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Abstract—Web pages aggressively track users for a variety of
purposes from targeted advertisements to enhanced authenti-
cation. As browsers move to restrict traditional cookie-based
tracking, web pages increasingly move to tracking based
on browser fingerprinting. Unfortunately, the state-of-the-
art to detect fingerprinting in browsers is often error-prone,
resorting to imprecise heuristics and crowd-sourced filter
lists. This paper presents EssentialFP, a principled approach
to detecting fingerprinting on the web. We argue that the
pattern of (i) gathering information from a wide browser
API surface (multiple browser-specific sources) and (ii) com-
municating the information to the network (network sink)
captures the essence of fingerprinting. This pattern enables
us to clearly distinguish fingerprinting from similar types
of scripts like analytics and polyfills. We demonstrate that
information flow tracking is an excellent fit for exposing this
pattern. To implement EssentialFP we leverage, extend, and
deploy JSFlow, a state-of-the-art information flow tracker for
JavaScript, in a browser. We illustrate the effectiveness of
EssentialFP to spot fingerprinting on the web by evaluating
it on two categories of web pages: one where the web pages
perform analytics, use polyfills, and show ads, and one where
the web pages perform authentication, bot detection, and
fingerprinting-enhanced Alexa top pages.

Index Terms—web security and privacy, browser fingerprint-
ing, JavaScript, information flow

1. Introduction

Web pages aggressively track users for a variety of
purposes such as targeted advertisement, enhanced secu-
rity, and personalized content [46]. Web tracking is subject
to much debate [33], [19] that, in the light of privacy-
enhancing legislation [14], has led the major browser
vendors to introduce anti-tracking measures.

From cookies to fingerprinting. While cookies were,
traditionally, used to keep track of users, a growing aware-
ness of privacy concerns (e.g., the “do not track” flag [32])
has made cookies less efficient as the only means of
tracking as shown by Yen et al. [73]. To compensate, web
pages are moving to collect browser fingerprints, where
seemingly benign browser features can be combined to
uniquely identify users [59]. Recent studies show that
(i) browser fingerprinting is becoming increasingly preva-
lent [36], [46]; (i) modern techniques include hardware
fingerprinting through the Canvas [62] and WebGL [62],
[42] APIs; and (iii) on average, a fingerprint can track

a browser instance for 54.48 days [72]. Today there are
several open-source browser fingerprinting libraries, such
as Fingerprint]S [12], ImprintJS [15], and ClientJS [6],
where Fingerprint]S is the most updated and supersedes
ImprintJS and Client]JS to a large extent. These libraries
are highly configurable, allowing developers to define
what specific browser features should be used by en-
abling flags corresponding to the desired features. From
analyzing newer data, researchers have also shown that
the number of uniquely identifiable users based on the
fingerprint has gone down. However, these non-unique
fingerprints are fragile, and if a user modifies a few
features of the fingerprint, there is a high probability the
fingerprint will become unique [49].

Privacy-violating fingerprinting. As with tracking in
general, web pages fingerprint users for a variety of
purposes. To thwart the privacy-violating fingerprinting
efforts browser vendors have proposed mitigations, which
include randomizing the output of known fingerprint-
ing vectors by Brave [34], using privacy budgets by
Chrome [23], blocking third-party requests suspected of
being tracking related by Edge [18] and Firefox [13]
based on, e.g., the Disconnect list [9], and making more
devices look identical by Safari [28]. The diversity of
these techniques shows that each comes with its own
pros and cons, with no clear principle on how to detect
fingerprinting. This is further reflected in a large number
of both false positives and negatives [1], [2], [3], [4].

In addition to the effort in limiting tracking and fin-
gerprinting by browser vendors, a user can install browser
extensions like AdBlock, Privacy Badger, or Ghostery
to help block privacy-intrusive scripts. These extensions
use techniques ranging from crowd-sourced filter lists
(collections of rules dictating what should be blocked),
analyzing behavior, and using anonymous data from the
users. As an example, the crowd-sourced filter lists have
the obvious limitations: to keep the filter lists up-to-date is
time-consuming, and when fingerprinting scripts are added
to the filter lists they can easily be evaded by serving them
from different Internet domains [43].

Recent research approaches to limit fingerprinting in-
clude randomization of features [63], [58], [70], modi-
fying the fingerprint per session [69], [47], and making
users look identical through virtualization [60], [48]. We
discuss these and further related approaches in Section 7.

As seen above, current techniques for fingerprint de-
tection focus on specific vectors. Hence, they fall short of
addressing the general case: there is currently no uniform



solution for identifying fingerprinting. This leads us to
our first research question: RQ1: What is the essence of
browser fingerprinting?

Different types of fingerprinting. What makes the prob-
lem of fingerprinting intricate is that not all fingerprinting
is “bad” fingerprinting [59]. Indeed, fingerprinting can be
justified to increase security when used to improve e.g. bot
detection, fraud detection, and protection against account
hijacking [37]. Where to draw the line between “bad” and
“good” fingerprinting is an open and arguably subjective
question. Approaches that try to draw this line are bound
to result in both false positives and negatives.

The stance of this paper is thus neutral: we focus on
identifying the presence of fingerprinting, hence providing
necessary input into the decision process (by the user and
browser) on whether to allow it or not. This motivates
our second research question: RQ2: How do we reliably
expose fingerprinting scripts in a principled way, without
relying on ad-hoc heuristics and crowd-sourcing, while at
the same time not having to judge the fingerprinting as
“bad” or “good”?

Fingerprinting. Our key observation is that the essence of
fingerprinting can be captured by: (i) gathering informa-
tion from a wide browser API surface (the API imprint)
and (ii) communicating the information to the network
(network sink). The communication in (ii) may either be
direct (via, e.g., XMLHttpRequest) or indirect (via,
e.g., the cookie) and may be done by sending the raw
data piece by piece or (more commonly) as a precomputed
fingerprint.

The flow of information is key to reliable detection: we
must track how information flows from the API imprint
to the network sinks. Only looking at an application’s
API access pattern does not suffice due to the risk for
false positives (every use of the API would count towards
fingerprinting). In particular, in the presence of polyfills,
the API access patterns naturally become rather large, thus
increasing the risk of false positives significantly.’

Lightweight information flow control. Based on this, we
propose EssentialFP, a principled approach that utilizes
dynamic Information-Flow Control (IFC) as a means to
expose fingerprinting. EssentialFP utilizes a variant of
dynamic IFC known as observable tracking [38], [68].
By labeling the values originating from the API imprint
with their access paths and capturing (the accumulation)
of labels exfiltrated via network sinks, observable tracking
ensures that all important flows are correctly accounted
for. We implement this approach in JSFlow [50], a state-
of-the-art dynamic IFC monitor for ECMA-262 v5 that
allows fine-grained information flow tracking. Although
IFC techniques can be extended to handle timing and other
side-channel attacks, JSFlow does not support this; such
attacks are, thus, currently out of scope for EssentialFP.

Scope. We would like to stress that our work is a feasi-
bility study rather than a scalability study. The first step
before deciding whether a high-performance monitor can
be integrated into an existing JavaScript runtime is to
understand what security and privacy benefits it will bring.

1. Polyfills, such as Modernizr [20] and core-js [8], are libraries
intended to extend older browsers with support for new features. To
be able to do this they probe and enhance the execution environment by
injecting any missing features.

Our focus is on providing a platform for experimenting
with and providing a deep understanding of JavaScript
on web pages; large-scale evaluation on thousands of
web pages is not in scope of this work. This is in
line with previous work on information-flow tracking for
JavaScript [45], [52], [40], [50] whose strength is a deep
understanding of JavaScript behavior rather than approx-
imative analysis of thousands of pages. Future work on
scalability will have its own challenges because existing
JavaScript runtimes such as V8 are fast-moving targets
with a focus on advanced performance optimizations.
Yet, an encouraging indication is that Bichhawat et al.
instrumented WebKit’s JavaScript engine to implement
dynamic IFC, with an average performance overhead of
roughly 29% [40], showing it is possible to implement
dynamic IFC with a tolerable overhead.

Contributions. In summary, this paper offers the follow-
ing contributions:

(i) We develop EssentialFP a principled approach to
fingerprinting detection based on observable tracking
(Section 3), define the sources and sinks, and design
a metric that allows us to characterize fingerprinting
patterns via aggregated labels.

(ii) We present the design and implementation of Essen-
tialFP to allow JSFlow to track information within
web APIs, and how to track label combinations of
known fingerprinting patterns (Section 4).

(iii)) We present an empirical study, where we visit
web pages based on different categories (non-
fingerprinting and fingerprinting), demonstrating the
effectiveness of EssentialFP (Section 5).

The code of our tool and its benchmarks are available
online [10].

2. Observable Information-Flow Control

There are various forms of IFC, all sharing the same
fundamental concepts but differing in how information is
tracked and what security guarantees they provide. This
paper utilizes observable IFC and we refer the reader to
[66], [51] for other common variants.

Observable IFC is a form of dynamic IFC, i.e., that
takes place at runtime. Dynamic analyses have the benefit
of being able to handle the challenges posed by JavaScript
including dealing with obfuscation and minification, two
prevalent techniques that are known to cause issues for
static analyses.

To track how the information flows all values are given
a runtime security label. The security labels of values tak-
ing part in a computation are modified during execution to
reflect the flow of information caused by the computation.
This is done by tracking two types of information flows:
explicit and implicit flows. Explicit flows correspond to
data flows [44] in traditional program analysis, and oc-
curs when one or more values are combined into a new
value. Implicit flows correspond to control flows [44] in
traditional program analysis, and occurs between values
when one value indirectly influences another value via
the control flow of the program.

Similar to many other IFC techniques, observable
tracking maintains a security label associated with the
control flow, the so-called pc label, to track implicit flows.



The pc label is used to ensure any values influencing the
control flow are taken into account when computing the
labels of side effects. Implicit flows in an application are
not only of theoretical importance [54], [68]. If implicit
flows are not tracked, important flows are missed. Con-
sider the following code taken from FingerprintJS.
var getNavigatorPlatform = function (options) {
if (navigator.platform) {
return navigator.platform
} else {
return options.NOT_AVAILABLE

}
}

If navigator.platform is present, there is an ob-
servable implicit flow from it to the return value of the
function. This code snippet from Fingerprint]S represents
a common pattern where the link between the original API
source and the sink would be lost in the negative case.

3. Approach

To allow EssentialFP to detect browser fingerprint-
ing, our approach relies on a precomputed baseline API
imprint that captures all parts of the API that contain
fingerprinting-sensitive information. This is used to label
any information that originates from the baseline API
imprint with the access path, causing all fingerprinting-
sensitive information to carry its origin as a security
label. During execution, the observable tracking ensures
values that reach the network sinks are correctly labeled.
This approach is more robust compared to, e.g., Open-
WPM [21], [46] that instruments access to the JavaScript
API, links every access to the corresponding script, and
stores everything in a database for offline analysis, since it
does not implicitly assume that access equates exfiltration.
As discussed above, this is important in the presence of,
e.g., polyfills, that have large API access patterns but do
not exfiltrate any information. Similar to OpenWPM, the
analysis of the collected labels in our approach is done
after the execution of the page, but nothing prevents a
runtime solution where information would be allowed
to be exfiltrated until a certain threshold has been met.
Such a solution would be related to the use of a privacy
budget [7], with the difference that it measures the budget
on the information exfiltrated from the browser, rather than
the read information.

3.1. Computing the API imprint

In order to create the baseline API imprint locally,
we use three known and widely used open-source finger-
printing libraries: FingerprintJS [12], ImprintJS [15], and
Client]S [6]. It is worth noting that a full list of sources for
entropy would be ideal, but this information is not readily
available. By using the three aforementioned libraries a
high-quality approximation that captures the state-of-the-
art in fingerprinting is possible.

The baseline API imprint is computed by combining
the API imprints of Fingerprint]S, ImprintJS, and ClientJS
running in isolation on pages crafted for the purpose.
The API imprints for Fingerprint]S and Imprint]JS were
generated by executing the respective library with all fin-
gerprinting features turned on. As Client]S does not have

the same configurability the API imprint was generated
by calling the Client]S function getFingerprint.

Further, to be able to analyze the kind of fingerprinting
detected, API imprints for each feature of Fingerprint]S
and Imprint]S were also created.

3.2. Detecting Fingerprinting

The baseline API imprint identifies the part of the ex-
ecution environment that contains fingerprinting-sensitive
information. By labeling all values originating from this
part with the access path, tracking the information flow
dynamically, and monitoring the label creation and flow
during the execution we are able to detect fingerprinting
in applications. For each page and API endpoint, we
accumulate the labels of all values reaching the end-
point. From this set of endpoints, we select the poten-
tial network sinks, i.e., endpoints that can be used to
communicate information, such as XMLHttpRequest,
or store information which can be transmitted, such as
document . cookie. The result of the label collection is
two maps: one mapping network sinks to the accumulated
label of exfiltrated values, and one mapping all script
origins to the set of created labels. The maps allow us
to analyze each web page for both internal creation of
fingerprints where information is collected and combined,
and fingerprinting, i.e., where the collected information is
sent via a network sink. More precisely we can distinguish
between the following uses:

e Traditional use: information is gathered, com-
posed, and sent (detected as both internal creation
of fingerprints and fingerprinting)

« Piece by piece: information is gathered and sent
(detected as fingerprinting without internal cre-
ation of fingerprints)

e Local use: information is gathered, composed, and
used, but not sent (detected as internal creation of
fingerprints without fingerprinting)

« No fingerprinting: no information is composed,
used, or sent (detected as neither internal creation
of fingerprints nor fingerprinting)

First, to identify the presence of internal creation of
fingerprints, we measure the maximum overlap of the
created labels for each script with the baseline API im-
print. This gives us a good indication that a fingerprint is
computed, since a large overlap of the wide baseline API
imprint is unlikely for isolated scripts in a normal appli-
cation. Second, to identify the presence of fingerprinting,
we compute the largest overlap of each identified network
sink. While somewhat direct, this approach suffices given
how fingerprint exfiltration is currently implemented. If
the exfiltration becomes more sophisticated by, e.g., using
different sinks, a more precise approach of handling the
sinks will be required both to identify different sinks but
also to differentiate between uses of the same sink. This
would require gathering more information about the sink,
such as names or IP addresses. While possible using our
approach, it was not necessary for the experiment.

In addition to detecting the presence of fingerprinting,
it is also interesting to try to identify the kind of finger-
printing that takes place. To this end, we use the per-flag
extracted API imprints of Fingerprint]S and Imprint]S.



This gives us the possibility to characterize detected fin-
gerprinting in terms of features and to identify common
patterns using heatmaps. We note this is not possible for
Client]S as it does not have the same customization as
Fingerprint]S and ImprintJS.

4. Design and Implementation

To perform measurements and detect fingerprinting we
have created an information flow aware browser: Essen-
tialFP. EssentialFP is a modified version of Chromium
that uses JSFlow [50] to execute JavaScript by deploying
JSFlow as a library. By performing the injection inside
Chromium, right before the script is sent to V8 for execu-
tion, we guarantee that all scripts, including dynamically
injected scripts, are subject to the injection.

4.1. Extending JSFlow

The current release of JSFlow supports ECMA-262
v5 (ESS5) [16] along with the mandated standard runtime
environment. In order to use JSFlow to run actual web
pages, JSFlow must be extended to support new features
defined in ECMA-262 version 6 [29] and later standards
(ES6+). In addition, JSFlow must also be extended to
mediate between its own execution environment and the
execution environment of the browser, as well as collect-
ing the created and exfiltrated labels seen during page
execution.

4.1.1. Extending JSFlow to ES6+. Initial attempts
showed that a large portion of web pages use ES6+
features and, thus, do not run fully using an interpreter
that only supports ESS. Extending JSFlow with support
for ES6+ is a large undertaking that would require both ex-
tending the core engine of JSFlow, as well as the standard
libraries. This entails rewriting a large portion of JSFlow.
As a middle ground, we opted for adding support for ES6+
in JSFlow by using a combination of transpiling and poly-
filling. Before any script is executed, JSFlow transpiles the
code from ES6+ to ES5 using Babel [5]. This will produce
a new program that should be semantically equivalent to
the original but only use ES5 features. In addition to
transpiling, we use polyfills to provide the parts of the
ES6 runtime that JSFlow does not implement. Before any
code is executed JSFlow executes a runtime bundle con-
taining all support libraries and polyfills needed for proper
execution. The runtime bundle extends the JSFlow runtime
environment with polyfills from core-js [8] (for the ES6+
standard runtime), regenerator-runtime [27] (needed by
some of Babel’s transformations), and window-crypto [35]
(for the Window.crypto functionality).

4.1.2. Connecting the Execution Environments. In or-
der to use JSFlow to execute scripts in a browser envi-
ronment, it is imperative to connect the JSFlow execution
environment to the browser’s V8 execution environment.
We implement the connection using a bidirectional and
connected mediation between V8 values and the JSFlow
counterparts, where modifications done in either execution
environment are reflected in the other. This effectively
extends JSFlow with the APIs provided by the browser
and allows scripts to interact with the browser as if they

are running directly in V8. To implement the mediation,
we scale the technique presented by Sjosten et al. [67] to
full JavaScript in the browser setting.

Masquerading JSFlow values as V8 values. To medi-
ate values from JSFlow to V8 the security labels must
be removed: a process called unlabeling. For primitive
values, unlabeling is the only mediation required since
JSFlow builds on the primitive values of V8. Mediating
non-primitive values such as Functions or Objects
requires recursive mediation of their parts. To retain the
connection between the original JSFlow value and the
V8 value we use Proxies [24]. The proxies allow JSFlow
objects to masquerade as V8 objects and perform recursive
on-the-fly mediation on access, similar to that of the
membrane pattern [61].

Masquerading V8 values as JSFlow values. To mediate
values from V8 to JSFlow the security labels must be
added: a process called relabeling. As above, for primi-
tive values labeling is the only mediation required, while
mediating non-primitive values such as Functions or
Objects requires recursive mediation of their parts. The
recursive mediation is provided by wrapper objects that
implement the JSFlow internal Ecma-object interface and
perform recursive on-the-fly mediation on access. The me-
diation follows a read-once-write-always semantics. That
is, when a property is read, if it is defined on the host
object, it is brought from the V8 execution environment,
wrapped, and cached as an ordinary JSFlow property on
the wrapper. Subsequent reads interact with the wrapper
as an ordinary JSFlow object. When a property is written,
it is written both unmediated to the wrapper as well as
mediated to the host.

4.2. Label Models

The labeling and unlabeling of entities when
mediating between JSFlow and V8 rely on label models
which provide an abstract view of the computation of
the mediated V8 values. In the experiments performed
in this paper, we use a simple label model, that allows
parts of the execution environment to be marked as
sources or sinks. Reading from a source labels the
value with the access path of the source and writing
to a sink causes the label of the written value to be
collected for analysis. As an example, reading the

V8 runtime property navigator.userAgent
would label the resulting value with the label
<global.navigator.userAgent>, where

global represents the global window object. To
compute the baseline API imprint of the fingerprinting
libraries, we use a model that labels every mediated part
of the V8 API to record which parts of the API that are
accessed by the libraries.

Over and under labeling. Observable IFC is in theory
subject to both over and under labeling [51] but performs
well on the actual code currently found in the wild. With
respect to this work, the label model described above risks
under labeling, since it does not track flows that go via
the extended environment. For instance, writing a labeled
value to the Document Object Model (DOM) would force
unlabeling to occur, and the labels would be lost. While
this may be an issue for a more practical implementation,



providing such a model for the full execution environment
of a browser is not within the scope of this work. We refer
the reader to [67] for an insight into the complexity of
creating such models.

We encountered two examples of this issue in our
practical experiments: two of the analyzed pages used
mediated versions of btoa to base-64 encode the gath-
ered information. This caused the labels to be lost be-
fore reaching the network sink. In those examples, we
remedied the loss of precision by implementing btoa,
but it points to the issue of losing labels when using
functions that were automatically mediated from the V8
execution environment. Although this is not an issue in our
initial experiments, finding better-suited label models for
standard API interaction that more precisely track flows
of information via the mediated API functionality is an
attractive goal for future explorations.

4.3. Extending Chromium

Modifying and maintaining modifications on a com-
mercial product like Chromium requires a lot of work.
The updates are frequent and the changes are often major,
potentially requiring a lot of effort to cope with. For this
reason, we pick Chromium 78.0.3904.70 and try to keep
the modifications to a minimum.

To be able to inject JSFlow we focus the modifications
to the point in Chromium where the script source code
is transferred from the rendering engine Blink to V8 as
a string for execution. There, the following functionality
was inserted.

o If the intercepted script is the first script to exe-
cute in the context, then JSFlow is first injected
followed by the injection of the JSFlow runtime
containing polyfills and other supporting libraries.

e When JSFlow has been injected the script is
rewritten to contain a call to the main execution
method of JSFlow passing the original source code
as an argument.

The injection works in the same way for inline scripts,
scripts fetched via a URL, or retrieved by other means. At
the point of injection, Chromium has already extracted the
script source into a string. This way, all scripts on a page
are executed via JSFlow regardless of if they originate
from an inline script tag, a script tag using a URL, or an
event handler.

4.4. Protecting JSFlow

Scripts have the capability of modifying the V8 exe-
cution environment by, e.g., overwriting standard library
implementations. Since JSFlow itself runs in the same V8§
execution environment as a web page and is mediating to
and from the execution environment, there is a need to
protect the integrity of JSFlow. Further, JSFlow is imple-
mented by using (parts of) the standard ES6+ execution
environment, so modifications by scripts may uninten-
tionally break JSFlow in the presence of uncontrolled
mediation. To defend against this, JSFlow must run the
scripts defensively to protect key parts of the environment

2. This was the stable version when developing the patch.

from being affected by script execution. To this end, the
standard execution environment of JSFlow does not per-
form any mediation, meaning scripts are unable to modify
parts of the V8 execution environment also implemented
by JSFlow. The parts of the V8 execution environment
not implemented in the JSFlow execution environment are
all mediated via the JSFlow global window object. This
object is a hybrid between a JSFlow global object and a
wrapper, providing protection from tampering by hiding
sensitive parts of the execution environment. The parts
of the execution environment that are either defined by
JSFlow via this global window object or that are part of
the hidden environment will not be mediated, with the
hidden environment being implemented by polyfills. The
remaining, mediated part of the global object follows the
read-once-write-always mediation provided by the JSFlow
wrappers.

4.5. Collecting Labels

Every value that is going through JSFlow is given
a label by the label model, and when two values are
combined, the corresponding label is computed as the
least upper bound of the labels. In our setting, since labels
are the access paths of the information used to create the
values, the least upper bound corresponds to the union of
the paths. Take, for example, the following code snippet.

let a = navigator.userAgent;

let b = navigator.language;

let c=a + '’ ' + b;
The value a will be labeled
<navigator.userAgent> and the value b

will be labeled <navigator.language>.
As the value c is the aggregation of values
a and b it will be labeled with both sources
forming the label <navigator.userAgent,
navigator.language>.

In order to analyze the aggregated labels, JSFlow was
extended with the ability to store the labels seen during
execution on a script basis. In practice this is done on label
creation; whenever the least upper bound is computed in
JSFlow, the computed label will be stored internally in
a map that maps script origins to label sets. This allows
us to detect whether any values that may correspond to a
fingerprint were created by the script. In addition, in order
to be able to detect fingerprinting, we are interested in the
flow from the API imprint to the network sinks. To track
this we also store an accumulated label per API endpoint.
Every time a JSFlow value is unlabeled to be passed into
the V8 runtime (by an assignment or function call), we
add the removed label to a map that maps API endpoints
to labels. During the execution of a page, JSFlow regularly
writes the accumulated labels via a function on the global
object if such a function exists. This way automated tools,
like crawlers, are able to collect labels from JSFlow by
providing the extraction function. In our case, we use
a Puppeteer-based [25] crawler that stores the collected
labels to disk for later analysis.

5. Empirical Study

In order to validate our approach, we have conducted
an empirical study by crawling web pages belonging to



one of two different categories: non-fingerprinting and
fingerprinting web pages. The fingerprinting web pages
are divided into three classes:

¢ (bot detection) web pages that perform bot detec-
tion,

o (authentication) web pages that use some form
of fingerprinting as part of their authentication
process, and

o (alexa) web pages in Alexa top 100,000 that per-
form fingerprinting that is not part of bot detection
or authentication.

A total of 30 web pages were selected: 20 fingerprint-
ing and 10 non-fingerprinting. Of the 20 fingerprinting
pages, 5 are in the bot detection class, 5 in the authen-
tication class, and 10 in the alexa class. Depending on
the category and class different rationals were used in the
selection.

Non-fingerprinting. To find pages in the non-
fingerprinting category that contain interesting behavior
such as analytic scripts, polyfills, or ads the following
method was used. First, an initial selection of pages
with potentially interesting behavior was created based
on popularity and type of content. The assumption was
that popularity is the result of a conscious effort and that
popular pages are likely to contain both analytic scripts,
polyfills (to reach a wide audience), and ads. In this
category, we find, e.g., major news outlets. Second, we
used the Brave browser to filter the selection based on
the presence of tracking and analytic scripts as well as
ads. The process was manual and based on visiting the
pages using Brave while discarding all pages that Brave
did not classify as containing scripts in either of those
categories. For the pages indicated to contain interesting
scripts, we further verified that the scripts were used by
(and not only present in) the web pages by verifying
that the scripts were executed when visiting the pages
with script blocking turned off. Third, to ensure the
web pages were free from fingerprinting the method to
find fingerprinting pages described below was used in
addition to the information given by Brave.

Authentication. To find pages that incorporate finger-
printing in their authentication process the following
method was used. First, an initial selection of major bank
pages was created based on the assumption that banks
both include authentication and have a vested interest
in protecting their users. Second, the selection was fil-
tered by searching for the presence of known finger-
printing sources such as calls to toDataURL or calls
to navigator.plugins by analyzing the scripts as
strings while parsed in V8. Third, for the remaining
candidates, we manually analyzed the scripts of the page
by visiting the page with the debugger active to identify
pages that used fingerprinting as part of the authentication
process. In this step, we set breakpoints to ensure the
scripts containing the potential fingerprinting were indeed
executed and not only loaded.

Bot detection. To find pages that contain bot-detection
the following method was used. First, a collection of
candidate pages was created based on known customers
of bot protection, booking pages, and pages mentioned
by Jonker et al. in their paper on the detection of bot

detection [55]. Second, the candidate pages were filtered
using a specialized crawler that visits web pages, waits for
30 seconds, and then takes a screenshot. If the collected
screenshot showed a (re)CAPTCHA or that access was de-
nied, the web page was deemed to perform bot detection.
Third, the remaining pages were manually analyzed by
visiting the page with the debugger active, again setting
breakpoints to ensure suspicious scripts were executed,
retaining the pages that used fingerprinting as part of the
bot-detection process.

Alexa. To find web pages that perform fingerprinting
which do not match any of the previous categories, we
used two different approaches. First, we used information
from a crawl of Alexa top 100,000 performed with Open-
WPM, which recorded blocked fingerprinting resources
based on the Disconnect list [9]. We also visited pages
in the Alexa top 1,000 and did the same analysis as for
authentication pages. Based on these results, we visited
a random set of web pages which had fingerprinting
resources and ensured these resources were executed.

5.1. Experiment Setup

To visit the different web pages, we used a crawler
implemented with Puppeteer [25] to control EssentialFP.
In order to decrease the overhead of collecting the labels,
we only collected labels that were part of the baseline API
imprint. Using the baseline, each of the selected pages
was visited by the crawler for up to 12 hours. This is
to ensure that the fingerprinting script was not prevented
from running due to JSFlow performance issues. As an
example, fingerprinting scripts usually compound the val-
ues into a hash, and executing Fingerprint]JS alone with all
flags active would take around 45 minutes with JSFlow.
These performance issues come from JSFlow being an
information-flow aware deep-embedding of ECMA-262
v5. When executing, JSFlow performs every execution
step mandated by ECMA-262 v5 without any optimiza-
tion. The execution speed of JSFlow does not reflect on the
feasibility of using dynamic IFC but it limits the number
of pages that can be analyzed with the current setup.
Indeed, only around 5% of the execution time is spent
on handling the security labels.

5.2. API Endpoints

Each of the selected web pages was visited while
recording created and exfiltrated labels from the baseline
API imprint. For each page and each API endpoint, every
label reaching the endpoint was collected in addition to
collecting all created labels for each page and script. This
allows us to infer what parts of the API imprint did flow
to network sinks as well as if the application accumulated
fingerprinting information internally.

To define potential network sinks we analyzed the used
API endpoints to identify uses that could trigger a network
or storage request (which would or could be used to send
the information later). For this experiment, the identified
network sinks were:

e navigator.sendBeacon
¢ XMLHttpRequest
. fetch
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Figure 1: Breakdown of the maximum overlap for a script for each web page against the baseline API imprint consisting
of the libraries Fingerprint]S, Imprint]S, and Client]S. Internal labels are features accessed by the web page code, and
Exfiltrated are labels reaching a network sink. The web pages are sorted based on the exfiltrated label within the two
categories (Non-fingerprinting and Fingerprinting). The y-axis is the percentage overlap for a web page with the baseline
API imprint. The dashed red line is the lowest Fingerprinting overlap.

¢ window.postMessage

e setting src attributes of HTML elements such as
images and scripts

e setting attributes on HTMLFormElement

e document.cookie

5.3. Analysis

The complete overlap for the sinks against the baseline
API imprint for each web page can be found in Figure 1
and the exfiltration method for each web page can be seen
in Table 1.

A key takeaway is that our results confirm our intu-
ition: pages that access a wide surface of sensitive APIs
and send consolidated information to the network repre-
sent the essence of fingerprinting and are clearly marked
as such by their high overlaps with the baseline. Further,
the majority of the visited web pages send sensitive infor-
mation via network sinks, as can be seen in Table 1. This
is an indication that (partial) compounded data is being
sent to an external server. As expected, this occurs on
pages belonging to both categories. The difference is the
amount of sensitive information being transmitted. This is
a strong indicator that it does not suffice to look at the
API imprint of the application and whether the application
uses the network or not. To detect fingerprinting we must
track what information reaches the network sink.

We can also see that the majority of the web pages
have close to equivalent internal fingerprints and labels
that reach the network sink. Although our experiments
over-approximate the labels reaching the network sink as
the labels are compounded based on the API used and not
the source of the request, it still indicates that current fin-
gerprinting scripts accumulate and compute a fingerprint

before transmitting it. As we do not see a much smaller
overlap of internal labels we see no evidence of piece by
piece fingerprinting, where the fingerprint is being sent
gradually to an external server. This indicates it may be
enough to only look at the internally created fingerprints,
but a larger study must be conducted to evaluate this.

The only potential local use of the fingerprint is credit-
suisse.com, as we can see a large drop between the overlap
of the largest internally created label and the exfiltrated
label. After manually analyzing the source code of credit-
suisse.com it is clear the largest internal label comes from
performing fingerprinting, which writes the result to a
global variable called fp2murmur. This global variable
is never used, which may indicate the result from that
specific fingerprinting method is not used. However, we
could also see that several fingerprinting attributes are
being written gradually to a form element, which is the
29.8% overlap which can be seen in Figure 1.

When looking at the two categories, we can see there
is a potential cut-off that allows us to distinguish between
non-fingerprinting and fingerprinting. A larger than 20%
overlap with the full baseline indicates the presence of fin-
gerprinting. Indeed, the maximum matching overlap for the
non-fingerprinting category came from dailymail.co.uk,
with an overlap of 17.9%. This can be compared to the
minimum matching overlap for the fingerprinting category,
namely ultimate-guitar.com with 20.2%.

When looking at the individual classes in the fin-
gerprinting category, the situation is more subtle. Pages
within the authentication class have an overlap with the
full baseline of between 26.2% and 33.3%, and the bot
detection class has an overlap between 28.6% and 60.7%,
compared to the alexa class which has five pages at or
above 56%. This is not surprising since authentication and



TABLE 1: Table showing the sinks used by the scripts on the domains to exfiltrate the maximum overlap of (potential)
fingerprint value. Only sinks that can be used to send data (e.g. document . cookie, network requests, etc.) is shown.

The entries are sorted by the two categories.

Domain Class Sink

alexa.com — Image.src

dailymail.co.uk — document .querySelectorAll.src
ebay.com — HTMLFormElement.setAttribute
gamespot.com — document .cookie

microsoft.com — navigator.sendBeacon
stackoverflow.com — navigator.sendBeacon
theguardian.com — Image.src

washingtonpost.com | — navigator.sendBeacon

wired.com — document .createElement.src
Zoom.us — HTMLFormElement.setAttribute
aktuality.sk Alexa list document .createElement .src, XMLHttpRequest .open
cit.com Authentication | HTMLFormElement .setAttribute
citibank.com Authentication | XMLHttpRequest.send
credit-suisse.com Authentication | HTMLFormElement .appendChild
frankmotorsinc.com Bot detection XMLHttpRequest .send

jd.com Alexa list XMLHttpRequest .send
kinoprofi.vip Alexa list HTMLFormElement .setAttribute
lg.com Alexa list HTMLFormElement.setAttribute
lufthansa.com Bot detection XMLHttpRequest .send

olx.ua Alexa list document . cookie

pnc.com Authentication | document.createElement.src
rei.com Alexa list document . cookie

rezka.ag Alexa list HTMLFormElement .setAttribute
santanderbank.com Authentication | XMLHttpRequest.send
sciencedirect.com Alexa list document .cookie

scribd.com Alexa list document .createElement.src
shop.samsonite.com | Bot detection HTMLFormElement.setAttribute
stubhub.com Bot detection XMLHttpRequest .send
ultimate-guitar.com Alexa list document .createElement.src, navigator.sendBeacon
whitepages.com Bot detection XMLHttpRequest . send

bot detection may have different goals compared to the
fingerprinting in the alexa class.

We note that the overlap of the bot detection pages
may have been higher if we tried to hide the fact we
are a crawler by using stealth libraries for Puppeteer (e.g.
puppeteer-extra-plugin-stealth [26]). We decided against
using a stealth library as this can make properties used for
fingerprinting non-accessible and with that, the amount of
fingerprinting information is less.

Aside from the pages in the alexa class of the fin-
gerprinting category using document .cookie as the
exfiltration method (only one non-fingerprinting web page
used it), there is no real distinction between the exfiltration
methods between the two categories.

To further analyze the two categories, we have created
heatmaps for the different features of Fingerprint]S and
Imprint]JS. The heatmaps for the two categories are found
in Figure 2 for FingerprintJS and in Appendix A for
Imprint]S. As ImprintJS is not as updated as Fingerprint]S
there are some keys not found on web pages as they
refer to outdated API calls. However, the heatmaps for
Imprint]JS entail the same story as Fingerprint]S and we
will therefore focus on FingerprintJS in this section.

When generating the heatmaps, we took the labels
from the highest overlap with the baseline API imprint for
each web page (i.e., the same overlap as in Figure 1). This
set of labels is then cross-referenced against what labels
each feature of the fingerprinting libraries would pro-
duce, to discover which keys could have been used when
generating the set of labels. Each row in the heatmaps
shows the conditional probabilities of the features of each
column given the feature of the row. The probabilities are
interpreted as a gradient between yellow (0% probability)

and red (100% probability). Thus, the diagonal shows
which features were used for the largest overlaps by the
pages in the category.

Looking at the heatmaps we can see that pages from
the non-fingerprinting category (Figure 2a) are not that
intrusive when it comes to data collection compared to
the fingerprinting category (Figure 2b). One could argue
non-fingerprinting web pages should have no overlap with
the baseline API imprint, but we can see in Figure 2a that
the collected features are mainly screen information and
general browser information. Although these features are
also used by fingerprinting web pages, more features are
usually used when conducting fingerprinting.

We have also added heatmaps for each class in the
fingerprinting category in Appendix B for Fingerprint]S
and Appendix C for Imprint]JS. These heatmaps show an
increased intensity in the use of fingerprinting features
from the authentication class and the bot detection class.
The alexa class clearly shows that the more general,
traditional fingerprinting is the most intrusive with many
fingerprinting features being used. This supports the suc-
cess in detecting fingerprinting by looking at the overlap
between the baseline API imprint and the exfiltrated in-
formation.

When looking at the heatmap for the fingerprint-
ing category for Fingerprint]S, we can see the use of
enumerateDevices, which probes the list of all avail-
able media input and output devices. Interestingly enough,
this almost exclusively comes from the bot detection
class. It is worth pointing out that enumerateDevices
is disabled by default in FingerprintJS, which may ex-
plain why it is not used in the alexa class. Similarly,
the webdriver feature, which checks for the property



navigator.webdriver, is overrepresented in the bot
detection class. Although it can be faked, this property
indicates if the user agent is controlled by an automatic
tool such as Puppeteer or Selenium, making it an easy
check to detect potential bots, given that they are not
trying to hide their presence.

6. Discussion

While our initial experiments show that it is possible
to detect fingerprinting by tracking how information flows
from a baseline API imprint to network sinks, our work
opens up a few interesting avenues of future work.

6.1. Fingerprinting Metrics

Our solution compares the overlap between the base-
line API imprint and the script API access pattern to
detect fingerprinting. The results show that this approach
is already effective. For the pages that make up our
empirical study, it is possible to use this to perform
a precise classification without false positives or false
negatives. For a more extensive study, however, more
precise metrics are likely to be needed. For instance, a
source of potential false negatives would be web pages
which only use a specific fingerprinting method, such as
canvas fingerprinting. In the experiments, we manually
verified each of the non-fingerprinting web pages to ensure
this was not the case, but for these situations, another
fingerprinting metric may be more suitable.

Weighted overlap. The unweighted overlap used in this
paper does not distinguish between common and uncom-
mon features. For example, the API pattern of canvas
fingerprinting is implicitly assigned the same importance
as the API pattern of querying the user agent or the screen
width of the browser, while the canvas fingerprinting is
arguably more indicative of fingerprinting than probing
the user agent or screen width. Instead of implicitly giving
all features the same importance weighted overlap assigns
weights to each source and compares the weighted sum.
One interesting starting point to the challenge of decid-
ing on the relative weights could be to use the entropy
reported by Panopticlick [22] to generate the weights for
each API pattern in the fingerprinting library.

Conditional overlap. The weighted overlap assigns more
importance to features that are more indicative of finger-
printing, but does not take that some combinations of
features may be rarer than others, as indicated by our
heatmaps, into account. Thus, such combinations should
probably be given more weight than the sum of their
parts. The conditional probability computed to generate
the heatmaps could be a good starting point for finding
clusters that identify the various categories.

6.2. Further Aid Anti-Fingerprinting

If a more effective version of EssentialFP is imple-
mented directly into V8, which is a huge undertaking due
to V8 being a fast-moving target, there are two natural
uses. On the one hand, it could be used to help generate
filter lists that help users block unwanted content. This

could remove the currently heavy manual burden of cre-
ating and maintaining these filter lists. On the other hand,
it could be used to collect more labels than just the API
imprint, and with that find new potential fingerprinting
vectors when they arise.

7. Related Work

Much work has been done, regarding both conducting
and combating device fingerprinting. This section aims to
provide an overview of combating fingerprinting. For a
full description, we refer the reader to a timely survey by
Laperdrix et al. [59].

Englehardt and Narayanan developed OpenWPM [21],
[46], a web privacy measurement framework. OpenWPM
instruments the access to the JavaScript API and links
every access to the corresponding script. This is then
stored for offline analysis, and Englehardt and Narayanan
found new fingerprinting vectors by crawling with Open-
WPM on the Alexa top 1,000,000. However, different
from OpenWPM, EssentialFP does not implicitly assume
that access equates to exfiltration and can instead focus
purely on the flows that reach potential network sinks.

A promising approach to help detect browser finger-
printing is machine learning. Igbal et al. presented FP-
INSPECTOR [53] and detected fingerprinting with a 99.9%
accuracy and 26% more fingerprinting scripts than man-
ually designed heuristics. Rizzo et al. combine analysis
of JavaScript code with machine learning to detect web
fingerprinters [65], achieving 94% accuracy and finding
more than 840 fingerprinting services, 695 of which were
unknown to popular tracker blockers. By taking advantage
that fingerprinting scripts have similar API access patterns,
Bird et al. presented a semi-supervised machine learning
approach to detect fingerprinting [41], identifying >94.9%
of resources that current heuristic techniques identified.
This is an approach that can be combined with EssentialFP
and potentially strengthen the approach by only focusing
on observable values that reach a network sink.

Another approach is to use browser extensions to
randomize, e.g., the user agent, but as Nikiforakis et
al. showed [64], this can create inconsistencies between
the user agent and other publicly available APIs (e.g.
navigator.platform). Vastel et al. developed FP-
SCANNER [71], a test-suite that explores browser finger-
print inconsistencies to detect potential alterations done
by fingerprinting countermeasures tools. FP-SCANNER
could not only find these inconsistencies but also reveal
the original values, which in turn could be exploited
by fingerprinters to more accurately target browsers with
fingerprinting countermeasures.

Both Laperdrix et al. [60] and Gémez-Boix et al. [48]
proposed virtualization and modular architectures to ran-
domly assemble a coherent set of components whenever
a user wanted to browse the web. This would break
the linkability of fingerprints between sessions while not
having any inconsistencies between attributes, but the user
comfort may go down.

Besson et al. formalized a privacy enforcement
based on a randomization defense using quantitative
information-flow [39]. They synthesize a randomization
mechanism that defines the configurations for each user
and found that more efficient privacy enforcement often
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Figure 2: Heatmaps for the two categories when compared against Fingerprint]S. For each row, the column identifies
the conditional probability of the feature of the column given the feature of the row. The probability is interpreted as
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leads to lower usability, i.e., users have to switch to other
configurations often. Jang et al. used a rewriting-based
IFC approach to detect four privacy-violating flows in web
applications: cookie stealing, location hijacking, history
sniffing, and behavior tracking, finding 46 cases of history
sniffing in the Alexa top 50,000 [54]. Ferreira Torres et
al. [69] proposed generating unique fingerprints to be used
on each visited web page, making it more difficult for
third parties to track the same user over multiple web
pages. FaizKhademi et al. [47] proposed the detection of
fingerprinting by monitoring and recording the activities
by a web page from the time it started loading. Based on
the recording, they were able to extract metrics related
to fingerprinting methods to build a signature of the web
page to distinguish normal web pages from fingerprinting
web pages. If the web page is deemed to be fingerprinting,
the access to the browser is limited e.g. by limiting the
number of fonts allowed to be enumerated, by adding
randomness to attribute values of the navigator and
screen objects, and noise to canvas images that are
generated.

Nikiforakis et al. [63] proposed using randomization
policies, which are protection strategies that can be acti-
vated when certain criteria are met. Similarly, Laperdrix
et al. [58] proposed adding randomness to some more
complex parts of the DOM API: canvas, web audio API,
and the order of JavaScript object properties.

Browser vendors are also implementing anti-
fingerprinting measures. Brave [34] added randomness
to mitigate canvas, WebGL, and AudioContext
fingerprinting, adding to their already implemented
fingerprinting protections [11]. Firefox introduced
Enhanced Tracking Protection [17], which would
allow third-party cookies to be blocked. This has
later been expanded to also block all third-party
requests to companies that are known to participate
in fingerprinting [13]; a feature that is also found in
Microsoft Edge [18]. Safari applies similar restrictions on
cookies as Firefox, and also presents a simplified version
of the system configuration to trackers, making more
devices look identical [28]. The Tor browser aims to
make all users look identical to resist fingerprinting [31].
Unfortunately, this means that as soon as a user
maximizes the browser window or installs a plugin,
their fingerprint will divert from the unified Tor browser
fingerprint [57]. Similarly, as all Tor browsers aim to
look identical, Khattak et al. showed they can be a target
for blocking, showing 3.67% of the Alexa top 1,000
pages blocked access to Tor users [56]. Lastly, of the
well-known browser vendors, Chrome has announced
“The Privacy Sandbox” [30], where they are planning
to combat fingerprinting by implementing a privacy
budget [23].

8. Conclusion

We have presented EssentialFP, a principled approach
to detecting fingerprinting on the web using observable
information-flow control. Answering RQ1 on the essence
of fingerprinting: EssentialFP identifies the essence of fin-
gerprinting based on the pattern of (i) gathering informa-
tion from a wide browser API surface (multiple browser-
specific sources), and (ii) communicating the information

to the network via a network sink. Using this pattern, Es-
sentialFP can clearly distinguish fingerprinting from simi-
lar types of scripts such as analytical scripts and polyfills.
For RQ2 on exposing fingerprinting: EssentialFP exposes
the pattern from RQ1 by monitoring based on observable
information flow tracking. To implement EssentialFP, we
have leveraged, extended, and deployed JSFlow, a state-
of-the-art information flow tracker for JavaScript, in a
browser. We have demonstrated the effectiveness to spot
fingerprinting on the web by EssentialFP by evaluating
it on two categories of web pages: non-fingerprinting
(pages that perform analytics, use polyfills, and show ads),
and fingerprinting (which are divided into the classes of
authentication, bot detection, and fingerprinting-enhanced
pages from the Alexa list). Our results reveal different
extent of fingerprinting in the web pages, ranging from no
evidence of fingerprinting in the non-fingerprinting pages,
to some evidence of fingerprinting in the authentication
and bot detection pages, to full-blown evidence in the
fingerprinting-enhanced pages from the Alexa list.

Acknowledgments. Thanks are due to Pete Snyder for
the stimulating discussions on the topic of browser fin-
gerprinting. This work was partially supported by the
Swedish Foundation for Strategic Research (SSF) and the
Swedish Research Council (VR).

References

[1]  https://github.com/disconnectme/disconnect-tracking- protection/
issues.

[2] https://forums.lanik.us/viewforum.php?f=64&sid=
3d7d9ted66ba36b96c4b18£3142d0e43.

[3] https://github.com/easylist/easylist/issues.

[4] https://github.com/brave/brave-browser/issues/10000.
[S] Babel. https://babeljs.io/.

[6] ClientJS. https://clientjs.org/.

[71 Combating Fingerprinting with a Privacy Budget. https:/github.
com/bslassey/privacy-budget.

[8] core-js. https://www.npmjs.com/package/core-js.

[9] Disconnect. https://github.com/disconnectme/disconnect-tracking-
protection.

[10] EssentialFP code and benchmarks. https://www.cse.chalmers.se/
research/group/security/essential-fp.

[11] Fingerprinting Protections. https://github.com/brave/brave-
browser/wiki/Fingerprinting-Protections.

[12] Fingerprint]S. https://fingerprintjs.com/.

[13] Firefox 72 blocks third-party fingerprinting resources. https://blog.
mozilla.org/security/2020/01/07/firefox-72-fingerprinting/.

[14] General Data Protection Regulation GDPR. https://gdpr-info.eu/.
[15] ImprintJS. https://github.com/mattbrailsford/imprintjs.
[16] Jsflow. http://www.jsflow.net/.

[17] Latest Firefox Rolls Out Enhanced Tracking Protection.
https://blog.mozilla.org/blog/2018/10/23/latest-firefox-rolls-
out-enhanced-tracking-protection/.

[18] Learn about tracking prevention in  Microsoft
https://support.microsoft.com/en-us/help/4533959/microsoft-
edge-learn-about-tracking-prevention.

Edge.

[19] Mitigating Browser Fingerprinting in Web Specifications. https:
/Iw3c.github.io/fingerprinting-guidance/.

[20] Modernizr. https://modernizr.com/.
[21] OpenWPM. https://github.com/mozilla/OpenWPM.


https://github.com/disconnectme/disconnect-tracking-protection/issues
https://github.com/disconnectme/disconnect-tracking-protection/issues
https://forums.lanik.us/viewforum.php?f=64&sid=3d7d9fed66ba36b96c4b18f3142d0e43
https://forums.lanik.us/viewforum.php?f=64&sid=3d7d9fed66ba36b96c4b18f3142d0e43
https://github.com/easylist/easylist/issues
https://github.com/brave/brave-browser/issues/10000
https://babeljs.io/
https://clientjs.org/
https://github.com/bslassey/privacy-budget
https://github.com/bslassey/privacy-budget
https://www.npmjs.com/package/core-js
https://github.com/disconnectme/disconnect-tracking-protection
https://github.com/disconnectme/disconnect-tracking-protection
https://www.cse.chalmers.se/research/group/security/essential-fp
https://www.cse.chalmers.se/research/group/security/essential-fp
https://github.com/brave/brave-browser/wiki/Fingerprinting-Protections
https://github.com/brave/brave-browser/wiki/Fingerprinting-Protections
https://fingerprintjs.com/
https://blog.mozilla.org/security/2020/01/07/firefox-72-fingerprinting/
https://blog.mozilla.org/security/2020/01/07/firefox-72-fingerprinting/
https://gdpr-info.eu/
https://github.com/mattbrailsford/imprintjs
http://www.jsflow.net/
https://blog.mozilla.org/blog/2018/10/23/latest-firefox-rolls-out-enhanced-tracking-protection/
https://blog.mozilla.org/blog/2018/10/23/latest-firefox-rolls-out-enhanced-tracking-protection/
https://support.microsoft.com/en-us/help/4533959/microsoft-edge-learn-about-tracking-prevention
https://support.microsoft.com/en-us/help/4533959/microsoft-edge-learn-about-tracking-prevention
https://w3c.github.io/fingerprinting-guidance/
https://w3c.github.io/fingerprinting-guidance/
https://modernizr.com/
https://github.com/mozilla/OpenWPM

[22]
[23]

[24]

[25]

[26]

(271

(28]

[29]

(30]

[31]
(32]

[33]

[34]

[35]
[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Panopticlick. https:/panopticlick.eff.org.

Potential uses for the Privacy Sandbox. https://blog.chromium.org/
2019/08/potential-uses-for-privacy-sandbox.html.

Proxy. https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Proxy.

Puppeteer. https://pptr.dev/.

puppeteer-extra-plugin-stealth. https://github.com/berstend/
puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-
stealth.

regenerator-runtime. https://www.npmjs.com/package/regenerator-
runtime.

Safari Privacy Overview. https://www.apple.com/safari/docs/
Safari_White_Paper_Nov_2019.pdf.

Standard ECMA-262 6th Edition / June 2015. https://www.ecma-
international.org/ecma-262/6.0/.

The Privacy Sandbox. https://www.chromium.org/Home/
chromium-privacy/privacy-sandbox.

Tor. https://www.torproject.org/.

Tracking Preference Expression (DNT). https://www.w3.org/TR/
tracking-dnt/.

Unsanctioned Web  Tracking.
unsanctioned-tracking/.

https://w3ctag.github.io/

What’s Brave Done For My Privacy Lately? Episode #3: Finger-
print Randomization. https://brave.com/whats-brave-done-for-my-
privacy-lately-episode3/.

window-crypto. https://www.npmjs.com/package/window-crypto.

G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and
C. Diaz. The Web Never Forgets: Persistent Tracking Mechanisms
in the Wild. In CCS, 2014.

G. Acar, M. Judrez, N. Nikiforakis, C. Diaz, S. F. Giirses,
F. Piessens, and B. Preneel. FPDetective: dusting the web for
fingerprinters. In CCS, 2013.

M. Balliu, D. Schoepe, and A. Sabelfeld. We Are Family: Relating
Information-Flow Trackers. In ESORICS, 2017.

F. Besson, N. Bielova, and T. P. Jensen. Browser Randomisation
against Fingerprinting: A Quantitative Information Flow Approach.
In NordSec, 2014.

A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Information
Flow Control in WebKit’s JavaScript Bytecode. In POST, 2014.

S. Bird, V. Mishra, S. Englehardt, R. Willoughby, D. Zeber,
W. Rudametkin, and M. Lopatka. Actions speak louder than
words: Semi-supervised learning for browser fingerprinting detec-
tion. 2020.

Y. Cao, S. Li, and E. Wijmans. (Cross-)Browser Fingerprinting via
OS and Hardware Level Features. In NDSS, 2017.

C. Cimpanu. Ad Network Uses DGA Algorithm to
Bypass Ad Blockers and Deploy In-Browser Miners. https:
/Iwww.bleepingcomputer.com/news/security/ad-network-uses-dga-
algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/.

D. E. Denning and P. J. Denning. Certification of Programs for
Secure Information Flow. 1977.

D. Devriese and F. Piessens.
Multi-execution. In S&P, 2010.

Noninterference through Secure

S. Englehardt and A. Narayanan. Online Tracking: A 1-million-site
Measurement and Analysis. In CCS, 2016.

A. FaizKhademi, M. Zulkernine, and K. Weldemariam. FPGuard:
Detection and Prevention of Browser Fingerprinting. In DBSec,
2015.

A. Goémez-Boix, D. Frey, Y. Bromberg, and B. Baudry. A
Collaborative Strategy for Mitigating Tracking through Browser
Fingerprinting. In MTD@CCS, 2019.

A. Gémez-Boix, P. Laperdrix, and B. Baudry. Hiding in the Crowd:
an Analysis of the Effectiveness of Browser Fingerprinting at Large
Scale. In WWW, 2018.

[50]

(51]

(52]

[53]

(54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

(72]

(73]

D. Hedin, L. Bello, and A. Sabelfeld. Information-flow security
for JavaScript and its APIs. 2016.

D. Hedin and A. Sabelfeld. A Perspective on Information-Flow
Control. In Software Safety and Security. 2012.

D. Hedin and A. Sabelfeld. Information-Flow Security for a Core
of JavaScript. In CSF, 2012.

U. Igbal, S. Englehardt, and Z. Shafiq. Fingerprinting the Finger-
printers: Learning to Detect Browser Fingerprinting Behaviors. In
S&P, 2021.

D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical
study of privacy-violating information flows in JavaScript web
applications. In CCS, 2010.

H. Jonker, B. Krumnow, and G. Vlot. Fingerprint Surface-Based
Detection of Web Bot Detectors. In ESORICS, 2019.

S. Khattak, D. Fifield, S. Afroz, M. Javed, S. Sundaresan, D. Mc-
Coy, V. Paxson, and S. J. Murdoch. Do You See What I See?
Differential Treatment of Anonymous Users. In NDSS, 2016.

P. Laperdrix. = Browser Fingerprinting: An Introduction and
the Challenges Ahead. https://blog.torproject.org/browser-
fingerprinting-introduction-and-challenges- ahead.

P. Laperdrix, B. Baudry, and V. Mishra. FPRandom: Randomizing
Core Browser Objects to Break Advanced Device Fingerprinting
Techniques. In ESSoS, 2017.

P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine.
Fingerprinting: A Survey. 2020.

Browser

P. Laperdrix, W. Rudametkin, and B. Baudry. Mitigating Browser
Fingerprint Tracking: Multi-level Reconfiguration and Diversifica-
tion. In SEAMS, 2015.

M. S. Miller. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. PhD thesis, Johns
Hopkins University, 2006.

K. Mowery and H. Shacham. Pixel Perfect: Fingerprinting Canvas
in HTMLS. In W2SP, 2012.

N. Nikiforakis, W. Joosen, and B. Livshits. PriVaricator: Deceiving
Fingerprinters with Little White Lies. In WWW, 2015.

N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens,
and G. Vigna. Cookieless Monster: Exploring the Ecosystem of
Web-Based Device Fingerprinting. In S&P, 2013.

V. Rizzo, S. Traverso, and M. Mellia. Unveiling Web Fingerprint-
ing in the Wild Via Code Mining and Machine Learning. In PETS,
2020.

A. Sabelfeld and A. C. Myers. Language-based information-flow
security. 2003.

A. Sjosten, D. Hedin, and A. Sabelfeld. Information Flow Tracking
for Side-Effectful Libraries. In FORTE, 2018.

C. Staicu, D. Schoepe, M. Balliu, M. Pradel, and A. Sabelfeld. An
Empirical Study of Information Flows in Real-World JavaScript.
In PLAS, 2019.

C. F Torres, H. L. Jonker, and S. Mauw. FP-Block: Usable Web
Privacy by Controlling Browser Fingerprinting. In ESORICS, 2015.

E. Trickel, O. Starov, A. Kapravelos, N. Nikiforakis, and A. Doupé.
Everyone is Different: Client-side Diversification for Defending
Against Extension Fingerprinting. In USENIX Security, 2019.

A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy. FP-
Scanner: The Privacy Implications of Browser Fingerprint Incon-
sistencies. In USENIX Security, 2018.

A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy. FP-
STALKER: Tracking Browser Fingerprint Evolutions. In S&P,
2018.

T. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi. Host Fingerprinting
and Tracking on the Web: Privacy and Security Implications. In
NDSS, 2012.


https://panopticlick.eff.org
https://blog.chromium.org/2019/08/potential-uses-for-privacy-sandbox.html
https://blog.chromium.org/2019/08/potential-uses-for-privacy-sandbox.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://pptr.dev/
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://www.npmjs.com/package/regenerator-runtime
https://www.npmjs.com/package/regenerator-runtime
https://www.apple.com/safari/docs/Safari_White_Paper_Nov_2019.pdf
https://www.apple.com/safari/docs/Safari_White_Paper_Nov_2019.pdf
https://www.ecma-international.org/ecma-262/6.0/
https://www.ecma-international.org/ecma-262/6.0/
https://www.chromium.org/Home/chromium-privacy/privacy-sandbox
https://www.chromium.org/Home/chromium-privacy/privacy-sandbox
https://www.torproject.org/
https://www.w3.org/TR/tracking-dnt/
https://www.w3.org/TR/tracking-dnt/
https://w3ctag.github.io/unsanctioned-tracking/
https://w3ctag.github.io/unsanctioned-tracking/
https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/
https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/
https://www.npmjs.com/package/window-crypto
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://blog.torproject.org/browser-fingerprinting-introduction-and-challenges-ahead
https://blog.torproject.org/browser-fingerprinting-introduction-and-challenges-ahead

Appendix A.
Heatmaps of the Two Categories Against Imprint]JS

(a) Non-fingerprinting

webGl
userAgent
touchSupport
sessionStorage
screenResolution
publiclp .
processorCores | [l
plugins
platform
pixelRatio
mediaDevices
localStorage
locallp
language
installedLanguages
installedFonts
indexedDb
doNotTrack
deviceDpi
cpuClass
cookies
colorDepth
canvas
availableScreenResolution | [l
audio

(b) Fingerprinting

webGl
userAgent
touchSupport
sessionStorage
screenResolution
publiclp
processorCores
plugins

platform
pixelRatio
mediaDevices
localStorage
locallp

language
installedLanguages
installedFonts
indexedDb
doNotTrack
deviceDpi
cpuClass
cookies
colorDepth
canvas
availableScreenResolution
audio

Figure 3: Heatmaps for the two categories when compared against Imprint]JS. For each row, the column identifies the
conditional probability of the feature of the column given the feature of the row. The probability is interpreted as a
gradient between yellow (0% probability) and red (100% probability).



Appendix B.
Heatmaps of Fingerprinting Classes Against FingerprintJS
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(c) Alexa lists
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Figure 4: Heatmaps for the different fingerprinting classes when compared against Fingerprint]S. For each row, the
column identifies the conditional probability of the feature of the column given the feature of the row. The probability
is interpreted as a gradient between yellow (0% probability) and red (100% probability).



Appendix C.
Heatmaps of Fingerprinting Classes Against ImprintJS
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(c) Alexa lists
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Figure 5: Heatmaps for the different fingerprinting classes when compared against ImprintJS. For each row, the column
identifies the conditional probability of the feature of the column given the feature of the row. The probability is
interpreted as a gradient between yellow (0% probability) and red (100% probability).



	Introduction
	Observable Information-Flow Control
	Approach
	Computing the API imprint
	Detecting Fingerprinting

	Design and Implementation
	Extending JSFlow
	Extending JSFlow to ES6+
	Connecting the Execution Environments

	Label Models
	Extending Chromium
	Protecting JSFlow
	Collecting Labels

	Empirical Study
	Experiment Setup
	API Endpoints
	Analysis

	Discussion
	Fingerprinting Metrics
	Further Aid Anti-Fingerprinting

	Related Work
	Conclusion
	References
	Appendix A: Heatmaps of the Two Categories Against ImprintJS
	Appendix B: Heatmaps of Fingerprinting Classes Against FingerprintJS
	Appendix C: Heatmaps of Fingerprinting Classes Against ImprintJS

