to access moz-extension:// in Firefox and chrome-

extension:// in Chrome. The use of web accessible re-
sources, and with that the percentage of detectable exten-
sions, is higher for Chrome. As a Chrome extension cannot
make much modifications to the UI of the browser compared
to Firefox, there is a greater need for using web accessible re-
sources in Chrome. Similarities could be found in the trends
of accessible resources, where both browsers had the largest
interval of detectable extensions in the top 1000 extensions,
but Chrome had a more clear decrease over the following
intervals compared to Firefox.

5. BROWSER EXTENSION DETECTION IN
THE ALEXA TOP 100,000

We conducted an empirical study of non-behavioral ex-
tension detection on the Alexa top 100,000 websites. Our
findings suggest that the technique is not widely known, al-
though we do discover several websites that try to find exten-

sions for types that include fun, productivity, news, weather,
search tools, developer tools, accessibility and shopping.

This empirical study has been omitted from this version
of our work due to space limitations, but is available in the
full version [55].

6. MEASURES
Section 6.1 suggests measures in favor of website develop-

ers, while Section 6.2 suggests how extensions can prevent
being found by webpages. Finally, Section 6.3 concludes with
a discussion of how to resolve security goal clashes. The full
version [55] elaborates on further details.

6.1 Measures for webpages: whitelisting ex-
tensions

To help webpages guarantee a clean web environment for
their content, they can be allowed to specify a whitelist of
allowed extensions. Such a measure can be implemented as a
policy specified by the webpage and enforced by the browser.

For a web application handling sensitive information, an
environment known-to-be free from malware would help se-
cure the user’s sensitive data. Such a whitelist can, of course,
also be used to block any extensions, e.g. an ad blocker, as
well.

We envision the webpage suggests the whitelist. One pos-
sibility in this design space is to leave the final decision up
to the user, endorsing and/or overriding the whitelist, if de-
sirable. We detail this possibility in Section 6.3.

6.2 Measures for extensions
We discuss some measures to reduce the risk for extensions

to be detected using non-behavioral analysis.

Prevent direct access to extension resources from
webpage Instead of a direct access from webpages to an
extension’s resources, webpages would need to go through
the extension via a message passing API. This would not
prevent detection entirely, but it would allow for an exten-
sion to be part of the detection process.

No accessible resources One can avoid web accessible
resources by hosting the resources on an external server or
use data URIs (see Section 3.2).

Using an external server, with or without the browser’s
caching mechanism, does not fully prevent detectability via
a timing attack. Remotely hosted resources also introduce
privacy concerns, as all requests can be monitored by an
external party.

Data URIs will remove dependencies on web accessible
resources, but a disadvantage is that hard-coded data URIs
can be difficult to maintain.

Track script provenance One could potentially track
who injected a script and only allow access to a given set of
principals. Tracking information flow can, however, make the
system slower, but it would allow for web accessible resources
to be used by scripts on the webpage that originates from
the extension, but not by the actual webpage.

Extension ids In order to avoid detection, an extension
developer could change the extension id by resubmitting the
same extension. This by itself would be of limited effect since
the entire userbase needs to be rebuilt for the extension with
the updated id.

As an extension has other means to fetch its resources than
via web accessible resources, one can allow the extension to
generate a random token and pass it along to the webpage. A

webpage which possesses this token can use it to gain access
to the extension’s resources.

Whitelisting webpages Instead of being active on all
webpages a browser visits, extensions could be activated on
a case-by-case basis. If an extension is not active on a web-
page, and its resources not available to this webpage, then
it can not be detected through the presence of web acces-
sible resources. This can be implemented through a user-
modifiable whitelist in the browser.

6.3 User to resolve conflicting security goals
Because of the conflicting security goals, it is important

to strike a balance of the interests of the different parties by
combining webpage measures with extension measures. For
example, allowing webpages to whitelist extensions which
can be active in their domain, whereas allowing extensions to
whitelist webpages which are allowed to communicate with
the extensions would help both webpages and extensions
reach their goals.

But who should resolve the conflicting security goals? We
resort to the ”users > developers > browser” principle, as
common in the web community folklore. This principle gives
users precedence over developers and browsers in the web
setting. Driven by this principle, we designate the user as
an arbiter to endorse and/or overwrite whitelists provided
by webpages and extensions, respectively.

7. RELATED WORK
Non-behavioral extension detection has so far received

only scarce attention, primarily in the form of scattered blog
posts [6, 3, 2, 4, 1, 5], some referring to outdated browser
features and some only traceable in Internet archives [6, 3].

To the best of our knowledge, we are the first to system-
atically study non-behavioral extension discovery at large in
both Chrome and Firefox’s extension web stores, as well as
the Alexa top 100,000 webpages.

There is a large body of work on detection of maliciously
behaving browser extensions. The state of the art is well
summarized by Jagpal et al. [31]. The rest of this section
focuses on detecting extensions and fingerprinting browsers.

7.1 Detecting extensions
Prior work in detecting extensions has focused on behav-

ioral techniques. For instance, Nikiforakis et al. [52] analyze
eleven popular browser extensions that hide the real user
agent string from visited websites in order to obfuscate a
browser’s fingerprint, but observe that the these extensions
neglect to remove the same information from the JavaScript
environment, making the extension detectable by a visited
website through its behavior. This detection mechanism is
fragile since, as explained in Section 2, extensions may mod-
ify their behavior in order to avoid detection, forcing web-
sites to alter their detection method, triggering an arms race.
Using another approach, Thomas et al. [56] detect the in-
flight alteration of a webpage, by comparing the DOM of the
rendered webpage against the expected DOM. This catch-
all method detects all DOM modifying extensions as well
as proxies and compromised browsers. Such an approach is
more robust, since it will detect all extensions that modify
the DOM even when they attempt to evade detection. How-
ever, since it does not focus on an extension’s specific behav-
ior, it is less precise. Non-behavioral extension detection on
the other hand, like the technique presented in this paper,
uses simple and cheap checks to determine the presence of

a specific extension, without false positives. In addition, an
extension can not evade detection by altering its behavior.
Instead, the only way for an extension to avoid detection is
by removing its web accessible resources, which is not always
practical as explained in Section 6.2.

Non-behavioral extension discovery via web accessible re-
sources has only received scarce attention in the form of
scattered observations, primarily in blog posts [6, 3, 2, 4,
1, 5], some referring to outdated browser features and some
only traceable in Internet archives [6, 3].

We go beyond these observations by systematically study-
ing the entire class of extension discovery via web accessible
resources, performing an empirical study with discoverabil-
ity of all free extensions of the two major browsers, preform-
ing a large scale study of discovery by the top 100,000 Alexa
webpages, and proposing measures.

7.2 Fingerprinting browsers
There has been much work on browser fingerprinting. IN-

RIA’s Browser Extension Experiment [30] is based on our
technique and code to enhance browser fingerprinting by de-
tecting extensions. We overview the work on fingerprinting
below, noting that the rest of the approaches are less related
because they do not address extension detection.

Panopticlick [54] uses such browsers properties as screen
resolution, user agent string, timezone, system fonts, and
browser plugins to uniquely identify browsers. Browsers can
also be fingerprinted through browser quirks [7], canvas fin-
gerprinting [39, 8], dimensions of rendered font glyphs [16],
browser histories [53], ECMAScript compliance [50], perfor-
mance of the JavaScript engine and whitelisted domains in
the NoScript extension [38], and more [52, 58].

Nikiforakis et al. [52] detect font probing and flash-based
proxy evasion as fingerprinting mechanisms provided by three
commercial fingerprinting companies, and find 40 websites
in the Alexa top 10,000 make use of them. Acar et al. build
FPDetective [9] and find 404 websites in the Alexa top mil-
lion that use JavaScript-based font probing, as well as 145
websites in the Alexa top 10,000 that use Flash-based font
probing to fingerprint visitors. Acar et al. [8] study the Alexa
top 100,000 and find that canvas fingerprinting is the most
commonly used fingerprinting technique, with 5% of the
studied websites using it.

Defending against fingerprinting is difficult, if even possi-
ble. There appears to be no one-size-fits-all solution. Several
strategies have been suggested. One crude way to address
the problem is by simply blocking certain forms of third-
party content, such as JavaScript or Flash known to contain
fingerprinting code [8, 14, 52, 53, 58]. Similarly crude would
be to disable certain functionality in the browser, such as
the ability to query pixel-values from a canvas [39].

Instead of blocking third-party content or functionality,
a browser could ask for user permission whenever a finger-
printable characteristic of the browser is queried, e.g. reading
those pixel-values from a canvas [8, 39, 58].

Yet another approach adds (smart) noise to fingerprint-
able browser characteristics, thereby randomizing the fin-
gerprint [8, 39, 14, 16, 17, 32, 51, 57, 58]. The reverse ap-
proach is to decrease the randomness of the reported browser
characteristics by standardizing the set of possible values for
fingerprintable resources, such as the list of system fonts, so
that all browsers report the same values [16, 39, 52, 58].

Conceding that fingerprinting cannot be stopped, recent
work has investigated preventing the exfiltration of the fin-

gerprint itself by monitoring network traffic [57, 16, 50], or
even by rewriting a detected fingerprint through a network
proxy [59].

8. CONCLUSION
To the best of our knowledge, we have presented the first

comprehensive study of non-behavioral browser extension
discovery. We have systematically studied the technique and
its applicability at large scale. At the core of our technique is
detection of web accessible resources that are associated with
extensions via unique extension ids. This yields an effective
detection technique with no false positives, which we have
instantiated for both Chrome and Firefox. We report on an
empirical study with free Chrome and Firefox extensions, de-
tecting over 50% of the top 1,000 free Chrome extensions (in-
cluding such sensitive extensions as AdBlock and LastPass)
and over 28% of the Chrome extensions in the study over-
all. We have conducted an empirical study of non-behavioral
extension detection on the Alexa top 100,000 websites. This
study confirms that detecting extensions via web accessi-
ble resources is not widely known. Nevertheless, we identify
websites that perform extension detection for types of exten-
sions that include fun, productivity, news, weather, search
tools, developer tools, accessibility, and shopping. We have
presented measures for and against browser extension dis-
covery, catering to the needs of website owners and exten-
sion developers, respectively. Finally, we have discussed a
browser architecture that allows a user to take control in
arbitrating the conflicting security goals.

Our code for discovering browser extensions is already
used by INRIA’s Browser Extension Experiment [30].

Future work focuses on the measures outlined in Section 6.
In particular, our short-term goal is to study whether disal-
lowing GET requests from webpages to extension schemas
(Firefox disallows XMLHttpRequest apart from for WebEx-
tensions, but not GET from HTML elements such as script
and img, whereas Chrome allows all three) will result in
breaking functionality of common extensions. Such a study
may provide useful input for the future handling of exten-
sions in Chrome and Firefox. We are also experimenting
with a prototype based on Chromium to support fine-grained
whitelisting policies that give the user the power to tem-
porarily enable and disable extensions depending on what
webpages are being visited.

Acknowledgments Thanks are due to Ioannis Papagian-
nis for the inspirations and helpful feedback. This work was
partly funded by Andrei Sabelfeld’s Google Faculty Research
Award, Facebook Research and Academic Relations Pro-
gram Gift, the European Community under the ProSecuToR
project, and the Swedish research agency VR.

9. REFERENCES
[1] Detecting Chrome Extensions in 2013. http://gcattani.

github.io/201303/detecting-chrome-extensions-in-2013/.

[2] Detecting Firefox Extensions Without Javascript.
http://kuza55.blogspot.co.uk/2007/10/
detecting-firefox-extension-without.html.

[3] Detecting FireFox Extentions. http://ha.ckers.org/blog/
20060823/detecting-firefox-extentions/.

[4] Sparse Bruteforce Addon Detection.
http://www.skeletonscribe.net/2011/07/
sparse-bruteforce-addon-scanner.html.

[5] The Evolution of Chrome Extensions Detection.
http://blog.beefproject.com/2013/04/
the-evolution-of-chrome-extensions.html.

http://gcattani.github.io/201303/detecting-chrome-extensions-in-2013/
http://gcattani.github.io/201303/detecting-chrome-extensions-in-2013/
http://kuza55.blogspot.co.uk/2007/10/detecting-firefox-extension-without.html
http://kuza55.blogspot.co.uk/2007/10/detecting-firefox-extension-without.html
http://ha.ckers.org/blog/20060823/detecting-firefox-extentions/
http://ha.ckers.org/blog/20060823/detecting-firefox-extentions/
http://www.skeletonscribe.net/2011/07/sparse-bruteforce-addon-scanner.html
http://www.skeletonscribe.net/2011/07/sparse-bruteforce-addon-scanner.html
http://blog.beefproject.com/2013/04/the-evolution-of-chrome-extensions.html
http://blog.beefproject.com/2013/04/the-evolution-of-chrome-extensions.html

[6] Yet Another Way to Detect Internet Explorer.
http://ha.ckers.org/blog/20060821/
yet-another-way-to-detect-internet-explorer/.

[7] E. Abgrall, Y. Traon, M. Monperrus, S. Gombault,
M. Heiderich, and A. Ribault. XSS-FP: Browser
fingerprinting using HTML parser quirks. Technical report,
2012. arXiv:1211.4812 [cs].

[8] G. Acar, C. Eubank, S. Englehardt, M. Juarez,
A. Narayanan, and C. Diaz. The web never forgets:
Persistent tracking mechanisms in the wild. In CCS, 2014.

[9] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses,
F. Piessens, and B. Preneel. FPDetective: Dusting the web
for fingerprinters. In CCS, 2013.

[10] AdBlock. https://chrome.google.com/webstore/detail/
adblock/gighmmpiobklfepjocnamgkkbiglidom.

[11] V. Allaire. FuckAdBlock.
https://github.com/sitexw/FuckAdBlock.

[12] Q. Cao, X. Yang, J. Yu, and C. Palow. Uncovering large
groups of active malicious accounts in online social
networks. In CCS, 2014.

[13] clsr. FuckFuckFuckAdBlock.
https://gist.github.com/clsr/3f5ca796463a0e6fc8af.

[14] A. FaizKhademi, M. Zulkernine, and K. Weldemariam.
FPGuard: Detection and prevention of browser
fingerprinting. In Data and Applications Security and
Privacy, 2015.

[15] http://newsroom.fb.com/company-info/#statistics.

[16] D. Fifield and S. Egelman. Fingerprinting web users
through font metrics. In Financial Cryptography and Data
Security, 2015.

[17] U. Fiore, A. Castiglione, A. De Santis, and F. Palmieri.
Countering browser fingerprinting techniques: Constructing
a fake profile with google chrome. In NBiS, 2014.

[18] Google. Chrome web store. https://chrome.google.com/
webstore/category/extensions?hl=en-GB& feature=free.

[19] Google. chrome.browserAction.
https://developer.chrome.com/extensions/browserAction.

[20] Google. chrome.pageAction.
https://developer.chrome.com/extensions/pageAction.

[21] Google. Content Scripts.
https://developer.chrome.com/extensions/content scripts.

[22] Google. Manifest - Web Accessible Resources.
https://developer.chrome.com/extensions/manifest/web
accessible resources.

[23] Google. Manifest File Format.
https://developer.chrome.com/extensions/manifest.

[24] Google. Message Passing.
https://developer.chrome.com/extensions/messaging.

[25] Google. Overview.
https://developer.chrome.com/extensions/overview.

[26] Google Cast. https://chrome.google.com/webstore/detail/
google-cast/boadgeojelhgndaghljhdicfkmllpafd.

[27] P. Gühring. Concepts against man-in-the-browser attacks.
http:
//www.cacert.at/svn/sourcerer/CAcert/SecureClient.pdf,
2006.

[28] D. Hausknecht, J. Magazinius, and A. Sabelfeld. May I? -
Content Security Policy Endorsement for Browser
Extensions. In DIMVA, 2015.

[29] How to detect Adblock on my website?
http://stackoverflow.com/questions/4869154/
how-to-detect-adblock-on-my-website.

[30] INRIA. Browser Extension Experiment.
https://extensions.inrialpes.fr.

[31] N. Jagpal, E. Dingle, J. Gravel, P. Mavrommatis,
N. Provos, M. A. Rajab, and K. Thomas. Trends and
lessons from three years fighting malicious extensions. In
USENIX Sec., 2015.

[32] P. Laperdrix, W. Rudametkin, and B. Baudry. Mitigating
browser fingerprint tracking: Multi-level reconfiguration
and diversification. In SEAMS, 2015.

[33] I read that LastPass is vulnerable to phishing attacks -
should I be concerned? https:
//lastpass.com/support.php?cmd=showfaq&id=10072.

[34] LastPass. https://lastpass.com/.

[35] LostPass. https://www.seancassidy.me/lostpass.html.

[36] L. Masinter. The ”data” URL scheme.
http://tools.ietf.org/html/rfc2397.

[37] Mechazawa. FuckFuckAdBlock.
https://github.com/Mechazawa/FuckFuckAdblock.

[38] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham.
Fingerprinting information in JavaScript implementations.
In W2SP, 2011.

[39] K. Mowery and H. Shacham. Pixel perfect: Fingerprinting
canvas in HTML5. In W2SP, 2012.

[40] Mozilla. Chrome registration. https:
//developer.mozilla.org/en-US/docs/Chrome Registration.

[41] Mozilla. Communicating using ”port”.
https://developer.mozilla.org/en-US/Add-ons/SDK/
Guides/Content Scripts/using port.

[42] Mozilla. Communicating using ”postmessage”.
https://developer.mozilla.org/en-US/Add-ons/SDK/
Guides/Content Scripts/using postMessage.

[43] Mozilla. Manifest Files. https://developer.mozilla.org/
en-US/docs/Mozilla/Tech/XUL/Tutorial/Manifest Files.

[44] Mozilla. Most Popular Extensions. https://addons.mozilla.
org/en-US/firefox/extensions/?sort=users.

[45] Mozilla. options ui. https://developer.mozilla.org/en-US/
Add-ons/WebExtensions/manifest.json/options ui.

[46] Mozilla. Porting a Google Chrome extension.
https://developer.mozilla.org/en-US/Add-ons/
WebExtensions/Porting a Google Chrome extension.

[47] Mozilla. web accessible resources.
https://developer.mozilla.org/en-US/Add-ons/
WebExtensions/manifest.json/web accessible resources.

[48] Mozilla. WebExtensions. https:
//developer.mozilla.org/en-US/Add-ons/WebExtensions.

[49] Mozilla. XUL Overlays. https://developer.mozilla.org/
en-US/docs/Mozilla/Tech/XUL/Overlays.

[50] M. Mulazzani, P. Reschl, M. Huber, M. Leithner,
S. Schrittwieser, E. Weippl, and F. Wien. Fast and reliable
browser identification with JavaScript engine fingerprinting.
In W2SP, 2013.

[51] N. Nikiforakis, W. Joosen, and B. Livshits. PriVaricator:
Deceiving fingerprinters with little white lies. In WWW,
2015.

[52] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless monster: Exploring
the ecosystem of web-based device fingerprinting. In S&P,
2013.

[53] L. Olejnik, C. Castelluccia, and A. Janc. Why johnny can’t
browse in peace: On the uniqueness of web browsing
history patterns. In HotPETs, 2012.

[54] Panopticlick. https://panopticlick.eff.org/.
[55] A. Sjösten, S. Van Acker, and A. Sabelfeld. Discovering

Browser Extensions via Web Accessible Resources. Full
version and code. http:
//www.cse.chalmers.se/research/group/security/extensions.

[56] K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal,
A. Kapravelos, D. McCoy, A. Nappa, V. Paxson, P. Pearce,
N. Provos, and M. A. Rajab. Ad injection at scale:
Assessing deceptive advertisement modifications. In S&P,
2015.

[57] C. F. Torres, H. Jonker, and S. Mauw. FP-block: Usable
web privacy by controlling browser fingerprinting. In
ESORICS, 2015.

[58] R. Upathilake, Y. Li, and A. Matrawy. A classification of
web browser fingerprinting techniques. In NTMS, 2015.

[59] S. Yokoyama and R. Uda. A proposal of preventive measure
of pursuit using a browser fingerprint. In IMCOM, 2015.

http://ha.ckers.org/blog/20060821/yet-another-way-to-detect-internet-explorer/
http://ha.ckers.org/blog/20060821/yet-another-way-to-detect-internet-explorer/
https://chrome.google.com/webstore/detail/adblock/gighmmpiobklfepjocnamgkkbiglidom
https://chrome.google.com/webstore/detail/adblock/gighmmpiobklfepjocnamgkkbiglidom
https://github.com/sitexw/FuckAdBlock
https://gist.github.com/clsr/3f5ca796463a0e6fc8af
http://newsroom.fb.com/company-info/#statistics
https://chrome.google.com/webstore/category/extensions?hl=en-GB&_feature=free
https://chrome.google.com/webstore/category/extensions?hl=en-GB&_feature=free
https://developer.chrome.com/extensions/browserAction
https://developer.chrome.com/extensions/pageAction
https://developer.chrome.com/extensions/content_scripts
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest
https://developer.chrome.com/extensions/messaging
https://developer.chrome.com/extensions/overview
https://chrome.google.com/webstore/detail/google-cast/boadgeojelhgndaghljhdicfkmllpafd
https://chrome.google.com/webstore/detail/google-cast/boadgeojelhgndaghljhdicfkmllpafd
http://www.cacert.at/svn/sourcerer/CAcert/SecureClient.pdf
http://www.cacert.at/svn/sourcerer/CAcert/SecureClient.pdf
http://stackoverflow.com/questions/4869154/how-to-detect-adblock-on-my-website
http://stackoverflow.com/questions/4869154/how-to-detect-adblock-on-my-website
https://extensions.inrialpes.fr
https://lastpass.com/support.php?cmd=showfaq&id=10072
https://lastpass.com/support.php?cmd=showfaq&id=10072
https://lastpass.com/
https://www.seancassidy.me/lostpass.html
http://tools.ietf.org/html/rfc2397
https://github.com/Mechazawa/FuckFuckAdblock
https://developer.mozilla.org/en-US/docs/Chrome_Registration
https://developer.mozilla.org/en-US/docs/Chrome_Registration
https://developer.mozilla.org/en-US/Add-ons/SDK/Guides/Content_Scripts/using_port
https://developer.mozilla.org/en-US/Add-ons/SDK/Guides/Content_Scripts/using_port
https://developer.mozilla.org/en-US/Add-ons/SDK/Guides/Content_Scripts/using_postMessage
https://developer.mozilla.org/en-US/Add-ons/SDK/Guides/Content_Scripts/using_postMessage
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL/Tutorial/Manifest_Files
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL/Tutorial/Manifest_Files
https://addons.mozilla.org/en-US/firefox/extensions/?sort=users
https://addons.mozilla.org/en-US/firefox/extensions/?sort=users
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json/options_ui
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json/options_ui
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Porting_a_Google_Chrome_extension
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Porting_a_Google_Chrome_extension
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL/Overlays
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL/Overlays
https://panopticlick.eff.org/
http://www.cse.chalmers.se/research/group/security/extensions
http://www.cse.chalmers.se/research/group/security/extensions

	Introduction
	State-of-the-art arms race
	Finding extensions via web accessible resources
	Extensions
	Web accessible resources
	Two attacker models

	Empirical study of Chrome and Firefox extensions
	Chrome
	Firefox
	Comparison of results

	Browser extension detection in the Alexa top 100,000
	Measures
	Measures for webpages: whitelisting extensions
	Measures for extensions
	User to resolve conflicting security goals

	Related work
	Detecting extensions
	Fingerprinting browsers

	Conclusion
	References

