
Run-time Attack Detection in Cryptographic APIs

Riccardo Focardi and Marco Squarcina
Università Ca’ Foscari Venezia, Italy

Cryptosense, France

Email: {focardi, squarcina}@unive.it

Abstract—Cryptographic APIs are often vulnerable to attacks
that compromise sensitive cryptographic keys. In the literature
we find many proposals for preventing or mitigating such attacks
but they typically require to modify the API or to configure it in a
way that might break existing applications. This makes it hard to
adopt such proposals, especially because security APIs are often
used in highly sensitive settings, such as financial and critical
infrastructures, where systems are rarely modified and legacy
applications are very common. In this paper we take a different
approach. We propose an effective method to monitor existing
cryptographic systems in order to detect, and possibly prevent,
the leakage of sensitive cryptographic keys. The method collects
logs for various devices and cryptographic services and is able to
detect, offline, any leakage of sensitive keys, under the assumption
that a key fingerprint is provided for each sensitive key. We
define key security formally and we prove that the method is
sound, complete and efficient. We also show that without key
fingerprinting completeness is lost, i.e., some attacks cannot be
detected. We discuss possible practical implementations and we
develop a proof-of-concept log analysis tool for PKCS#11 that
is able to detect, on a significant fragment of the API, all key-
management attacks from the literature.

I. INTRODUCTION

Cryptography is one of the dominant technologies to pro-

vide security in various settings and cryptographic hardware

and services are becoming more and more pervasive in every-

day applications. The interfaces to cryptographic devices and

services are implemented as Security APIs that allow untrusted

code to access resources in a secure way. These APIs provide

various functionalities such as: the creation or deletion of

keys; the encryption, decryption, signing and verification of

data under some key; the import and export of sensitive keys,

i.e., keys that should never be revealed as plaintext outside

smartcards and hardware security modules [18], [20].

Cryptographic APIs have been found vulnerable to many at-

tacks that compromise sensitive cryptographic keys (see, e.g.,

[2], [4], [5], [8]). Some attacks are related to the key wrapping

operation: for example, attacks on the IBM CCA interface

are due to the improper way of binding a cryptographic key

to its usage rules through the XOR function [4], and attacks

on security tokens can be mounted by assigning particular

sets of attributes to the keys, and by performing particular

sequences of (legal) API calls [5]. Other attacks, e.g., the

ones on PIN processing APIs, are based on formats used for

message encryption [9], or on the lack of integrity of user

data [6].

In the literature we find many proposals for preventing or

mitigating such attacks, but they typically require to modify

the API or to configure it in a way that might break existing

applications (see, e.g. [5], [7], [11], [12], [15], [17]). This

makes it hard to adopt such proposals, especially because

security APIs are often used in highly sensitive settings, such

as financial and critical infrastructures, where systems are

rarely modified and legacy applications are very common.

Notice that, in these settings, the leakage of a cryptographic

key might have very serious consequences such as decrypting

confidential data, breaking integrity or forging digitally signed

documents and transactions. It is thus of ultimate importance

to introduce mechanisms that can detect or prevent attacks and

that can be also deployed in practice.

In this paper we explore a different approach. Instead of

trying to fix the API or developing a new secure one, we

propose an effective method that can be used to monitor

existing systems in order to detect, and possibly prevent, the

leakage of sensitive cryptographic keys. The method collects

logs for various devices and is able to detect, offline, any

leakage of sensitive keys. For example, by tracking keys we

may discover that a sensitive key is being wrapped under an

untrusted one, that might be known to the attacker; whenever

a sensitive key is leaked in the clear, as in the so-called

wrap/decrypt attack [10], we are able to identify the problem

through a special key fingerprinting functionality, that allows

for an efficient offline log analysis without affecting in any

way the cryptographic application.

Challenges: Devising a run-time analysis of crypto-

graphic APIs presents many challenges. First of all, it needs to

track the usage of any sensitive key, without exposing its value.

Cryptographic APIs store cryptographic keys securely and give

access to them through handles so that it is not necessary to

know key values to perform operations. Monitoring keys that

are referred through handles can be tricky. In particular, when

a key is leaked it is not possible to discover this immediately,

since the key value is not available.

The analysis must be very accurate: false positives might

result in unnecessary key updates of all keys that are believed

to be leaked, while false negatives would miss actual key

leakages, with possible serious consequences. In this respect, it

is of ultimate importance that any proposed monitoring method

is supported by a formal proof of soundness and completeness

with respect to a class of attacks.

The analysis should work on distributed executions across

many devices or applications. Cryptographic keys are often

shared among devices and services and API level attacks can

2017 IEEE 30th Computer Security Foundations Symposium

© 2017, Riccardo Focardi. Under license to IEEE.

DOI 10.1109/CSF.2017.33

176

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 10,2022 at 12:24:12 UTC from IEEE Xplore. Restrictions apply.

thus be effectively run in a distributed fashion, with the aim

of bypassing any local monitoring. Thus, it is important that

the analysis is able to collect logs from various sources and

check them consistently, in order to find attacks that might

leak a key of one cryptographic service through another one,

in a different physical location.

Finally, the analysis should be efficient and should be

able to scale on fairly big logs. Ideally, the monitor should

continuously collect distributed logs and perform the analysis

in real-time. Once the analysis has been proved accurate and

suitably tested, the monitor might run “in the middle” of the

API calls, and could be able to spot attacks on the fly and

prevent them, by blocking the call right before the key is

leaked.

Contributions: We contribute to the state of the art

in various respects: (i) we model the problem of run-time

detection of cryptographic API attacks. Our model captures

distributed attacks, i.e., attacks performed by executing API

calls on different devices and services; (ii) we provide a

sound and complete characterization of attacks based on the

monitoring of a subset of API calls; (iii) we prove that

the problem of finding attacks cannot be decided in general

because, intuitively, it is not possible to distinguish sensitive

keys from non-sensitive ones just by their values; (iv) we

propose a key fingerprinting abstract mechanism and a run-

time analysis that is sound, complete and efficient; key finger-

printing is only used for logging purposes in order to make

the analysis feasible and accurate and it does not affect the

cryptographic applications invoking the API; (v) we discuss

practical implementations and we develop a proof-of-concept

log analysis tool for PKCS#11, the RSA standard interface for

cryptographic tokens [18], [20]. The tool is able to detect, on

a significant fragment of the API, all key-management attacks

reported in [12], [14].

Related Work: The first paper that has applied general

analysis tools to the analysis of security APIs is [22], but no

formal statement of the security guarantees provided by the

analysis was done. The first automated analysis of PKCS#11

with a formal statement of the underlying assumptions has

been presented in [12]. In [5], the model of [12] has been

generalized and provided with a reverse-engineering tool that

automatically refines the model depending on the actual behav-

ior of the device. When new attacks were found, they were

tested directly on the device to get rid of possible spurious

attacks determined by the model abstraction. The automated

tool of [5] has successfully found attacks that leak the value

of sensitive keys on real devices. In [1], [7], type-based

techniques have been used to statically analyze the security

of cryptographic API specification. Computational security

guarantees of cryptographic APIs have been studied in [16],

[17], [21].

All of above works aim at analyzing a given API specifica-

tion or configuration, looking for attack sequences or proving

the absence of attacks. None of them perform a run-time

analysis of API invocation sequences.

Caml Crush [3] is a PKCS#11 Filtering Proxy that can

be configured to prevent dangerous PKCS#11 commands and

mechanisms. Caml Crush performs a run-time analysis, but

there are important differences with respect to our proposal:

(i) Caml Crush modifies the API behavior by imposing

restrictions that prevent attacks. For example it prevents keys

to be assigned conflicting roles so that attacks such as Clulow’s

wrap/decrypt are prevented. Our approach is different: we do

not impose any restriction on how keys are configured and

used, and in fact we do not even consider key attributes, since

our method is independent of the specific API. We just monitor

the API calls that can be responsible of leaking a sensitive key.

While Caml Crush can break applications that do not adhere

to the imposed policy, even when no key leakage happens,

our approach is more accurate and only stops the calls that

are responsible of key leakages greatly reducing the number

of false positives; (ii) Caml Crush does not track keys on

multiple devices and is thus unable to prevent the distributed

attacks we discuss in Section III, unless the wrapping API

is modified. More precisely, in Caml Crush it is possible

to enable an ad hoc modification of the wrapping API that

tracks key attributes but makes the API incompatible with

the standard PKCS#11 one: keys wrapped under Caml Crush

modified wrapping API cannot be unwrapped on standard

devices; (iii) our method can work offline by simply analyzing

logs, while Caml Crush requires an online component to

actively monitor API calls. Together with (i), we believe that

this is a fundamental feature that might facilitate the adoption

of the method, since it would never interfere with (and possibly

break) applications, a crucial requirement in critical settings

(e.g., banks); (iv) Camel Crush is tailored to PKCS#11 while

our approach is more general in principle. Indeed, the method

we propose does not rely on any specific feature of PKCS#11

such as key attributes. It only requires the specification of

which keys are sensitive (i.e., not accessible in the clear), a

basic security property useful in any key management API

(e.g., Microsoft CAPI and CNG, Java JCA).

The model presented in this work is based on the one in

[12] but there are important differences: we remove from the

model any detail that is specific of PKCS#11, in order to model

generic cryptographic APIs. We define a notion of local and

distributed secure execution that formalizes when a specific

execution is secure with respect to a set of sensitive keys.

In particular, our executions are not regulated by any key

policy or attributes as in [12]. Finally, the focus of [12] is

the discovery of sequences of API calls that might leak a

key. Here, instead, we study how to detect attacks on given

(distributed) sequences of API calls by log inspection, i.e.,

without knowledge of the actual key values.

Structure of the Paper: In Section II we present the core

formal model, which is based on [12]; Section III introduces

our notion of secure distributed execution that we characterize

in terms of the analysis of a subset of the API calls; Section IV

presents our method for the run-time analysis based on key

fingerprinting and we prove that it has linear complexity with

177

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 10,2022 at 12:24:12 UTC from IEEE Xplore. Restrictions apply.

respect to the length of logs and the number of sensitive keys;

in Section V we report on a prototype implementation in

PKCS#11, where we implement key fingerprinting through

standard API calls. We show that the tool can effectively

detect and prevent known attacks on a significant fragment

of PKCS#11 key management; Section VI draws some con-

cluding remarks.

II. CORE MODEL

The core of our model is a variation of the one introduced

by Delaune, Kremer and Steel (DKS) [12], in which anything

specific to PKCS#11 has been removed, and with labels

referring to API calls on the transitions. The latter will be

required to formalize secure executions in Section III.

The attacker is assumed to be able to call commands of the

API in any order providing any known value. Data and keys

are modeled as terms and the rules of the API and the abilities

of an attacker are written as rules that, given some terms,

produce new ones. Cryptography is modeled symbolically:

the intruder is assumed not to be able to break cryptography

by brute-force or cryptanalysis, i.e., (s)he can only read an

encrypted message if (s)he knows the correct key, along the

standard Dolev-Yao approach [13]. Since the attacker is at

the API level, we do not distinguish between malicious or

legitimate users.

A. Syntax

As in DKS, we assume a given signature Σ, i.e., a finite

set of function symbols, with an arity function ar : Σ→ N, a

(possibly infinite) set of names N and a (possibly infinite) set

of variables X . Names represent keys, data values, nonces,

etc. Function symbols model cryptographic primitives. We

also denote with Σapi the set of API function symbols and

extend the arity function to this set in the expected way. The

set of plain terms PT (Σ,N ,X) is defined by the following

grammar

t := x x ∈ X
| n n ∈ N
| f(t1, . . . , tj) f ∈ Σ and ar(f) = j

The set PT (Σ,N , ∅), also referred to as PT (Σ,N), is called

the set of ground terms. We use vars(t) and names(t) for the

set of variables and names that occur in the term t and extend

the notations to set of terms.

We simplify the DKS model by removing the set of literals

from each rule. As a result, user’s capabilities are not restricted

by the attributes assigned to key handles. Additionally, we

make explicit the API function call used to fire a rule by

including the function as a label. The description of the system

is given as a finite set of rules R of the form

T
f−−−→

new ñ
T ′

where T, T ′ ⊆ PT are sets of plain terms, ñ ⊆ N is a set of

names and f ∈ Σapi is an API function symbol. When ñ = ∅,
we omit new ñ from the rule.

Intuitively, the rule can be fired when all the terms in T are

in the user knowledge and the API function f is invoked. The

effect of the rule is that the user knowledge is augmented with

terms in T ′. The new ñ means that all the names in ñ need to

be replaced by fresh names in T ′. This models nonce or key

generation: if the rule is executed several times, the effects are

different as different names will be used each time.

We consider the signature Σ = {senc, aenc, pub, priv, h},
as in DKS. The function symbols senc and aenc of arity 2

represent symmetric and asymmetric encryption, whereas pub
and priv of arity 1 are constructors to obtain public and private

keys, respectively. The symbol h allows to model key handles.

Example 1 (Ciphertext, Keys and Handles). We show a
few examples of ciphertext, key and handle terms. Term
senc(k2, k1) represents key k2 encrypted under symmetric key
k1. Private key priv(s) and public key pub(s) represent a
keypair generated from a common seed s. Finally h(n, k) is a
handle referring to key k. Nonce n is used to make it possible
to have multiple handles, e.g., h(n, k) and h(n′, k), for the
same key k. Notice that from a handle it is not possible to
recover the value of the key.

We consider the following set of API functions

Σapi = {KeyGen,KeyPairGen,
Wrapss,Wrapsa,Wrapas,

Unwrapss,Unwrapsa,Unwrapas,

Encrypts,Encrypta,

Decrypts,Decrypta}

Intuitively, KeyGen, KeyPairGen are nullary functions for

generating symmetric keys and key pairs, respectively;

Wrapss,Wrapsa,Wrapas and Unwrapss,Unwrapsa,Unwrapas
are used to respectively wrap and unwrap keys under other

keys. We model the common cases of wrapping a symmetric

key under a symmetric and an asymmetric one plus the case

of wrapping an asymmetric key under a symmetric one. Wrap

operations take two key handles as arguments while unwrap

operations take a handle and a ciphertext and generate a

new handle in the device, pointing to the unwrapped key.

Finally, Encrypts,Encrypta and Decrypts,Decrypta perform

symmetric and asymmetric encryption and decryption. They

respectively take as arguments a plaintext/ciphertext and the

handle of the encryption/decryption key. The set of rules of

our model are listed in Table I.

Example 2 (Wrap API). As an example, consider the rule

h(x1, y1), h(x2, y2)
Wrapss−−−−→ senc(y2, y1)

used to wrap a symmetric key with another symmetric key. We
have that h(x1, y1) and h(x2, y2) are handles for keys y1 and
y2, respectively, while senc(y2, y1) is the symmetric encryption
of y2 under y1. The rule states that the key y2 can be wrapped,
i.e., encrypted, with y1 when the API function Wrapss is fired
and both handles for keys y1, y2 are known. The wrapped key
is then added to the set of known terms.

178

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 10,2022 at 12:24:12 UTC from IEEE Xplore. Restrictions apply.

KeyGen−−−−→
new n, k

h(n, k)

KeyPairGen−−−−−−→
new n, s

h(n, priv(s)), pub(s)

h(x1, y1), h(x2, y2)
Wrapss−−−−→ senc(y2, y1)

h(x1, priv(z)), h(x2, y2)
Wrapsa−−−−→ aenc(y2, pub(z))

h(x1, y1), h(x2, priv(z))
Wrapas−−−−→ senc(priv(z), y1)

h(x, y2), senc(y1, y2)
Unwrapss−−−−−→
new n1

h(n1, y1)

h(x, priv(z)), aenc(y1, pub(z))
Unwrapsa−−−−−→
new n1

h(n1, y1)

h(x, y2), senc(priv(z), y2)
Unwrapas−−−−−→
new n1

h(n1, priv(z))

h(x1, y1), y2
Encrypts−−−−−→ senc(y2, y1)

h(x1, y1), senc(y2, y1)
Decrypts−−−−−→ y2

h(x1, priv(z)), y1
Encrypta−−−−−→ aenc(y1, pub(z))

h(x1, priv(z)), aenc(y2, pub(z))
Decrypta−−−−−→ y2

TABLE I
API RULES

B. Semantics

We enrich the semantics of DKS with labels, as they will

be required for the run-time analysis. The semantics is thus

defined in terms of a labeled transition system (Q,A,−→→, q0).
Q defines the set of possible states, where each state q ⊆
PT (Σ,N) is the set of ground terms in the user’s knowledge.

A is the set of actions such as

A = {f(t1, . . . , tn) | f ∈ Σapi, n = ar(f),

∀ i ∈ [1, n] : ti ∈ PT (Σ,N)}
Given a rule a ∈ A, we write args(a) ⊆ PT (Σ,N) for the

set {t1, . . . , tn} of arguments of a. The initial state q0 ∈ Q
represents the initial knowledge of the user. The transition

relation −→→ ⊆ Q×A×Q is defined as follows. We have that

q
a−→→ q′ if

R := T
f−→ T ′

is a fresh renaming w.r.t. names(q) of a rule in R and there

exists a grounding substitution θ for R such that Tθ ⊆ q and

given a = f ′(t1, . . . , tn) we have that f ′ = f, ar(f) = n and

args(a) = Tθ. Then q′ = q ∪ T ′θ.

Given a LTS P = (Q,A,−→→, q0), an execution is a sequence

of transitions

q0
a1−→→ q1

a2−→→ . . .
an−−→→ qn

that we abbreviate as q0
α−→→∗ qn, with α = a1, a2, . . . , an.

Example 3 (Wrap and Decrypt Attack). Consider, for exam-
ple, the execution representing a wrap/decrypt attack in which

the value of a key k2 is exposed by wrapping k2 with k1 and
then by decrypting the wrapped data with k1. Given an initial
state q0 = {h(n1, k1), h(n2, k2)}, we have that

q0
Wrapss(h(n1, k1), h(n2, k2))−−−−−−−−−−−−−−−→→ q1 q1 = q0 ∪ {senc(k2, k1)}

q1
Decrypts(h(n1, k1), senc(k2, k1))−−−−−−−−−−−−−−−−−−→→ q2 q2 = q1 ∪ {k2}

That we write q0
α−→→∗ q2, with

α = Wrapss(h(n1, k1), h(n2, k2)),

Decrypts(h(n1, k1), senc(k2, k1))

α defines the sequence of actions performed by the attacker
to access the value of k2 by reaching the state q2.

III. SECURE EXECUTIONS

Our notion of secure execution is parametric with respect

to a set of secure key, which might be different for different

executions. Intuitively, we want to let each administrator to

specify, locally, the set of sensitive keys that need to be

monitored. Thus, what is sensitive is not established globally

but we need to be able to compose local executions and recover

a partial view of what is sensitive, so to capture distributed

attacks, i.e., attacks in which one key might be leaked on a

different device in order to bypass local monitoring.

A. Secure Local Executions

We let SK denote a set of sensitive keys that we want to

monitor in a certain local execution. Secure keys are either

179

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 10,2022 at 12:24:12 UTC from IEEE Xplore. Restrictions apply.

y1, y2
DY−−→ senc(y2, y1)

senc(y2, y1), y1
DY−−→ y2

senc(y2, yi)
DY−−→ y2

y1, y2
DY−−→ aenc(y2, y1)

aenc(y2, pub(z)), priv(z)
DY−−→ y2

aenc(y2, pub(zi))
DY−−→ y2

TABLE II
DOLEV-YAO SK -RULES, WITH INSECURE KEYS ki, priv(si) �∈ SK RANGED

OVER BY yi, priv(zi)

symmetric keys k or private asymmetric keys priv(s). In the

following we let K range over k and priv(s). We only consider

executions starting from a state q0 in which all of the secure

keys are safely stored in the device. They should not be

publicly known or encrypted under an insecure key. Formally:

Definition 1 (SK -Secure Initial State). Let SK be a set of
sensitive keys. An initial state q0 is secure if any secure key
K does not appear in q0 in the forms k, senc(k, ki) and
aenc(k, pub(si)), with ki, priv(si) �∈ SK .

From now on we will only consider executions with secure

initial states.

We consider a Dolev-Yao attacker parametrized by SK
that can perform encryption and decryption operations using

known keys (as usual) plus any insecure key ki, priv(si) �∈ SK ,

ranged over by yi, priv(zi). Attacker is formalized by the rules

in Table II. From now on we assume that executions can

include attacker’s actions.

An execution is secure if and only if it does not leak any

of its secure key:

Definition 2 (SK -Secure Execution). Let σ = q0
α−→→∗ qn be

an execution. Then, σ is SK -secure if and only if SK∩qn = ∅.
Notice that freshly generated keys may or may not be in-

cluded in SK . There might be cases in which an administrator

wants to monitor new keys, and other situations in which

new keys are just session keys that are destroyed when the

session is closed, and does not need to be monitored. Both

these situations can be modeled by including or not new keys

in the set SK .

A SK -secure execution is also secure with respect to any

subset of SK , i.e., with respect to strictly less sensitive keys.

This is proved formally in the following lemma:

Lemma 1. Let σ be SK -secure. Then σ is SK ′-secure for
each SK ′ ⊆ SK .

Proof: Trivial since SK ′ ∩ qn ⊆ SK ∩ qn = ∅.
We now prove that in any insecure execution there is at least

either a wrap operation of a secure key under an insecure one,

or a decrypt operation of a secure key encrypted under another

secure key.

Proposition 1. Let σ = q0
α−→→∗ qn be an execution. Then, σ

is SK -secure if and only if none of the following is in σ:

1) Wrapss(h(ni, ki), h(ns, ks));
2) Wrapsa(h(ni, priv(si)), h(ns, ks));
3) Wrapas(h(ni, ki), h(ns, priv(ss)));
4) Decrypts(h(ns, ks), senc(k

′
s, ks));

5) Decrypta(h(ns, priv(ss)), aenc(ks, pub(ss)));
6) Decrypts(h(ns, ks), senc(priv(ss), ks)).

where ki, priv(si) �∈ SK and ks, k
′
s, priv(ss) ∈ SK.

Proof:
(⇒) We have to prove that if σ is SK -secure then none of

the above API calls happens in σ. We in fact prove that if
one of the calls is in σ then σ is not SK -secure. It is enough
to observe that wrapping a secure key under an insecure one
allows the attacker to decrypt it (cf. Table II), and decrypting
a secure key clearly reveals it as plaintext. In both cases σ is
not SK -secure, from which the thesis follows.

(⇐) We have to prove that if none of the above API calls
happens in σ then σ is SK -secure. We proceed by contradic-
tion: assume that σ = q0

α−→→∗ qn is not SK -secure. Then, by
Definition 2, SK ∩ qn �= ∅. We let {K1, . . . ,Km} = SK ∩ qn.
By Definition 1 we know that {K1, . . . ,Km}∩q0 = ∅. We thus
consider the shortest prefix of σ: q0

α−→→∗ qk−1
ak−→→ qk such

that {K1, . . . ,Km} ∩ qk−1 = ∅ and ∃i ∈ 1, . . . ,m . Ki ∈ qk.
Intuitively, qk is the first state that contains a sensitive key
in the clear. Recall that Ki is either k or priv(k). We now
consider all the possible API calls that might have returned
Ki in the clear.

From Table I we only have Decrypts and Decrypta. Consider
Decrypts: it requires: h(n′, k′), senc(Ki, k

′) ∈ qk−1. Now if
k′ ∈ SK we are in case 4 or 6, while if k′ �∈ SK there
must have been a previous API call corresponding to case 1
or 3. In fact, since the term senc(Ki, k

′) cannot be in q0 (cf.
Definition 1) and cannot come from a previous application
of DY rules (cf. Table II) because we have assumed that Ki

is being leaked now, the only other way to obtain it is by
invocation of the Wrap∗ API. A similar reasoning applies to
Decrypta for cases 5 and 2. We thus get a contradiction.

From Table II the key can only come from the decryption of
senc(Ki, k

′) or aenc(Ki, pub(s)). Consider senc(Ki, k
′): since

it cannot be k′ ∈ SK (because k′ would be known by the
attacker contradicting the fact that no sensitive key is in qk−1)
we necessarily have that k′ �∈ SK . As before we have that there
must have been a previous API call corresponding to case 1
or 3. Following a similar reasoning, for aenc(Ki, pub(s)) we
can conclude that there must have been a previous API call
corresponding to case 2, which gives a contradiction.

The above proposition gives a precise characterization of

insecure executions and has important implications: first of all,

it is enough to monitor wrap and decrypt API calls and rise

an alert any time one of the above cases occur. When one of

the above cases occur we are guaranteed that it is going to be

an attack. Moreover, no attack will be missed since any attack

requires one of the above API calls. Finally, the proposition

180

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 10,2022 at 12:24:12 UTC from IEEE Xplore. Restrictions apply.

shows that the complexity of Dolev-Yao reasoning disappears

since it is enough to just focus on single API calls. This is

very convenient in order to apply the theory to the analysis of

real logs.

B. Secure Distributed Executions

Even if an execution is secure locally, with respect to its set

SK of sensitive keys, it might be the case that the execution is

leaking keys coming from other devices, that are not monitored

in SK . It could also be possible that keys in SK are sent

to other devices and are leaked remotely. In order to find

these distributed attacks we define a notion of security with

respect to a set of executions, each with a set of local sensitive

keys. Intuitively, we require that each execution is secure with

respect to the union of the set of sensitive keys.

Since executions might contain freshly generated keys, from

now on we will always consider appropriate alpha-conversion

of executions so that freshly generated keys never collide. So,

if a freshly generated key is in a local SK it won’t appear in

any other local SK from a different execution.

Definition 3 (Secure Distributed Executions). Let S be
a set of distinct executions starting from their own ini-
tial states with their respective sets of sensitive keys
{(SK 1, σ1), . . . , (SKn, σn)}. Let SK =

⋃
i=1,...,n SK i. We

say that S is secure iff σ1, . . . , σn are SK -secure.

It is quite immediate to see that if a set of executions is

secure, then each execution is locally secure. In fact, secure

distributed executions require security with respect to a bigger

set of keys. Interestingly, the other implication does not hold:

it might be the case that secure, local executions become

insecure when taken together. This confirms the intuition that

there exist distributed attacks that cannot be detected locally.

Thus, collecting local executions from different devices might

reveal attacks that cannot be detected locally. We illustrate

through a simple example.

Example 4 (Distributed Wrap-and-Decrypt Attack). Consider
the following two executions σ and σ′:

σ = q0
Wrapss(h(n1, k1), h(n2, k2))−−−−−−−−−−−−−−−→→ q0 ∪ {senc(k2, k1)}

σ′ = q′0
Decrypts(h(n1, k1), senc(k2, k1))−−−−−−−−−−−−−−−−−−→→ q′0 ∪ {k2}

Intuitively, σ and σ′ represent two executions on different
devices. In σ a sensitive key k2 is wrapped under another sen-
sitive key k1, which is the standard key for security exporting a
sensitive key. We have, in particular, that σ is {k1, k2}-secure.
In σ′ we suppose to have a device with just k1 key, meaning
that the administrator is only monitoring that single sensitive
key.

An attacker might decrypt the ciphertext obtained from σ
on the first device using the second device. This is what
happens in σ′: senc(k2, k1) is decrypted under k1. The local
administrator cannot notice the leakage of k2 if such a key is
unknown locally. In particular, we have that σ′ is {k1}-secure.

In summary, we have two executions that are secure with
respect to the local knowledge of sensitive keys. However,

it is clear that the two executions represent a distributed
wrap-and-decrypt attack in which a sensitive key from the
first device (k2) is leaked on the second device. This attack
is captured by putting together the two executions: we let
S = {({k1, k2}, σ), ({k1}, σ′)} and we obtain that S is not
secure since σ′ is not secure with respect to {k1, k2}. This can
be seen by observing that {k1, k2} ∩ (q′0 ∪ {k2}) ⊇ {k2} �= ∅.

The relation between local and distributed security is proved

formally in the following proposition:

Proposition 2. Let S = {(SK 1, σ1), . . . , (SKn, σn)}. Then:
• S secure ⇒ σi SK i-secure for each i = 1, . . . , n;
• S secure �⇐ σi SK i-secure for each i = 1, . . . , n.

Proof:
(⇒) By definition, S secure means that σ1, . . . , σn are SK -

secure, with SK =
⋃

i=1,...,n SK i. Since SK i ⊆ SK , by
Lemma 1 we directly obtain that σi is SK i-secure for each
i = 1, . . . , n.

(�⇐) The implication does not hold because of the existence
of distributed attacks coming from locally secure executions,
as shown in Example 4.

IV. ANALYSIS

We present a way to analyze executions offline. This allows

for monitoring devices without necessarily being online, i.e.,

in between the application and the security hardware. We

believe this is important to make the proposal realistic. In

fact, in our experience, it would be hard to add an online

element in the chain of a critical application based on secure

hardware. The offline analysis can detect leakage of keys so

that administrators can take suitable actions. Of course, if the

solution works offline it is also possible to place it actively in

the middle of the API calls, taking decision in real time, and

preventing key leakage.

Logs can be taken locally and analyzed directly but, as

we have shown in Example 4, attacks might happen across

multiple devices, so it is crucial to consider the possibility of

collecting local logs to look for distributed attacks.

It is important to notice that in order to monitor the above

calls we need a way to distinguish secure keys from insecure

ones and we need to track wrapped secure keys. We will

discuss how this can be achieved in the next section. There

are two important aspects to consider, in order to make the

analysis effective and implementable: (i) the information that

is tracked in the logs should not be too complex and should not

grow too much, in order for the analysis to scale in space and

time; (ii) the analysis should not require the whole execution

logs in order to detect attacks, i.e., it should detect attacks

even when logs represent partial executions.

It is important to point out that our model of distributed

execution already detects attacks even when relevant API

calls are missing, i.e., even when logs are partial. Thus, the

requirement (ii) is implicit in the model we consider. As a

consequence, any log analysis will necessarily have to fulfill

(ii) in order to detect all the attacks. We illustrate this crucial

point through an example:

181

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 10,2022 at 12:24:12 UTC from IEEE Xplore. Restrictions apply.

Example 5 (Partial Executions). Consider a variant of Exam-
ple 4 in which σ does not contain the wrap operation used by
the attacker to mount the distributed wrap-and-decrypt attack.
Execution σ could contain other API calls but, for simplicity,
we just take it empty:

σ = q0

σ′ = q′0
Decrypts(h(n1, k1), senc(k2, k1))−−−−−−−−−−−−−−−−−−→→ q′1 q′1 = q′0 ∪ {k2}

The point here is that σ′ is an attack to k2 but there is no
information in the logs about ciphertext senc(k2, k1).

The attack is nevertheless captured by the model. As before,
in the first device we assume to have two sensitive keys,
and we trivially have that σ is {k1, k2}-secure. However,
{({k1, k2}, σ), ({k1}, σ′)} is not secure since σ′ is not secure
with respect to {k1, k2}. Intuitively, since the set of sensitive
keys is composed of all the sensitive keys from the various
devices, attacks on a remote device will be naturally captured
by the model that simply checks for the leakage of sensitive
(possible remote) keys.

A. The Log Analysis Problem

We now state precisely the problem of log analysis. It is

important to observe that, for obvious reasons, we cannot log

the actual values of sensitive keys. The obvious replacement

for key values are handles but this will introduce a major

challenge: how to detect the leakage of a key value without

knowing it.

Definition 4 (Log Analysis Problem). Let S be the distributed
execution {(SK 1, σ1), . . . , (SKn, σn)}. Log analysis is the
problem of deciding whether or not S is secure given the
following inputs:
• The executions σ̄ = σ1, . . . , σn, that we call logs;
• The handles H referring to sensitive keys occurring in

σ1, . . . , σn that belongs to SK =
⋃

i=1,...,n SK i, i.e.,

H = {h(n, k) | h(n, k) occurs in σ̄ and k ∈ SK}

and under the following assumptions:
1) terms can only be compared by syntactic equality;
2) offline encryption and decryption operations are possible

only when the corresponding key is known (in a standard
Dolev-Yao fashion).

We now show that the log analysis problem is not solvable

in general, because of the impossibility of linking a key value

to its handle(s). Notice that this result holds because of the

assumption that log analysis is done offline. If we have the

possibility of interacting with the devices then keys could be

distinguished by performing operations with them.

Proposition 3 (Unsolvability of Log Analysis Problem).
The log analysis problem cannot be solved for all possible S’s.

Proof: We consider an instance of Example 5
in which q0 = {h(n1, k1), h(n2, k2)} and q′0 =
{h(n′1, k1), senc(k2, k1)}. Intuitively, the initial states q0 and

q′0 only contain the key handles and q′0 additionally con-
tains the ciphertext that will be decrypted to leak k2. The
input to the log analysis problem is thus σ, σ′ and H =
{h(n1, k1), h(n2, k2), h(n′1, k1)}. The final state q′1 addition-
ally contains the key value k2. Now, there is clearly no way
to link k2 to the key handles in H , since we have assumed
that terms can only be compared when they are identical (up
to standard Dolev-Yao operations). Key k2 could be used to
encrypt other terms but since there is no ciphertext encrypted
under k2 the produced terms would never match any existing
term. Intuitively, k2 is leaked but it is not possible to detect
offline whether or not it is a sensitive key pointed by one of
the handles in H .

B. Log Analysis with Key Fingerprinting

In order to be able to solve the log analysis problem we

need to log additional information that can be used offline to

track keys. We consider an abstract key fingerprinting function

whose value will be logged together with handles and that will

allow to link a key value to a handle.

Definition 5 (Key Fingerprinting). A key fingerprinting is
a deterministic one-way function. Formally, we note it as a
special term kf(k) and we assume that kf(k) can be computed
by anyone who knows k, while k cannot be computed from
kf(k).

We add a corresponding API call that allows for obtaining

key fingerprints from their handles, and a corresponding

Dolev-Yao rule for offline computation:

h(x, y)
KeyFprint−−−−−→ kf(y)

y
DY−−→ kf(y)

We can prove that key fingerprinting does not introduce new

attacks. In particular, by adding the above rules we obtain the

same characterization of Proposition 1.

Proposition 4. Let σ = q0
α−→→∗ qn be an execution possibly

containing key fingerprint API calls and direct (Dolev-Yao)
fingerprinting computations. Then, Proposition 1 holds.

Proof: Proof is the same as the one of Proposition 1. In
fact, fingerprinting does not add any new way of leaking a
key in the clear, nor it can produce cryptographic terms. As
a consequence, adding fingerprinting does not add any new
case to the proof of Proposition 1.

Notice that the above proposition holds in our symbolic

model because there is no notion of cost for the attack and,

in general, we do not take into account cryptanalytic issues.

It is important to observe that just using a standard one-way

cryptographic hash to implement kf would provide the attacker

a faster way to bruteforce cryptographic keys since hash

functions are usually much faster than encryption algorithms.

We will discuss possible implementations later on.

With key fingerprinting we can solve the log analysis

problem efficiently. It is enough to assume that each sensitive

key is fingerprinted in each local log. Intuitively, whenever we

182

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 10,2022 at 12:24:12 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Log Analysis using Key Fingerprinting.

1: procedure LOGANALYSIS(σ̄, H)

2: FSK = [] � Initialize the list of fingerprints of sensitive keys as empty

3: for (a, ret) ∈ σ̄ do � Collect all the fingerprints of sensitive keys

4: if a == KeyFprint(h) and h ∈ H then � If the API call is KeyFprint in sensitive handle

5: FSK ← FSK + [ret] � The actual fingerprint ret is added to FSK
6: end if
7: end for
8: for (a, ret) ∈ σ̄ do � Search for insecure wrap and decrypt

9: if a == Wrap∗(h1, h2) and h1 �∈ H and h2 ∈ H then � Insecure wrap of sensitive key

10: return a � The insecure wrap is returned: S is insecure

11: end if
12: if a == Decrypt∗(h, t) and h ∈ H and kf(ret) ∈ FSK then � Decrypt of a sensitive key

13: return a � The insecure decrypt is returned: S is insecure

14: end if
15: end for
16: return None � No attack found: S is secure

17: end procedure

have a decrypt operation we test the leaked key against all the

available fingerprints.

Our solution is coded as Algorithm 1: the algorithm first

computes the set of fingerprints for sensitive keys (FSK) by

looking for the actual calls to KeyFprint(h) where h ∈ H is

a handle to sensitive keys.1 This is done by the for loop from

line 3 to line 7. The notation (a, ret) ∈ σ̄ means that we loop

over all possible API calls and a ranges over the actual call

while ret ranges over the returned value. In fact, when we

find a handle that belongs to H we add the returned value,

i.e., the fingerprint, to the set FSK .

Then, the algorithm looks for attacks, in terms of the char-

acterization of Proposition 4. In particular it searches for any

Wrap∗(h1, h2) API call in which a sensitive key referred by

h2 is wrapped under a non-sensitive key referred by h1. When

this happens, the algorithm terminates and returns the call

responsible for the attack. Similarly the algorithm looks for

any Decrypt∗(h, t) call that returns a key ret whose fingerprint

kf(ret) belongs to the ones computed in the first phase (FSK).

Again, when this situation is spotted, the responsible call is

returned as a witness of the attack. If none of the above is

found in all the executions the algorithm returns “None” to

indicate that no attack has been found and that S is in fact

secure.

Theorem 1 (Log Analysis through Key Fingerprinting). Let
S = {(SK 1, σ1), . . . , (SKn, σn)} and SK =

⋃
i=1,...,n SK i,

such that for each K ∈ SK we have that kf(K) occurs in σ̄.
Then, the log analysis problem can be solved in O(|σ̄|+ |H|)
steps.

Proof: The algorithm correctly computes the set FSK of
all fingerprints of sensitive keys because of the assumption that
those fingerprints are all in the logs. Then, the correctness of
solving log analysis directly derives from the characterization

1Notice that, for the sake of readability, we abbreviate handles as h.

of Proposition 4. Both loops take, in the worst case, |σ̄|
iterations while lookup in sets H and FSK can be done in
constant time building appropriate hashtables, from which we
get linear complexity.

Notice that, since Algorithm 1 only inspects a subset of

the API calls, it is enough to just log those calls. This would

greatly reduce the size of |σ̄| and, consequently, the execution

time of the analysis.

C. Practical Considerations
Our approach requires the specification of which keys are

considered sensitive. This decision must be definitely taken

by the administrator, who is supposed to know what are the

important cryptographic keys. It is worth noticing that key

management APIs usually have a way to specify what keys

should be regarded as sensitive, i.e., not accessible in the clear,

so it is reasonable to assume that this property is going to be

specified in some way.
Theorem 1 proves that log analysis can be solved efficiently

when fingerprints for sensitive keys are available. Thus, in

order to implement the proposed analysis, it is necessary that

the relative fingerprint API calls are performed, in each local

log. For long-term keys, it is reasonable to assume that key

fingerprints will stabilize over time and could be reliably

shared after an initial startup phase. For new keys that are

freshly generated during the execution we can imagine that the

logging system is instrumented so to ask for the key fingerprint

of each new key, i.e., every time a KeyGen or KeyPairGen is

invoked. We believe this is a mild, realistic assumption that

does not significantly impact on the applicability of the meth-

ods. In fact, recall that without fingerprinting we know that log

analysis is not even solvable (cf. Proposition 3). Additionally, a

practical way to prevent that logs grow indefinitely is to delete

part of them when there is a consensus that the knowledge on

sensitive keys is synchronized, i.e., that no key occurring in

the deleted logs will be discovered to be sensitive in the future.

183

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 10,2022 at 12:24:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Diagram of our log analysis system for PKCS#11

Another consideration regards fingerprints. One problem

with fingerprints that is not captured by our symbolic model

is the possible exploitation of fingerprints in cryptanalytic

attacks. Using cryptographic hash functions, for example,

would speed up key bruteforcing. Moreover, using a fixed

function for all devices allows for precomputing fingerprints

which, in turns, would reduce the key space to bruteforce. A

reasonable alternative would be to digitally sign the fingerprint

using a dedicated private key, different for each device. This

would (i) slow down bruteforcing and (ii) prevent fingerprint

precomputation. It is out of the scope of this paper to prove

the security of practical implementations of key fingerprint and

we leave this as a future work.

V. PROTOTYPE IMPLEMENTATION

To show the feasibility of our approach we discuss the

implementation of a proof-of-concept log analysis tool for

PKCS#11. The tool2 is able to identify all the key-management

attacks found in [12], [14] involving symmetric encryption

operations. We plan to support the detection of attacks using

asymmetric keys on PKCS#11 as a future work.

Our solution consists of three components, as outlined in

Figure 1: (i) a software layer that wraps the existing PKCS#11

library interface. The wrapper allows the instrumentation of

selected API calls to record the operations executed by the

underlying library. It also computes key fingerprints to solve

the log analysis problem; (ii) a logging facility to store the

logs of each session in a central repository; (iii) the analyzer

that parses the logs generated by the first two components and

applies Algorithm 1 to discover attacks aimed at leaking the

value of secure keys.

A. Fingerprint Computation

Before giving full details of the system, we introduce our

fingerprint approach for PKCS#11. Fingerprint computation is

indeed a challenging problem, given that it is not possible to

access the value of a sensitive key directly. Additionally, since

our solution does not extend the existing API with an ad-hoc

2https://github.com/secgroup/p11d

fingerprint function, the fingerprint must be produced by the

device reusing existing PKCS#11 functions.

Of course, a simple way to perform fingerprint computation

would be to use the C_DigestKey API call. Given a key

handle, this function returns a digest of the key value using

a cryptographic hash function. According to the considera-

tions made in Section IV, the use of a hash function would

weaken the security of the system by decreasing the cost of

a bruteforce attack to recover the key value. For this reason,

we devised a different approach that allows to compute key

fingerprints using keys as intended.

The functions allowed to be executed under a key are

determined by the set of its attributes. For instance, a key with

the CKA_ENCRYPT attribute enabled is allowed to perform

encryption calls via C_Encrypt. Given a key k, we exploit

the capabilities of each key to compute multiple fingerprints

depending on the allowed operations. We devise three possible

fingerprints for key k:

• if CKA_ENCRYPT is enabled, we pick a random value r
and we encrypt it with k. We say that the encryption fin-
gerprint of k, denoted by kf(k)E , is the pair (r, enc data)
where enc data denotes r encrypted under k using the

C_Encrypt function with a compatible mechanism;

• similarly, if CKA_DECRYPT is enabled, we let dec data
be a random value r decrypted with k using the

C_Decrypt function with a compatible mechanism. The

decryption fingerprint of k, denoted by kf(k)D, is the pair

(r, dec data);
• if k is a wrapping key, i.e., the CKA_WRAP attribute is

enabled, we state that the wrap fingerprint of k, denoted

by kf(k)W , is wrap data, where wrap data is the result

of wrapping the key with itself via a call to C_WrapKey.

If all the operations required to produce a fingerprint are

forbidden, i.e., the attributes are disabled, we temporarily

alter the C_Encrypt attribute to generate a valid encryption

fingerprint.

The proposed fingerprint approach for PKCS#11 allows to

precisely identify a key by performing an offline computation

of the fingerprint, once the plain text value of the key is known.

Moreover, the results of the operations are unique for each

key, in practice, since the probability of obtaining the same

result given two different keys is negligible. With respect to

the practical considerations mentioned in the previous section

regarding fingerprints, we claim that this solution does not

speed up key bruteforcing and thus it does not decrease

the security of fingerprinted keys. If one of the functions

used to compute the fingerprint is allowed for a given key,

then guessing the key from the encryption (decryption) of a

random value would not be faster than doing the same with

a value chosen by the attacker for which (s)he might have

precomputed offline encryptions (decryptions) with a large

number of keys.

B. Working Principles

We implement a wrapper of the full PKCS#11 API.

However, it follows from Proposition 1 and Proposi-

184

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 10,2022 at 12:24:12 UTC from IEEE Xplore. Restrictions apply.

tion 4 that monitoring only a small subset of PKCS#11

functions, i.e., C_WrapKey and C_Decrypt, is enough

to detect all possible attacks. We also instrument the

C_GetAttributeValue function that allows to directly

read the value of a non-sensitive key. We do not assume the set

of secure keys SK to be static during each execution, thus we

need to track functions that allow the creation of new sensitive

objects such as C_GenerateKey. For convenience, we also

instrument C_Login to list long-term keys stored in the

device and we initialize SK with sensitive keys found among

them, even if in general we want to let each administrator

to specify, locally, the set of sensitive keys that need to

be monitored. For all the remaining functions, the wrapper

transparently performs the corresponding call.
For each new key found during a C_Login call at the

start of each session, or generated using C_GenerateKey,

the wrapper computes the fingerprints and sends them to

the logging facility along with the list of publicly-readable

attributes and the object handle assigned to the key. Recall

that handles are not guaranteed to be fixed for the lifetime

of an object, still they allow to access the same object for

the entire session duration [18]. The C_WrapKey function

is instrumented to track the handles of the wrapping key

and the wrapped key. C_Decrypt tracks the handle of the

decryption key and the value of the decrypted data. Similarly,

the C_GetAttributeValue tracks the handle of the actual

key and the accessed value.
The logging component allows multiple sessions to be

tracked in a centralized repository at the same time. Each log

file produced during this step represents a single execution

within a session. Since the C_Login function is called every

time a new session is initialized by PKCS#11 applications, the

first entry of every log file contains the list of long-term keys

found in the device. As an example, Table III provides the

textual representation of a possible log entry produced by a

call to the login function. In this case only one key is found in

the device. The listed key is sensitive and the handle that points

to it in this session has value 0x00. The key has the encrypt

and decrypt attributes enabled, thus fingerprints are computed

by encrypting and decrypting random values according to the

method described before.
The analyzer then parses the collected logs and applies

Algorithm 1. For each sensitive key found in the logs as

a result of either a C_Login or C_GenerateKey, the

component updates the set H with its handle paired with the

identifier of the current session. In parallel, the analyzer stores

the fingerprints of this key in FSK . When the set H and

FSK are initialized, the program iterates over all the logged

C_WrapKey, C_Decrypt and C_GetAttributeValue
calls looking for attacks:

• insecure wraps of secure keys are easily detected by

checking if the pairs in the form (session, h) of the

wrapping key and wrapped key handles belong to H .

If a secure key is wrapped under an insecure one,

the operation is marked as an attack and the analysis

terminates;

["C_Login", [
{"extractable": 0x00, "decrypt": 0x01,
"sensitive": 0x01, "encrypt": 0x01,
"wrap": 0x00, "unwrap": 0x00,
"label": 0x4d7950726563696f7573,
"keytype": 0x1300000000000000,
"handle": 0x01,
"fingerprint": {

"decrypt": [
0x96ccb41274a8adbf, 0x0c2e551a66cb4d86

],
"encrypt": [

0xd387b0b818a52d2a, 0xea1b3c934ed860f5
]

}
]]

TABLE III
LOG ENTRY FOR THE C_LOGIN CALL

• decryptions of secure keys are identified in two steps.

The analyzer first checks if the handle used in the

decryption operation points to a secure key. In this case,

it tests the decrypted data ret found in the log entry

of C_Decrypt against all the fingerprints in FSK , by

simulating calls to C_Decrypt and C_Encrypt. To

perform the comparison with a wrap fingerprint, the ap-

plication encrypts ret under itself and checks if the result

matches the wrapped data in the fingerprint. Otherwise, if

the fingerprint is in the form (r, data), depending on the

type of the fingerprint, the tool executes an encryption or

a decryption of the random value r under the key ret and

compares the result with data. If no match is found after

iterating the process over all the fingerprints in FKS, the

operation is considered safe, otherwise it is marked as an

attack and the analysis stops;

• direct accesses to the value of a non-sensitive key

via a C_GetAttributeValue are threat of practical

importance if the attacker manages somehow to alter

the CKA_SENSITIVE attribute of a secure key. These

attacks are easily detected by the analyzer by testing the

value returned by the API call against all the fingerprints

in FSK , as in the previous case.

C. Experimental Tests

We now show how our solution is effective against a range

of key-management attacks, also in a distributed setting. All

the attacks reported in this section, as well as others from the

literature, can be simulated using our tool and a software token

provided by openCryptoki [19]. Unless stated otherwise, in the

following examples we denote by hi the handle pointing to a

key ki.

Example 6 (Wrap and Decrypt Attack). We discuss how the
wrap/decrypt attack outlined in Example 3 is detected. In this
simulation, the attacker calls C_GenerateKey to generate a
non-sensitive key k2 with the CKA_WRAP and CKA_DECRYPT
attributes enabled. Using this key, (s)he leaks the value of

185

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 10,2022 at 12:24:12 UTC from IEEE Xplore. Restrictions apply.

$ LD_PRELOAD=./p11d.so ./attack 0 12345
[I] Found 1 key(s)
[A] Wrap-Decrypt attempt
[*] Generate a key k2 for wrapping and

decrypting
[*] Wrap the sensitive key k1 with the key k2
[*] Decrypt the wrapped key k1 with the key k2
[*] Recovering k1 value: "0102030405060708"

$./analyzer.py
[*] Computing H and FSK
[*] Searching for insecure Wrap and Decrypt

operations
[!] Attack detected in session-1000.log

The sensitive key h1 has been wrapped with
the insecure key h2

TABLE IV
WRAP/DECRYPT ATTACK DETECTION

the long-term sensitive key k1 by wrapping k1 under k2
and decrypting the result again with k2. As pointed out in
Table IV, the attack is detected by our tool on the C_WrapKey
operation since the attacker is wrapping a secure key pointed
by h1 with an insecure one pointed by h2.

Example 7 (Re-import Attack). In our implementation of the
re-import attack, the attacker executes C_GenerateKey to
generate a key k2 with the CKA_UNWRAP attribute set. (S)he
then unwraps a random value r with this key to create a
new key k3 in the device with the CKA_WRAP attribute set.
Notice that k3 is the decryption of r under k2. The value r is
unwrapped again using k2 to re-import k3, this time with the
CKA_DECRYPT attribute set. We let h3 and h4 be the handles
returned by the first and the second unwrap, respectively. Now,
to leak the sensitive key k1, the attacker wraps k1 under k3
pointed by h3 and decrypts the wrapped key with k3 pointed
by h4. As shown in Table V, our tool detects the attack on the
C_WrapKey operation since h1 points to a secure key, while
h3 does not.

Example 8 (Wrap and Unwrap Attack). We assume the
existence of a long-term sensitive key k1 in the device. The
key has the attributes CKA_WRAP and CKA_UNWRAP enabled.
The attack consists in wrapping k1 with itself and reimporting
the key as a non-sensitive one under a new handle h2. Then,
by using the C_GetAttributeValue on h2, the attacker
can directly read the value of k1. Our tool is able to detect the
attack by testing the plain value of k1 against the fingerprints
in FSK. The attack trace and the log analysis performed by
the tool are provided in Table VI.

Example 9 (Distributed Wrap and Decrypt Attack). The last
attack we discuss is wrap/decrypt in the distributed setting, as
presented in Example 4. We assume two long-term sensitive
keys k1 and k2 in the first device. We also assume k2 to
be found in a second device. The key k2 has, at least, the
attribute CKA_WRAP enabled in the first device and the
attribute CKA_DECRYPT enabled in the second one. The

$ LD_PRELOAD=./p11d.so ./attack 0 12345
[I] Found 1 key(s)
[A] Re-import attempt
[*] Generate a key k2 for unwrapping
[*] Unwrap a random bytestream with k2 to

import a new key k3 pointed by h3 that
can wrap

[*] Unwrap a random bytestream with k2 to
import a new key k3 pointed by h4 that
can decrypt

[*] Wrap the sensitive key k1 with h3
[*] Decrypt the wrapped key k1 with h4
[*] Recovering k1 value: "0102030405060708"

$./analyzer.py
[*] Computing H and FSK
[*] Searching for insecure Wrap and Decrypt

operations
[!] Attack detected in session-2000.log

The sensitive key h1 has been wrapped with
the insecure key h3

TABLE V
RE-IMPORT ATTACK DETECTION

$ LD_PRELOAD=./p11d.so ./attack 0 12345
[I] Found 1 key(s)
[A] Wrap-Unwrap attempt
[*] Wrap k1 with k1
[*] Re-import k1 as non-sensitive
[*] Recovering k1 value: "a1a2a3a4a5a6a7a8"

$./analyzer.py
[*] Computing H and FSK
[*] Searching for insecure Wrap and Decrypt

operations
[!] Attack detected in session-3000.log

The plaintext value of a sensitive key
has been directly read

TABLE VI
WRAP/UNWRAP ATTACK DETECTION

attacker connects to the first device and wraps k1 under k2
and (s)he saves the wrapped data. Then, (s)he connects to
the second device and decrypts the wrapped data with k2 to
access the value of k1. When both k1 and k2 are secure keys,
the C_WrapKey operation is not detected by our tool as an
attack since we are wrapping a secure key with another secure
key. Nevertheless, the C_Decrypt call returns the value of
the secure key k1 and thus allows our tool to match k1 against
fingerprints in FSK , revealing that an attack occurred. See
Table VII for the detailed execution and the attack detection
analysis.

VI. CONCLUSION

Attacks on cryptographic APIs are notoriously hard to detect

and fix. Even simple key management operations may be sub-

ject to API level vulnerabilities that leak cryptographic keys

in the clear. For example, an attacker can wrap a secure key

under another secure key and then ask the device to decrypt

186

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 10,2022 at 12:24:12 UTC from IEEE Xplore. Restrictions apply.

$ LD_PRELOAD=./p11d.so ./attack 0 12345
[I] Found 2 key(s)
[A] Distributed Wrap-Decrypt attempt (1)
[*] Wrap the sensitive key k1 with the

sensitive key k2
[*] Wrapped data: "d6c22bb28cd93ec0"

$ LD_PRELOAD=./p11d.so ./attack 1 12345
[I] Found 1 key(s)
[A] Distributed Wrap-Decrypt attempt (2)
[*] Decrypt wrapped data "d6c22bb28cd93ec0"

with the key k2
[*] Recovering k1 value: "0102030405060708"

$./analyzer.py
[*] Computing H and FSK
[*] Searching for insecure Wrap and Decrypt

operations
[!] Attack detected in session-4001.log

The plaintext value of a sensitive key
has been leaked after decryption with
key h1

TABLE VII
DISTRIBUTED WRAP/DECRYPT ATTACK DETECTION

the ciphertext, obtaining the former key in the clear. In the

literature we find many proposals for preventing or mitigating

this kind of attacks but they typically require to modify the

API or to configure it in a way that might break existing

applications. This makes it very hard to adopt these proposals

for critical applications and infrastructures, where systems are

rarely modified and legacy applications are very common.

At the same time, in these critical settings, the leakage of

a cryptographic key can cause serious consequences.

In this paper we have investigated a new method to analyze

cryptographic API logs. Log analysis is interesting because it

has a very low impact on existing systems and is frequently

used in industrial systems, financial applications and critical

infrastructures. Log analysis of cryptographic APIs is chal-

lenging since keys are never supposed to be leaked in the

clear, meaning that tracking different keys might become hard,

especially if we want to analyze logs offline without interacting

with the cryptographic devices.

More specifically, we have extended an existing model for

security API analysis in order to model API logs. We have

given a formal definition of secure execution that scales to

a distribute setting, in which logs from services and devices

that are placed in different physical locations, can be collected

and searched for distributed attack sequences. We have shown

examples of distributed attacks that cannot be detected locally

and we have proved that the problem of detecting these attacks

offline is unsolvable, because of the impossibility of tracking

keys. We have shown that by adding a simple API for key

fingerprinting, log analysis becomes feasible and efficient. We

actually proved that security can be characterized in term of

absence of particular combination of parameters in a subset of

the API calls, i.e., Wrap and Decrypt.

Finally, we have implemented a tool for PKCS#11 APIs

that simulates key fingerprinting through the available cryp-

tographic operations for a given key, and can detect all

documented attacks on PKCS#11 that directly leak a key

in the clear. The tool constitutes a proof-of-concept that the

method is effective and that can be implemented even without

a dedicated key fingerprinting API. It is worth noticing, that

adding a key fingerprinting API for logging purposes would

not affect existing applications. Compared to previous works,

our approach does not require existing API functions to be

modified, therefore legacy applications do not need to be

updated. Instead, we propose to add a new fingerprinting

function that is solely used by the monitoring solution to

provide more informative logs. In this respect, extending

existing devices with this new mechanism seems a realistic

possibility and we would encourage producer to consider this

idea for next generation devices.

As a future work, we intend to extend our tool to cover

a more extensive fragment of PKCS#11 and we want to

experiment with candidate key fingerprinting APIs on software

emulators of PKCS#11. We also intend to characterize other

cryptographic APIs by studying formally which rules are

considered problematic and should be tracked in the logs.

Intuitively, the problematic rules are the ones that either

directly leak a key in the clear, or generate a term containing

a sensitive key that can be deconstructed by the DY attacker,

as when wrapping a sensitive key under a nonsensitive one.

Lastly, we plan to cover cryptanalytic attacks related to weak

cryptographic mechanisms and side channels.

Acknowledgments: This work has been partially sup-

ported by CINI Cybersecurity National Laboratory within

the project FilieraSicura: Securing the Supply Chain

of Domestic Critical Infrastructures from Cyber Attacks

(www.filierasicura.it) funded by CISCO Systems Inc. and

Leonardo SpA.

REFERENCES

[1] Pedro Adão, Riccardo Focardi, and Flaminia L. Luccio. Type-based
analysis of generic key management apis. In 2013 IEEE 26th Computer
Security Foundations Symposium, New Orleans, LA, USA, June 26-28,
2013, pages 97–111, 2013.

[2] R. Anderson. The correctness of crypto transaction sets. In 8th
International Workshop on Security Protocols, April 2000. http://www.
cl.cam.ac.uk/ftp/users/rja14/protocols00.pdf.

[3] Ryad Benadjila, Thomas Calderon, and Marion Daubignard. Caml
Crush: A PKCS#11 Filtering Proxy. In Smart Card Research and
Advanced Applications - 13th International Conference, CARDIS 2014,
Paris, France, November 5-7, 2014. Revised Selected Papers, pages 173–
192, 2014.

[4] M. Bond. Attacks on cryptoprocessor transaction sets. In Proceedings
of the 3rd International Workshop on Cryptographic Hardware and
Embedded Systems (CHES’01), volume 2162 of LNCS, pages 220–234,
Paris, France, 2001. Springer.

[5] M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. Attacking
and fixing PKCS#11 security tokens. In Proceedings of the 17th ACM
Conference on Computer and Communications Security (CCS’10), pages
260–269, Chicago, Illinois, USA, October 2010. ACM Press.

[6] M. Centenaro, R. Focardi, F.L. Luccio, and G. Steel. Type-based analysis
of PIN processing APIs. In Springer LNCS vol. 5789/2009, editor,
Proceedings of the 14th European Symposium on Research in Computer
Security (ESORICS 09), pages 53–68, 2009.

187

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 10,2022 at 12:24:12 UTC from IEEE Xplore. Restrictions apply.

[7] Matteo Centenaro, Riccardo Focardi, and Flaminia L. Luccio. Type-
based analysis of key management in PKCS#11 cryptographic devices.
Journal of Computer Security, 21(6):971–1007, 2013.

[8] R. Clayton and M. Bond. Experience using a low-cost FPGA design to
crack DES keys. In Cryptographic Hardware and Embedded System -
CHES 2002, pages 579–592, 2002.

[9] J. Clulow. The design and analysis of cryptographic APIs for security
devices. Master’s thesis, University of Natal, Durban, 2003.

[10] J. Clulow. On the security of PKCS#11. In Proceedings of the 5th
International Workshop on Cryptographic Hardware and Embedded
Systems (CHES’03), volume 2779 of LNCS, pages 411–425. Springer,
2003.

[11] V. Cortier and G. Steel. A generic security API for symmetric key
management on cryptographic devices. In Michael Backes and Peng
Ning, editors, Proceedings of the 14th European Symposium on Research
in Computer Security (ESORICS’09), volume 5789 of Lecture Notes in
Computer Science, pages 605–620, Saint Malo, France, September 2009.
Springer.

[12] S. Delaune, S. Kremer, and G. Steel. Formal analysis of PKCS#11 and
proprietary extensions. Journal of Computer Security, 18(6):1211–1245,
November 2010.

[13] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions in Information Theory, 2(29):198–208, March 1983.

[14] R. Focardi, F.L. Luccio, and G. Steel. An introduction to security api
analysis. In FOSAD, pages 35–65, 2010.

[15] S. Fröschle and G. Steel. Analysing PKCS#11 key management APIs
with unbounded fresh data. In Pierpaolo Degano and Luca Viganò,

editors, Revised Selected Papers of the Joint Workshop on Automated
Reasoning for Security Protocol Analysis and Issues in the Theory of
Security (ARSPA-WITS’09), volume 5511 of Lecture Notes in Computer
Science, pages 92–106, York, UK, August 2009. Springer.

[16] Steve Kremer, Robert Künnemann, and Graham Steel. Universally
composable key-management. In Computer Security - ESORICS 2013 -
18th European Symposium on Research in Computer Security, Egham,
UK, September 9-13, 2013. Proceedings, pages 327–344, 2013.

[17] Steve Kremer, Graham Steel, and Bogdan Warinschi. Security for key
management interfaces. In Proceedings of the 24th IEEE Computer
Security Foundations Symposium, CSF 2011, Cernay-la-Ville, France,
27-29 June, 2011, pages 266–280, 2011.

[18] OASIS Standard. PKCS #11 Cryptographic Token Interface Base Spec-
ification Version 2.40, April 2015. http://docs.oasis-open.org/pkcs11/
pkcs11-base/v2.40/pkcs11-base-v2.40.html.

[19] openCryptoki. http://sourceforge.net/projects/opencryptoki/.
[20] RSA Laboratories. PKCS #11 v2.30: Cryptographic Token Interface

Standard, April 2009. http://www.emc.com/emc-plus/rsa-labs/
standards-initiatives/pkcs-11-cryptographic-token-interface-standard.
htm.

[21] Guillaume Scerri and Ryan Stanley-Oakes. Analysis of key wrapping
apis: Generic policies, computational security. In IEEE 29th Computer
Security Foundations Symposium, CSF 2016, Lisbon, Portugal, June 27
- July 1, 2016, pages 281–295, 2016.

[22] P. Youn, B. Adida, M. Bond, J. Clulow, J. Herzog, A. Lin, R. Rivest,
and R. Anderson. Robbing the bank with a theorem prover. Technical
Report UCAM-CL-TR-644, University of Cambridge, August 2005.

188

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 10,2022 at 12:24:12 UTC from IEEE Xplore. Restrictions apply.

