
Formalizing Graph Trail Properties in
Isabelle/HOL

Laura Kovács, Hanna Lachnitt(B), and Stefan Szeider

TU Wien, Vienna, Austria
{laura.kovacs,hanna.lachnitt,stefan.szeider}@tuwien.ac.at

Abstract. We describe a dataset expressing and proving properties
of graph trails, using Isabelle/HOL. We formalize the reasoning about
strictly increasing and decreasing trails, using weights over edges, and
prove lower bounds over the length of trails in weighted graphs. We do
so by extending the graph theory library of Isabelle/HOL with an algo-
rithm computing the length of a longest strictly decreasing graph trail
starting from a vertex for a given weight distribution, and prove that
any decreasing trail is also an increasing one.

Keywords: Weighted graph · Increasing/decreasing trails ·
Isabelle/HOL · Verified theory formalization

1 Introduction

The problem of finding a longest trail with strictly increasing or strictly decreas-
ing weights in an edge-weighted graph is an interesting graph theoretic prob-
lem [3,7,8,14], with potential applications to scheduling and cost distribution
in traffic planning and routing [5]. In this paper, we formalize and automate
the reasoning about strictly increasing and strictly decreasing trail properties by
developing an extendable flexible library in the proof assistant Isabelle/HOL [11].

As a motivating example consider the following (undirected) graph K4, where
each edge is annotated with a different integer-valued weight ranging from
1, . . . , 6:

v1 v2

v3 v4

1

3

6 5
4

2

Fig. 1. Example graph K4

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 190–205, 2020.
https://doi.org/10.1007/978-3-030-53518-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-53518-6_12

Formalizing Graph Trail Properties in Isabelle/HOL 191

When considering K4, the question we address in this paper is whether K4

has a strictly decreasing trail of length k ≥ 1. A trail is a sequence of distinct
edges (e1, . . . , ek), ei ∈ E such that there exists a corresponding sequence of
vertices (v0, ..., vk) where ei = vi−1vi. A strictly-ordered trail is a trail where the
edge weights of (e1, . . . , ek) are either strictly increasing or strictly decreasing.
Our work provides a formally verified algorithm computing such strictly-ordered
trails. Note that there is a decreasing trail in K4 starting at vertex v3, with
trail length 3; namely (v3v2; v2v4; v4v3) is such a trail, with each edge in the
trail having a higher weight than its consecutive edge in the trail. Similarly,
K4 has decreasing trails of length 3 starting from v1, v2, and v4 respectively.
A natural question to ask, which we address in this paper, is whether it is
possible to construct a graph such that the constructed graph has 4 vertices and
5 edges, and no vertex is the starting node of a trail of length 3? We answer
this question negatively, in an even more general setting, not restricted to 4
vertices and 5 edges. Similarly to the theoretical results of [8], we show that,
given a graph G with n vertices and q edges, there is always a strictly decreasing
trail of length at least 2 · � q

n�. While such a graph theoretical result has already
been announced [8], in this paper we formalize the results in Isabelle/HOL and
construct a Isabelle/HOL-verified algorithm computing strictly decreasing trails
of length k, whenever such trails exist.

Let us note that proving that a graph G with n vertices and q edges has/does
not have decreasing trails is possible for small n, using automated reasoning
engines such as Vampire [9] and Z3 [6]. One can restrict the weights to the
integers 1, ..., q and since q ≤ (

n
2

)
there is a finite number of possibilities for

each n. Nevertheless, the limit of such an undertaking is reached soon. On our
machine1 even for n = 7, both Vampire and Z3 fail proving the existence of
strictly decreasing trails, using a 1 hour time limit. This is due to the fact
that every combination of edge weights and starting nodes is tested to be a
solution. Thus, the provers are not able to contribute to the process of finding
an effective proof of the statement. Even for relatively small numbers n, our
experiments show that state-of-the-art automated provers are not able to prove
whether weighted graphs have a strictly decreasing trail of a certain length.

We also note that this limitation goes beyond automated provers. In the
Isabelle proof assistant, proving that a complete graph with 3 vertices, i.e. K3,
will always contain a strictly decreasing trail of length 3 is quite exhaustive,
as it requires reasoning about 3! = 6 possibilities for a distribution of a weight
function w and then manually constructing concrete trails:

w(v1, v2) = 2 ∧ w(v2, v3) = 1 ∧ w(v3, v1) = 3
−→ incTrail K3 w[(v3, v2), (v2, v1), (v1, v3)]

Based on such limitations of automative and interactive provers, in this paper
we aim at formalizing and proving existence of trails of length n, where n ≥ 1 is a
symbolic constant. As such, proving for example that graphs have trails of length
4, for a concrete n, become instances of our approach. To this end, we build upon

1 Standard laptop with 1.7 GHz Dual-Core Intel Core i5 and 8 GB 1600 MHz memory.

192 L. Kovács et al.

existing works in this area. In particular, the first to raise the question of the
minimum length of strictly increasing trails of arbitrary graphs were Chvátal
and Komlós [4]. Subsequently, Graham and Kletman [8] proved that the lower
bound of the length of increasing trails is given by 2 · � q

n�, as also mentioned
above. In our work, we formalize and verify such results in Isabelle/HOL. Yet,
our work is not a straightforward adaptation and formalization of Graham and
Kletman’s proof [8]. Rather, we focus on decreasing trails instead of increasing
trails and give an algorithm computing longest decreasing trails of a given graph
(Algorithm 1). By formalizing Algorithm 1 in Isabelle/HOL, we also formally
verify the correctness of the trails computed by our approach. Moreover, we prove
that any strictly decreasing trail is also an strictly increasing one, allowing this
way to use our formalization in Isabelle/HOL also to formalize results of Graham
and Kletman [8].

Contributions. This paper brings the following contributions.

(1) We formalize strictly increasing trails and provide basic lemmas about their
properties. We improve results of [8] by giving a precise bound on the
increase of trail length.

(2) We formalize strictly decreasing trails, in addition to the increasing trail
setting of [8]. We prove the duality between strictly increasing and strictly
decreasing trails, that is, any such decreasing trail is an increasing one, and
vice versa. Thanks to these extensions, unlike [8], we give a constructive
proof of the existence of strictly ordered trails (Lemma 1).

(3) We design an algorithm computing longest ordered trails (Algorithm 1), and
formally verify its correctness in Isabelle/HOL. We extract our algorithm
to Haskell program code using Isabelle’s program extraction tool. Thus, we
obtain a fully verified algorithm to compute the length of strictly-ordered
trails in any given graph and weight distribution.

(4) We verify the lower bound on the minimum length of strictly decreasing
trails of arbitrary graphs, and of complete graphs in particular.

(5) We build upon the Graph-Theory library by Noschinski [12], that is part of
the Archive of Formal Proofs (AFP) and already includes many results on
walks and general properties of graphs. We introduce the digital dataset v
formalizing properties of graph trails. Our dataset consists of ∼2000 lines of
Isabelle code and it took about one month for one person to finish. As far as
we know this is the first formalization of ordered trails in a proof assistant.

This paper was generated from Isabelle/HOL source code using Isabelle’s
document preparation tool and is therefore fully verified. The source code is
available online at https://github.com/Lachnitt/Ordered Trail. The rest of the
paper is organized as follows. Section 2 recalls basic terminology and properties
from graph theory. We prove lower bounds on strictly increasing/decreasing
trails in Sect. 3. We describe our Isabelle/HOL formalization in Isabelle/HOL
in Sect. 4. We discuss further directions in Sect. 5 and conclude our paper with
Sect. 6.

https://github.com/Lachnitt/Ordered_Trail

Formalizing Graph Trail Properties in Isabelle/HOL 193

2 Preliminaries

We briefly recapitulate the basic notions of graph theory. A graph G = (V,E)
consists of a set V of vertices and a set E ⊆ V ×V of edges. A graph is undirected
if (v1, v2) ∈ E implies that also (v2, v1) ∈ E. A graph is complete if every pair
of vertices is connected by an edge. A graph is loopfree or simple if there are no
edges (x, x) ∈ E and finite if the number of vertices |V | is finite. Finally, we call
a graph G′ = (V ′, E′) a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E.

If a graph is equipped with a weight function w : E → R that maps edges
to real numbers, it is called an edge-weighted graph. In the following, whenever
a graph is mentioned it is implicitly assumed that this graph comes equipped
with a weight function. A vertex labelling is a function L : V → N.

A trail of length k in a graph G = (V,E) is a sequence (e1, . . . , ek), ei ∈ E,
of distinct edges such that there exists a corresponding sequence of vertices
(v0, ..., vk) where ei = vi−1vi. A strictly decreasing trail in an edge-weighted
graph G = (V,E) with weight function w is a trail such that w(ei) > w(ei+1).
Likewise, a strictly increasing trail is a trail such that w(ei) < w(ei+1). A trail
is strictly-ordered if it is strictly increasing or strictly decreasing.

We will denote the length of a longest strictly increasing trail with Pi(w,G).
Likewise we will denote the length of a longest strictly decreasing trail with
Pd(w,G). In any undirected graph, it holds that Pi(w,G) = Pd(w,G), a result
that we will formally verify in Sect. 4.2.

Let fi(n) = minn Pi(w,Kn) denote the minimum length of an strictly
increasing trail that must exist in the complete graph with n vertices. Like-
wise, fd(n) = minn Pd(w,Kn) in the case that we consider strictly decreasing
trails.

3 Lower Bounds on Increasing and Decreasing Trails in
Weighted Graphs

The proof introduced in the following is based on similar ideas as in [8]. However,
we diverge from [8] in several aspects. Firstly, we consider strictly decreasing
instead of strictly increasing trails, reducing the complexity of the automated
proof (see Sect. 4). Moreover, we add tighter bounds than necessary to give a
fully constructive proof in terms of an algorithm for computing the length of
these trails (see Sect. 4.3). We discuss this further at the end of the section.

We start by introducing the notion of a weighted subgraph and then we built
on that by specifying a family of labelling functions:

Definition 1 (Weighted Subgraph). Let G = (V,E) be a graph with weight
function w : E → {1, . . . , q} where |E| = q. For each i ∈ {0, ..., q} define a
weighted subgraph Gi = (V,Ei) such that e ∈ Ei iff w(e) ∈ {1, ..., i}. That is, Gi

contains only edges labelled with weights ≤ i.

Definition 2 (Labelling Function). For each Gi = (V,Ei), n = |V | we
define Li : V {1, . . . , n(n−1)

2 } a labelling function such that Li(v) is the length of
a longest strictly decreasing trail starting at vertex v using only edges in Ei.

194 L. Kovács et al.

In Fig. 2 the example graph from Fig. 1 is revisited to illustrate these definitions.
We need to prove the following property.

v1 v2

v3 v4

1

3 4
5

2

Decreasing trails from v3 are:
v3 − v4,

v3 − v1 − v2,
v3 − v2 − v1,

v3 − v2 − v4 − v3
Therefore, L5(v3) = 3.

Decreasing trails from v1 are:
v1 − v2

v1 − v3 − v4
Therefore, L5(v1) = 2.

Fig. 2. Graph G5 with labelling function L5

Lemma 1. If i < q, then
∑

v∈V Li+1(v) ≥ ∑
v∈V Li(v) + 2.

Proof. Let e be the edge labelled with i + 1 and denote its endpoints with u1

and u2. It holds that Ei ∪ {e} = Ei+1, therefore the graph Gi+1 is Gi with the
additional edge e. As w(e′) < w(e), for all e′ ∈ Ei we have Li+1(v) = Li(v) for all
v ∈ V with u1 �= v, u2 �= v. It also holds that Li+1(u1) = max(Li(u2)+1, Li(u1))
because either that longest trail from u1 can be prolonged with edge e (i + 1
will be greater than the weight of the first edge in this trail by construction of
Li+1) or there is already a longer trail starting from u1 not using e. We derive
Li+1(u2) = max(Li(u1) + 1, Li(u2)) based on a similar reasoning. See Fig. 3 for
an illustration.

Note that Li+1(v) = Li(v) for v ∈ V \ {u1, u2}, because no edge incident
to these vertices was added and a trail starting from them cannot be prolonged
since the new edge has bigger weight than any edge in such a trail.

If L(u1) = L(u2), then Li+1(u1) = Li(u1) + 1 and Li+1(u2) = Li(u2) + 1
and thus the sum increases exactly by 2. If L(u1) > L(u2) then Li+1(u2) =
Li(u1) + 1 ≥ Li(u2) + 2, otherwise Li+1(u1) = Li(u2) + 1 ≥ Li(u1) + 2. Thus,

∑

v∈V

Li+1(v) =
∑

v∈(V −{u1,u2})
Li+1(v) + Li+1(u1) + Li+1(u2)

≥
∑

v∈(V −{u1,u2})
Li+1(v) + Li(u1) + Li(u2) + 2

=
∑

v∈V

Li(v) + 2.

�

Formalizing Graph Trail Properties in Isabelle/HOL 195

Situation before adding edge e:
Li(u1) Li(u2)

Case 1: Li(u1) = Li(u2):
Li+1(u1) + 1 Li+1(u2) + 1

i+ 1

Case 2: Li(u1) > Li(u2):
Li+1(u2) + 1 Li+1(u2)

i+ 1

Case 3: Li(u1) < Li(u2):
Li+1(u1) Li+1(u1) + 1

i+ 1

Fig. 3. Case distinction when adding edge e in Lemma 1

Note that the proof of Lemma 1 is constructive, yielding the Algorithm 1 for
computing longest strictly decreasing trails. Function findEndpoints searches
for an edge in a graph G by its weight i and returns both endpoints. Function
findMax returns the maximum value of the array L.

Algorithm 1: Find Longest Strictly Decreasing Trail
for v ∈ V do

L(v) := 0
end
for i = 1; i < |E|; i + + do

(u, v) = findEndpoints(G, i);
temp = L(u);
L(u) = max(L(v) + 1, L(u)) ;
L(v) = max(temp + 1, L(v)) ;

end
return findMax(L);

Lemma 2.
∑

v∈V Lq(v) ≥ 2q.

Proof. We proceed by induction, using the property
∑

v∈V Li+1(v) ≥∑
v∈V Li(v)+2 from Lemma 1. For the induction base note that

∑
v∈V L0(v) = 0

because G0 does not contain any edges and thus no vertex has a strictly decreas-
ing trail of length greater than 0.
�
We next prove the lower bound on the length of longest strictly decreasing trails.

196 L. Kovács et al.

Theorem 1. Let G = (V,E) be an undirected edge-weighted graph such that
|V | = n and |E| = q. Let w : E → {1, . . . , q} be a weight function assuming
different weights are mapped to to different edges. Then, Pd(w,G) ≥ 2 · � q

n� i.e.,
there exists a strictly decreasing trail of length 2 · � q

n�.
Proof. Assume that no vertex is a starting point of a trail of length at least 2·� q

n�,
that is Lq(v) < 2 · � q

n�, for all v ∈ V . Then,
∑

v∈V Lq(v) < 2 · � q
n�n ≤ 2 · q. But

this is a contradiction to Lemma 2 that postulates that the sum of the length
of all longest strictly decreasing trails

∑
v∈V Lq(v) is greater than 2 · q. Hence,

there has to be at least one vertex with a strictly decreasing trail that is longer
than 2 · � q

n� in Gq. This trail contains a subtrail of length 2 · � q
n�. Since Eq = E

it follows that Gq = G, which concludes the proof.
�
Based on Theorem 1, we get the following results.

Corollary 1. It holds that Pi(w,G) ≥ 2 · � q
n� since when reversing a strictly

decreasing trail one obtains a strictly increasing one. In this case, define Li(v)
as the length of a longest strictly increasing trail ending at v in Gi.
�
Corollary 2. Let G be as in Theorem 1 and additionally assume that G is
complete. Then, there exists a trail of length at least n − 1, i.e., fi(n) = fd(n) ≥
n − 1.
�

In [8] the authors present a non-constructive proof. As in Lemma 1 they
argue that the sum of the lengths of all increasing trails is at least 2. Thus, they
overestimate the increase. We however, use the exact increase therefore making
the proof constructive and obtaining Algorithm 1.

4 Formalization of Trail Properties in Isabelle/HOL

4.1 Graph Theory in the Archive of Formal Proofs

To increase the reusability of our library we build upon the Graph-Theory library
by Noschinski [12]. Graphs are represented as records consisting of vertices and
edges that can be accessed using the selectors pverts and parcs. We recall the
definition of the type pair-pre-digraph:

record ′a pair-pre-digraph = pverts :: ′a set parcs :: ′a rel

Now restrictions upon the two sets and new features can be introduced using
locales. Locales are Isabelle’s way to deal with parameterized theories [1]. Con-
sider for example pair-wf-digraph. The endpoints of an edge can be accessed
using the functions fst and snd. Therefore, conditions arc-fst-in-verts and arc-
snd-in-verts assert that both endpoints of an edge are vertices. Using so-called
sublocales a variety of other graphs are defined.

Formalizing Graph Trail Properties in Isabelle/HOL 197

locale pair-wf -digraph = pair-pre-digraph +
assumes arc-fst-in-verts :

∧
e. e ∈ parcs G =⇒ fst e ∈ pverts G

assumes arc-snd-in-verts :
∧

e. e ∈ parcs G =⇒ snd e ∈ pverts G

An object of type ′b awalk is defined in Graph-Theory.Arc-Walk as a list of
edges. Additionally, the definition awalk imposes that both endpoints of a walk
are vertices of the graph, all elements of the walk are edges and two subsequent
edges share a common vertex.

type-synonym ′b awalk = ′b list

definition awalk :: ′a ⇒ ′b awalk ⇒ ′a ⇒ bool
awalk u p v ≡ u ∈ verts G ∧ set p ⊆ arcs G ∧ cas u p v

We also reuse the type synonym weight-fun introduced in Weighted-Graph.

type-synonym ′b weight-fun = ′b ⇒ real

Finally, there is an useful definition capturing the notion of a complete graph,
namely complete-digraph.

4.2 Increasing and Decreasing Trails in Weighted Graphs

In our work we extend the graph theory framework from Sect. 4.1 with new
features enabling reasoning about ordered trails. To this end, a trail is defined
as a list of edges. We will only consider strictly increasing trails on graphs without
parallel edges. For this we require the graph to be of type pair-pre-digraph, as
introduced in Sect. 4.1.

Two different definitions are given in our formalization. Function incTrail
can be used without specifying the first and last vertex of the trail whereas
incTrail2 uses more of Graph-Theory ′s predefined features. Moreover, making
use of monotonicity incTrail only requires to check if one edge’s weight is smaller
than its successors’ while incTrail2 checks if the weight is smaller than the one
of all subsequent edges in the sequence, i.e. if the list is sorted. The equivalence
between the two notions is shown in the following.

fun incTrail :: ′a pair-pre-digraph ⇒ (′a × ′a) weight-fun ⇒ (′a × ′a) list ⇒ bool
where
incTrail g w [] = True |
incTrail g w [e1] = (e1 ∈ parcs g) |
incTrail g w (e1#e2#es) = (if w e1 < w e2 ∧ e1 ∈ parcs g ∧ snd e1 = fst e2

then incTrail g w (e2#es) else False)

definition (in pair-pre-digraph) incTrail2 where
incTrail2 w es u v ≡ sorted-wrt (λ e1 e2. w e1 < w e2) es ∧ (es = [] ∨ awalk u es v)

fun decTrail :: ′a pair-pre-digraph ⇒ (′a × ′a) weight-fun ⇒ (′a × ′a) list ⇒ bool
where
decTrail g w [] = True |

198 L. Kovács et al.

decTrail g w [e1] = (e1 ∈ parcs g) |
decTrail g w (e1#e2#es) = (if w e1 > w e2 ∧ e1 ∈ parcs g ∧ snd e1 = fst e2

then decTrail g w (e2#es) else False)

definition (in pair-pre-digraph) decTrail2 where
decTrail2 w es u v ≡ sorted-wrt (λ e1 e2. w e1 > w e2) es ∧ (es = [] ∨ awalk u es v)

Defining trails as lists in Isabelle has many advantages including using pre-
defined list operators, e.g., drop. Thus, we can show one result that will be
constantly needed in the following, that is, that any subtrail of an ordered trail
is an ordered trail itself.

lemma incTrail-subtrail:
assumes incTrail g w es
shows incTrail g w (drop k es)

lemma decTrail-subtrail:
assumes decTrail g w es
shows decTrail g w (drop k es)

In Isabelle we then show the equivalence between the two definitions decTrail
and decTrail2 of strictly decreasing trails. Similarly, we also show the equivalence
between the definition incTrail and incTrail2 of strictly increasing trails.

lemma (in pair-wf -digraph) decTrail-is-dec-walk:
shows decTrail G w es ←→ decTrail2 w es (fst (hd es)) (snd (last es))

lemma (in pair-wf -digraph) incTrail-is-inc-walk:
shows incTrail G w es ←→ incTrail2 w es (fst (hd es)) (snd (last es))

Any strictly decreasing trail (e1, . . . , en) can also be seen as a strictly increas-
ing trail (en, ..., e1) if the graph considered is undirected. To this end, we make
use of the locale pair-sym-digraph that captures the idea of symmetric arcs.
However, it is also necessary to assume that the weight function assigns the
same weight to edge (vi, vj) as to (vj , vi). This assumption is therefore added to
decTrail-eq-rev-incTrail and incTrail-eq-rev-decTrail.

lemma (in pair-sym-digraph) decTrail-eq-rev-incTrail:
assumes ∀ v1 v2. w (v1, v2) = w(v2, v1)
shows decTrail G w es ←→ incTrail G w (rev (map (λ(v1, v2). (v2, v1)) es))

lemma (in pair-sym-digraph) incTrail-eq-rev-decTrail:
assumes ∀ v1 v2. w (v1, v2) = w(v2, v1)
shows incTrail G w es ←→ decTrail G w (rev (map (λ(v1, v2). (v2, v1)) es))

4.3 Weighted Graphs

We add the locale weighted-pair-graph on top of the locale pair-graph introduced
in Graph-Theory. A pair-graph is a finite, loop free and symmetric graph. We do

Formalizing Graph Trail Properties in Isabelle/HOL 199

not restrict the types of vertices and edges but impose the condition that they
have to be a linear order.

Furthermore, all weights have to be integers between 0 and � q
2� where 0 is

used as a special value to indicate that there is no edge at that position. Since the
range of the weight function is in the reals, the set of natural numbers {1,..,card
(parcs G) div 2} has to be casted into a set of reals. This is realized by taking
the image of the function real that casts a natural number to a real.

locale weighted-pair-graph = pair-graph (G:: (′a::linorder) pair-pre-digraph) forG +
fixes w :: (′a × ′a) weight-fun
assumes dom : e ∈ parcs G −→ w e ∈ real ‘ {1..card (parcs G) div 2}

and vert-ge : card (pverts G) ≥ 1

We introduce some useful abbreviations, according to the ones in Sect. 2

abbreviation (in weighted-pair-graph) q ≡ card (parcs G)
abbreviation (in weighted-pair-graph) n ≡ card (pverts G)
abbreviation (in weighted-pair-graph) W ≡ {1..q div 2}

Note an important difference between Sect. 3 and our formalization. Although
a weighted-pair-graph is symmetric, the edge set contains both “directions” of an
edge, i.e., (v1, v2) and (v2, v1) are both in parcs G. Thus, the maximum number
of edges (in the case that the graph is complete) is n · (n − 1) and not n·(n−1)

2 .
Another consequence is that the number q of edges is always even.

lemma (in weighted-pair-graph) max-arcs:
shows card (parcs G) ≤ n ∗ (n − 1)

lemma (in weighted-pair-graph) even-arcs:
shows even q

The below sublocale distinct-weighted-pair-graph refines weighted-pair-graph.
The condition zero fixes the meaning of 0. The weight function is defined on the
set of all vertices but since self loops are not allowed; we use 0 as a special value
to indicate the unavailability of the edge. The second condition distinct enforces
that no two edges can have the same weight. There are some exceptions however
captured in the statement (v1 = u2 ∧ v2 = u1)∨(v1 = u1 ∧ v2 = u2). Firstly,
(v1, v2) should have the same weight as (v2, v1). Secondly, w(v1, v2) has the same
value as w(v1, v2). Note that both edges being self loops resulting in them both
having weight 0 is prohibited by condition zero. Our decision to separate these
two conditions from the ones in weighted-pair-graph instead of making one locale
of its own is two-fold: On the one hand, there are scenarios where distinctiveness
is not wished for. On the other hand, 0 might not be available as a special value.
locale distinct-weighted-pair-graph = weighted-pair-graph +
assumes zero : ∀ v1 v2. (v1, v2) /∈ parcs G ←→ w (v1, v2) = 0

and distinct : ∀ (v1, v2) ∈ parcs G. ∀ (u1, u2) ∈ parcs G.
((v1 = u2 ∧ v2 = u1) ∨ (v1 = u1 ∧ v2 = u2)) ←→ w (v1, v2) = w (u1, u2)

200 L. Kovács et al.

One important step in our formalization is to show that the weight function
is surjective. However, having two elements of the domain (edges) being mapped
to the same element of the codomain (weight) makes the proof complicated. We
therefore first prove that the weight function is surjective on a restricted set
of edges. Here we use the fact that there is a linear order on vertices by only
considering edges were the first endpoint is bigger than the second.

Then, the surjectivity of w is relatively simple to show. Note that we could
also have assumed surjectivity in distinct-weighted-pair-graph and shown that
distinctiveness follows from it. However, distinctiveness is the more natural
assumption that is more likely to appear in any application of ordered trails.

lemma (in distinct-weighted-pair-graph) restricted-weight-fun-surjective:

∀k ∈ W. ∃(v1, v2) ∈ {(p1, p2). (p1, p2) ∈ parcs G ∧ p2 < p1}. w (v1, v2) = k

lemma (in distinct-weighted-pair-graph) weight-fun-surjective:

shows ∀k ∈ W. ∃(v1, v2) ∈ parcs G. w (v1, v2) = k

4.4 Computing a Longest Ordered Trail

We next formally verify Algorithm 1 and compute longest ordered trails. To this
end, we introduce the function findEdge to find an edge in a list of edges by its
weight.

fun findEdge :: (′a × ′a) weight-fun ⇒ (′a × ′a) list ⇒ real ⇒ (′a × ′a) where

findEdge f [] k = undefined |
findEdge f (e#es) k = (if f e = k then e else findEdge f es k)

Function findEdge will correctly return the edge whose weight is k. We do
not care in which order the endpoints are found, i.e. whether (v1, v2) or (v2, v1)
is returned.

lemma (in distinct-weighted-pair-graph) findEdge-success:
assumes k ∈ W and w (v1, v2) = k and (parcs G) �= {}
shows (findEdge w (set-to-list (parcs G)) k) = (v1, v2)

∨ (findEdge w (set-to-list (parcs G)) k) = (v2, v1)

We translate the notion of a labelling function Li(v) (see Definition 2) into
Isabelle. Function getL G w, in short for get label, returns the length of the
longest strictly decreasing path starting at vertex v. In contrast to Definition 2
subgraphs are treated here implicitly. Intuitively, this can be seen as adding
edges to an empty graph in order of their weight.

fun getL :: (′a::linorder) pair-pre-digraph ⇒ (′a × ′a) weight-fun

⇒ nat ⇒ ′a ⇒ nat where

getL g w 0 v = 0 |
getL g w (Suc i) v = (let (v1, v2) = (findEdge w (set-to-list (arcs g)) (Suc i)) in

(if v = v1 then max ((getL g w i v2) + 1) (getL g w i v) else

(if v = v2 then max ((getL g w i v1) + 1) (getL g w i v) else getL g w i v)))

Formalizing Graph Trail Properties in Isabelle/HOL 201

To add all edges to the graph, set i = |E|. Recall that card (parcs g) = 2∗|E|,
as every edge appears twice. Then, iterate over all vertices and give back the
maximum length which is found by using getL G w. Since getL G w can also be
used to get a longest strictly increasing trail ending at vertex v the algorithm is
not restricted to strictly decreasing trails.

definition getLongestTrail ::

(′a::linorder) pair-pre-digraph ⇒ (′a × ′a) weight-fun ⇒ nat where

getLongestTrail g w =

Max (set [(getL g w (card (parcs g) div 2) v) . v < − sorted-list-of -set (pverts g)])

Exporting the algorithm into Haskell code results in a fully verified program
to find a longest strictly decreasing or strictly increasing trail.

export-code getLongestTrail in Haskell module-name LongestTrail

Using an induction proof and extensive case distinction, the correctness
of Algorithm 1 is then shown in our formalization, by proving the following
theorem:

theorem (in distinct-weighted-pair-graph) correctness:
assumes ∃ v ∈ (pverts G). getL G w (q div 2) v = k
shows ∃ xs. decTrail G w xs ∧ length xs = k

4.5 Minimum Length of Ordered Trails

The algorithm introduced in Sect. 4.4 is already useful on its own. Additionally,
it can be used to verify the lower bound on the minimum length of a strictly
decreasing trail Pd(w,G) ≥ 2 · � q

n�.
To this end, Lemma 1 from Sect. 3 is translated into Isabelle as the lemma

minimal-increase-one-step. The proof is similar to its counterpart, also using a
case distinction. Lemma 2 is subsequently proved, here named minimal-increase-
total.

lemma (in distinct-weighted-pair-graph) minimal-increase-one-step:
assumes k + 1 ∈ W
shows

(
∑

v ∈ pverts G. getL G w (k+1) v) ≥ (
∑

v ∈ pverts G. getL G w k v) + 2

lemma (in distinct-weighted-pair-graph) minimal-increase-total:
shows (

∑
v ∈ pverts G. getL G w (q div 2) v) ≥ q

From minimal-increase-total we have that the sum of all labels after q div
2 steps is greater than q. Now assume that all labels are smaller than q div
n. Because we have n vertices, this leads to a contradiction, which proves
algo-result-min.

202 L. Kovács et al.

lemma (in distinct-weighted-pair-graph) algo-result-min:
shows (∃ v ∈ pverts G. getL G w (q div 2) v ≥ q div n)

Finally, using lemma algo-result-min together with the correctness theorem
of Sect. 4.4, we prove the lower bound of 2 · � q

n� over the length of a longest
strictly decreasing trail. This general approach could also be used to extend our
formalization and prove existence of other trails. For example, assume that some
restrictions on the graph give raise to the existence of a trail of length m ≥ 2·� q

n�.
Then, it is only necessary to show that our algorithm can find this trail.

theorem (in distinct-weighted-pair-graph) dec-trail-exists:
shows ∃ es. decTrail G w es ∧ length es = q div n

theorem (in distinct-weighted-pair-graph) inc-trail-exists:
shows ∃ es. incTrail G w es ∧ length es = q div n

Corollary 1 is translated into dec-trail-exists-complete. The proof first argues
that the number of edges is n · (n − 1) by restricting its domain as done already
in Sect. 4.3.

lemma (in distinct-weighted-pair-graph) dec-trail-exists-complete:
assumes complete-digraph n G
shows ∃ es. decTrail G w es ∧ length es = n − 1

4.6 Example Graph K4

We return to the example graph from Fig. 1 and show that our results from
Sects. 4.2–4.5 can be used to prove existence of trails of length k, in particular
k = 3 in K4. Defining the graph and the weight function separately, we use
natural numbers as vertices.

abbreviation ExampleGraph:: nat pair-pre-digraph where

ExampleGraph ≡ (|
pverts = {1, 2, 3, (4::nat)},

parcs = {(v1, v2). v1 ∈ {1, 2, 3, (4::nat)} ∧ v2 ∈ {1, 2, 3, (4::nat)} ∧ v1 �= v2}
|)

abbreviation ExampleGraphWeightFunction :: (nat × nat) weight-fun where

ExampleGraphWeightFunction ≡ (λ(v1, v2).

(if (v1 = 1 ∧ v2 = 2) ∨ (v1 = 2 ∧ v2 = 1) then 1 else

(if (v1 = 1 ∧ v2 = 3) ∨ (v1 = 3 ∧ v2 = 1) then 3 else

(if (v1 = 1 ∧ v2 = 4) ∨ (v1 = 4 ∧ v2 = 1) then 6 else

(if (v1 = 2 ∧ v2 = 3) ∨ (v1 = 3 ∧ v2 = 2) then 5 else

(if (v1 = 2 ∧ v2 = 4) ∨ (v1 = 4 ∧ v2 = 2) then 4 else

(if (v1 = 3 ∧ v2 = 4) ∨ (v1 = 4 ∧ v2 = 3) then 2 else 0)))))))

We show that the graph K4 of Fig. 1 satisfies the conditions that were imposed
in distinct-weighted-pair-graph and its parent locale, including for example no

Formalizing Graph Trail Properties in Isabelle/HOL 203

self loops and distinctiveness. Of course there is still some effort required for
this. However, it is necessary to manually construct trails or list all possible
weight distributions. Additionally, instead of q! statements there are at most 3q

2
statements needed.

interpretation example:

distinct-weighted-pair-graph ExampleGraph ExampleGraphWeightFunction

Now it is an easy task to prove that there is a trail of length 3. We only
add the fact that ExampleGraph is a distinct-weighted-pair-graph and lemma
dec-trail-exists.
lemma ExampleGraph-decTrail:
∃ xs. decTrail ExampleGraph ExampleGraphWeightFunction xs ∧

length xs = 3

5 Discussion and Related Work

Our theory Ordered-Trail builds on top of the Graph-Theory library presented
in [12]. However, this library does not formalize strictly ordered trails, nor the
special weighted graphs we introduced in the locale distinct-weighted-pair-graph.
Furthermore, our formalization extends [12] with definitions on strictly decreas-
ing and increasing trails and provides many basic lemmas on them. Some of
the main challenges in this context were the reasoning on the surjectivity of the
weight function as well the correctness proof of the algorithm.

Our formalization can be easily extended and could therefore serve as a
basis for further work in this field. The definitions incTrail and decTrail and
the respective properties that are proven in Sect. 4.2 are the key to many other
variants of trail properties.

Graham et al. [8] also showed upper bounds for trails in complete graphs by
decomposing them into either into cycles or 1-factors. We are currently working
on formalizing and certifying the result that

fd(n) = fi(n) =

{
n if n ∈ {3, 5},

n − 1 otherwise,

that is, for complete graphs with n = 3 or n = 5 vertices there always has to be
a trail of length at least n whereas for any other number n of vertices there only
has to be a trail of length n − 1. Therefore, the lower bound that we showed in
this paper is equal to the exact length with exception of two special cases. We
believe that formalizing this result would be a valuable extension to the theory
Ordered-Trail.

Another direction for further investigation are monotone paths. Graham et al.
[8] show that in a complete graph with n vertices there has to be an increasing
path of length at least 1

2 (
√

4n − 3 − 1) and at most 3n
4 . The upper bound was

afterwards improved by Calderbank, Chung and Sturtevant [3], Milans [10] and
Bucić et al. [2].

Recently, other classes of graphs have been considered, e.g., trees and planar
graphs [13], on random edge-ordering [14] or on hypercubes [7].

204 L. Kovács et al.

6 Conclusion

In this work we formalized strictly increasing and strictly decreasing trails in
the proof assistant Isabelle/HOL. Furthermore, we showed correctness of an
algorithm to find such trails. We provided a verified algorithm and program to
compute monotone trails. We used this algorithm to prove the result that every
graph with n vertices and q edges has a strictly decreasing trail of length at least
2 · � q

n�. For further work we plan to show that this is a tight bound for every n
except for n = 3 and 5.

Our results are built on the already existing Isabelle Graph-theory from
the Archive of Formal Proofs. Thus, our results can be used by any theory
using graphs that are specified as in this library. Therefore, our theory is highly
reusable and might be the basis for further work in this field.

Acknowledgements. We thank Prof. Byron Cook (AWS) for interesting discussions
on reasoning challenges with ordered trails. This work was funded by the ERC Starting
Grant 2014 SYMCAR 639270, the ERC Proof of Concept Grant 2018 SYMELS 842066,
the Wallenberg Academy Fellowship 2014 TheProSE, the Austrian FWF research
project W1255-N23 and P32441, the Vienna Science and Technology Fund ICT19-065
and the Austrian-Hungarian collaborative project 101öu8.

References

1. Ballarin, C.: Tutorial to locales and locale interpretation. In: Contribuciones
cient́ıficas en honor de Mirian Andrés Gómez, pp. 123–140. Universidad de La
Rioja (2010)

2. Bucic, M., Kwan, M., Pokrovskiy, A., Sudakov, B., Tran, T., Wagner, A.Z.: Nearly-
linear monotone paths in edge-ordered graphs. arXiv preprint arXiv:1809.01468
(2018)

3. Calderbank, A.R., Chung, F.R., Sturtevant, D.G.: Increasing sequences with
nonzero block sums and increasing paths in edge-ordered graphs. Discret. Math.
50, 15–28 (1984)

4. Chavtal, V., Komlos, J.: Some combinatorial theorems on monocity. In: Notices
of the American Mathematical Society, vol. 17, p. 943. American Mathematical
Society, 201 Charles St, Providence, RI 02940-2213 (1970)

5. Cook, B., Kovács, L., Lachnitt, H.: Personal Communications on Automated Rea-
soning at AWS (2019)

6. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

7. De Silva, J., Molla, T., Pfender, F., Retter, T., Tait, M.: Increasing paths
in edge-ordered graphs: the hypercube and random graphs. arXiv preprint
arXiv:1502.03146 (2015)

8. Graham, R., Kleitman, D.: Increasing paths in edge ordered graphs. Periodica
Math. Hung. 3(1–2), 141–148 (1973)

9. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Proceed-
ings of CAV, pp. 1–35 (2013)

10. Milans, K.G.: Monotone paths in dense edge-ordered graphs (2015)

http://arxiv.org/abs/1809.01468
https://doi.org/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/1502.03146

Formalizing Graph Trail Properties in Isabelle/HOL 205

11. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL - A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

12. Noschinski, L.: Graph theory. Archive of Formal Proofs, April 2013. http://isa-
afp.org/entries/Graph Theory.html. Formal proof development

13. Roditty, Y., Shoham, B., Yuster, R.: Monotone paths in edge-ordered sparse
graphs. Discret. Math. 226(1–3), 411–417 (2001)

14. Yuster, R.: Large monotone paths in graphs with bounded degree. Graphs Comb.
17(3), 579–587 (2001). https://doi.org/10.1007/s003730170031

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
http://isa-afp.org/entries/Graph_Theory.html
http://isa-afp.org/entries/Graph_Theory.html
https://doi.org/10.1007/s003730170031

	Formalizing Graph Trail Properties in Isabelle/HOL
	1 Introduction
	2 Preliminaries
	3 Lower Bounds on Increasing and Decreasing Trails in Weighted Graphs
	4 Formalization of Trail Properties in Isabelle/HOL
	4.1 Graph Theory in the Archive of Formal Proofs
	4.2 Increasing and Decreasing Trails in Weighted Graphs
	4.3 Weighted Graphs
	4.4 Computing a Longest Ordered Trail
	4.5 Minimum Length of Ordered Trails
	4.6 Example Graph K4

	5 Discussion and Related Work
	6 Conclusion
	References

