
Atomic Multi-Channel Updates with Constant Collateral
in Bitcoin-Compatible Payment-Channel Networks
Christoph Egger

Friedrich-Alexander University

Erlangen-Nuremberg

Pedro Moreno-Sanchez

TU Wien

Matteo Maffei

TU Wien

ABSTRACT
Current cryptocurrencies provide a heavily limited transaction

throughput that is clearly insufficient to cater their growing adop-

tion. Payment-channel networks (PCNs) have emerged as an inter-

esting solution to the scalability issue and are currently deployed

by popular cryptocurrencies such as Bitcoin and Ethereum. While

PCNs do increase the transaction throughput by processing pay-

ments off-chain and using the blockchain only as a dispute arbitra-

tor, they unfortunately require high collateral (i.e., they lock coins

for a non-constant time along the payment path) and are restricted

to payments in a path from sender to receiver. These issues have

severe consequences in practice. The high collateral enables denial-

of-service attacks that hamper the throughput and utility of the

PCN. Moreover, the limited functionality hinders the applicability

of current PCNs in many important application scenarios. Unfortu-

nately, current proposals do not solve either of these issues, or they

require Turing-complete language support, which severely limit

their applicability.

In this work, we present AMCU, the first protocol for atomic

multi-channel updates and reduced collateral that is compatible

with Bitcoin (and other cryptocurrencies with reduced scripting ca-

pabilities). We provide a formal model in the Universal Composabil-

ity framework and show that AMCU realizes it, thus demonstrating

that AMCU achieves atomicity and value privacy. Moreover, the

reduced collateral mitigates the consequences of griefing attacks

in PCNs while the (multi-payment) atomicity achieved by AMCU

opens the door to new applications such as credit rebalancing and

crowdfunding that are not possible otherwise. Moreover, our eval-

uation results demonstrate that AMCU has a performance in line

with that of the Lightning Network (the most widely deployed PCN)

and thus is ready to be deployed in practice.

ACM Reference Format:
Christoph Egger, Pedro Moreno-Sanchez, and Matteo Maffei. 2019. Atomic

Multi-Channel Updates with Constant Collateral, in Bitcoin-Compatible

Payment-Channel Networks. In 2019 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’19), November 11–15, 2019, London,
United Kingdom. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3319535.3345666

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00

https://doi.org/10.1145/3319535.3345666

1 INTRODUCTION
The permissionless nature of major cryptocurrencies such as Bit-

coin [30] largely hinders their transaction throughput, limiting it to

tens of transactions per second [11]. In contrast, other (centralized)

payment networks such as Visa caters to a vast mass of users and

payments by supporting a transaction throughput of up to tens of

thousands of transactions per second [34]. Thus, permissionless

cryptocurrencies suffer from a severe scalability issue preventing

them from serving a growing base of payments.

In this state of affairs, payment channels have emerged as an

interesting mitigation technique for the scalability issue and is

currently deployed in popular cryptocurrencies such as Bitcoin or

Ethereum [12, 24, 31]. In a nutshell, payment channels aim at es-

tablishing a two-party ledger that two users can privately maintain

without resorting to the blockchain for every payment and yet en-

suring that they can claim their rightful funds in the blockchain at

any given time. For that, users first create a deposit transaction that

establishes on-chain the initial balances for their two-party ledger.

Then, both users issue ledger changes with each other through

off-chain accountable messages. Finally, when they are done, they

set the last agreed ledger state on the blockchain to get the corre-

sponding coins. For instance, Alice can open a channel with Bob by

publishing on the blockchain a transaction that transfers x coins

from her to an address addr shared by Alice and Bob. Subsequent

payments from Alice to Bob only require that Alice sends Bob an

off-chain signed transaction of y < x coins from addr to him. Bob

can close the channel by signing and publishing on-chain the last

transaction received by Alice. Interestingly, it is possible to gener-

alize this technique to a network of payment channels where two

users can pay each other if they are connected through a path of

open payment channels [31].

The Lightning Network (LN) [31] for Bitcoin and the Raiden

Network [5] for Ethereum are the most widely deployed PCNs in

practice, and several implementations exist today [1, 3, 4]. Several

academic efforts have focused on designing solutions to enhance

the security [22, 27], privacy [15, 21, 26, 28, 29], concurrency [22,

35], availability [23], and routing mechanisms [20, 32] of PCNs.

However, there exist fundamental challenges that remain open for

PCNs that do not rely on Turing-complete languages such as the one

available in Ethereum. In this paper we focus on two fundamental

ones, namely, restricted functionality and high collateral. In fact, it

has been conjectured that the collateral challenge cannot be solved

without modifications to the Bitcoin script [25]. Here, we refute this

conjecture by providing a solution for Bitcoin-compatible PCNs.
1

Restricted Functionality (Path Restriction). Current PCNs
use a tailored two-phase commit protocol to ensure atomicity of

1
In the rest of the paper, we refer to Bitcoin-compatible PCNs unless otherwise stated.

Session 4B: Blockchain II CCS ’19, November 11–15, 2019, London, United Kingdom

801

https://doi.org/10.1145/3319535.3345666
https://doi.org/10.1145/3319535.3345666
https://doi.org/10.1145/3319535.3345666

a payment: First, the payment amount is locked at each channel

in the payment path from the sender to the receiver; and second,

each channel is updated (either accepting the payment or releasing

the coins) from the receiver to the sender. This, however, limits the

functionality of PCNs to payments along paths of payments chan-

nels from the sender to the receiver. In this work we observe that

a protocol ensuring atomic updates for arbitrary sets of payment

channels (not necessarily organized in a path structure) enables

the design of off-chain applications that go beyond payments. For

instance, a set of users in a PCN can leverage atomic updates in

order to rebalance their payment channels when they are depleted

or adapt them to facilitate economic interactions in the future.

Moreover, achieving the atomicity of a set of concurrent pay-

ments (i.e., multi-payment atomicity) enables an even wider range

of interesting applications. For instance, consider a crowdfunding

application where a set of users want to fund a given receiver by

contributing a share of the total pot required by the receiver. Users

can leverage multi-payment atomicity to ensure that either each

protocol participant in fact contributes her share to the receiver, or

coins go back to the original sender. Thus, (multi-payment) atomic-

ity is crucial to unleash the full potential of current PCNs.

Collateral. The execution of a payment of α coins through n
payment channels requires to put aside at least n · α coins. Note

that while locked, these coins cannot be used for other payments,

thus the amount of time that these coins are locked is crucial. The

payment protocol must ensure that each intermediate user can

enforce on-chain an update in her payment channel in case of

dispute with the channel counterparty. Moreover, the payment

protocol must ensure that an intermediate honest user does not

lose coins. Thus, coins are locked at each channel i for ti ≥ ti+1 +
∆, where ∆ is the worst-case confirmation time for an on-chain

transaction. The rational behind this is that the payment protocol

updates one channel at a time starting from the receiver. Thus,

after intermediate user i has paid user i + 1, she has enough time to

require the funds from user i − 1 (and eventually use the ∆ time to

query the funds on-chain if user i−1 does not collaborate off-chain).
Therefore, current payment protocols for PCNs require in the

worst-case that at least n · α coins are locked in a path of n pay-

ment channels for a time of n · ∆ (which is called collateral in the

blockchain folklore). Thus, Bitcoin-compatible PCNs require a col-

lateral of Θ(n2α∆) in the worst-case in units coins × time, while it
has been shown that the collateral can be decreased to Θ(nα∆) for
Ethereum-based PCNs [13, 25].

Griefing Attack. The reduction of the collateral is crucial to

mitigate the effect of griefing attacks in PCNs. In a nutshell, an

adversary with two nodes in the PCN can perform the lock phase

of the two-phase commit protocol, setting his nodes as sender and

receiver. In this manner, by locking α coins in one of his payment

channels, he manages to lockn−1 ·α coins in the payment channels

among intermediate users, having therefore an amplification factor

of n − 1. The effect of this attack can be further amplified if the

attacker uses several paths. Moreover, the adversary controlling

the receiver can also lock n · α coins among all payment channels

in the path by simply refusing to accept the payment and letting

it fail. Note that in this case the adversary does not need to lock

any of his coins. Moreover, although a failed payment implies in

principle that the adversary does not get the associated α coins,

the sender might simply retry the payment after some time as a

fallback mechanism.

The griefing attack is indeed an open problem in the blockchain

community with negative effects for PCNs. First, note that coins

on the channel at position i in the path under the attack are locked

for a time of i · ∆. As ∆ has to account for the time to enforce a

transaction on-chain, it must be set to around one hour in the best

case when building the PCN on top of Bitcoin. In fact, the LN [4]

uses a default ∆ value of 144 blocks, that is, approximately one day.

Thus, a griefing attack launched over a path of length 7 will lock

coins for up to a week. Second, the adversary can use the griefing

attack to deplete the payment channel from competitors by setting

them as intermediate nodes in the path between the adversarial

sender and receiver.

Thus, providing a solution to the high collateral used in PCNs

is crucial, as it reduces the amplification factor for the attacker in

the griefing attack and it enables a faster release of the coins in

a path used for an unsuccessful payment, thereby improving the

overall throughput of the PCN. Furthermore, reducing the collateral

is crucial given the high volatility of the price of cryptocurrencies

(e.g., in November 2018, the price of Bitcoin dropped by $200 in

only one day [2]).

This state of affairs naturally leads to the question: Is it feasible to

design a protocol for payments in a PCN that is not path-restricted,

reduces the collateral (by at least a factor of n), and is compatible

with cryptocurrencies with a restricted scripting language (e.g.,

Bitcoin)?

Our Contributions. In this work, we give a positive answer to

the aforementioned question, by presenting AMCU, the first cryp-

tographic protocol for atomic multi-channel updates with constant

collateral. Specifically,

• We provide a formal model in the Universal Composability

framework [8] for atomic multi-channel updates in PCNs, cover-

ing the security and privacy notions of interest, such as atomicity

and value privacy (Section 3). Atomicity ensures that all payment

channels involved in the protocol are updated or none of them is

updated. Value privacy ensures that no (off-path) adversary can

determine the transaction values.

• We present AMCU, a cryptographic instantiation compatible

with cryptocurrencies with a restricted scripting language, such

as Bitcoin (Section 5). The cornerstone of AMCU is the use of a

MIMO transaction to synchronize the off-chain updates of multiple

payment channels while ensuring that each payment channel can

still be managed off-chain and is separate from each other after a

run of the protocol. We formally prove that AMCU UC-realizes the

ideal functionality and thus provides atomicity and value privacy.

In fact, AMCU reduces the collateral to Θ(nα∆) which eliminates

the amplification factor in the griefing attacks. Moreover, AMCU

achieves the same collateral as Ethereum-based solutions and yet it

does not rely on smart contracts that narrow the protocol applica-

bility. AMCU solves thus the long-standing collateral challenge in

PCNs [25].

• We evaluate the performance of AMCU (Section 6) and we

show that AMCU requires only a collateral that is constant along

the path. Moreover, it requires 3m + 2 off-chain transactions, where

m denotes the number of payment channels involved in the protocol.

Session 4B: Blockchain II CCS ’19, November 11–15, 2019, London, United Kingdom

802

We also show that it requires only 3 rounds of communication inde-

pendently of the number of participants and that communication

and computation overheads are negligible even with commodity

hardware. Moreover, we show that the performance is in line with

the current LN protocol. These results demonstrate that AMCU is

practical and ready to be deployed.

• We demonstrate the general applicability of AMCU by show-

ing its applications other than multi-hop payments (Section 7). The

first one is the atomic rebalancing of coins among different payment

channels in cryptocurrencies with Bitcoin-like scripting language.

Secondly, we leverage the multi-payment atomicity property of

AMCU to demonstrate its applicability to solve the crowdfund-

ing problem, that is, to ensure that several users can fund a given

receiver in such a manner that either all funds are collected by

receiver or no payment is actually carried out. These applications

demonstrate the usefulness of AMCU to unleash the full potential

of current PCNs.

2 BACKGROUND
2.1 Payment Channels
A payment channel enables the exchange of coins between two

users without settling every single payment in the blockchain. In-

stead, a single on-chain transaction is used to deposit coins into a

multi-signature address controlled by the two users. Consequent

payments are carried out off-chain by exchanging signatures over

updated states of the deposit. Finally, an additional on-chain trans-

action is required to close the channel and settle the deposited funds

according to the last state.

There exist two types of payment channels: unidirectional and
bidirectional. An unidirectional payment channel supports only

payments from Alice to Bob, but not vice-versa. A bidirectional

payment channel supports payments in both directions. We refer

the reader to [12, 24, 31] for further details. In this work,we consider

bidirectional payment channels.

2.2 Payment Channel Network (PCN)
A payment-channel network (PCN) can be represented as a directed

graphG := (V, E),where the set of nodesV denotes the blockchain

addresses and the set ofweighted edges E denotes the open payment

channels. Every node v ∈ V has associated a non-negative scalar

that denotes the fee charged to forward payments in one of its

open payment channels, denoted by fee(v). Every edge (v1,v2) ∈ E
has associated a function bal that denotes the current balance of
each node in a given channel. For instance, bal (v1,v2) denotes the
amount of remaining coins that v1 can pay to v2 in the channel

existing between them. Conversely, bal (v2,v1) denotes the amount

of remaining coins that v2 can pay to v1.
The cornerstone of PCNs is the ability of enabling payments

between any two users connected through a path of open payment

channels. The success of a payment depends on the remaining

balance in the payment channels that constitute the path from

sender to receiver. In particular, assume that s wants to pay α coins

to r through a path of the form s→ v1→ v2, . . . ,vn → r. For the
payment to be successful, the remaining balance (i.e., bal (·)) at every
payment channel must be at least α ′i := α −

∑i−1
j=1 fee(vi) (i.e., the

initial payment value minus the fee charged by each intermediate

user in the path).

If this requirement is fulfilled, the payment is carried out by

updating each payment channel (vi ,vi+1) as follows: bal (vi ,vi+1)
is reduced by α ′i while bal (vi+1,vi) is increased by α ′i .

2.3 Multi-Hop Payments Atomicity
A fundamental property required in a multi-hop payment is atom-
icity. In a nutshell, either the balance of all payment channels in a

path is updated or no payment channel is modified. Note that par-

tial updates might lead to coin losses by honest users. For instance,

a user could update her channel with the next user to pay him a

certain amount of coins but never receive the corresponding coins

from the previous user in the path.

Currently deployed PCNs such as the LN tackle this problem by

leveraging a tailored smart contract called Hash Time-Lock Contract
(HTLC) [33]. This contract can be executed by two users sharing

an open payment channel (e.g., Alice and Bob) and allows Alice to

lock x coins that can be released only if the contract’s condition is

fulfilled. The contract’s condition is defined based on a collision-

resistant hash functionH , a hash valuey := H (R), where R is chosen

uniformly at random, the amount of coins x , and a timeout t . The
HTLC contract, which we denote by HTLC(Alice, Bob, y, x , t), has
the following clauses: (i) If Bob produces the condition R∗ such that

H (R∗) = y before timeout t , Alice pays x coins to Bob; (ii) If timeout

t expires, Alice gets back the previously locked x coins.

A multi-hop payment in the LN concatenates several HTLC

aiming at an atomic payment, as shown in Figure 2.1. In a nut-

shell, the receiver of the payment creates the value R and gives

y := H (R) to the sender. Then, one HTLC is set at each pay-

ment channel (vi ,vi+1) of the form HTLC(vi ,vi+1,y,α
′
i , ti). The

HTLC(vi ,vi+1,y,α
′
i , ti) is translated into a transaction that redis-

tributes the coins available at the channel (e.g., βnow) as follows.
First, βnow − α ′i are sent to an address controlled by both vi and
vi+1, effectively sending the coins back to the channel. Second, it

sets α ′i coins to be spent byvi+1 if R
∗
is shown. Finally, the same α ′i

coins are set to be spent by vi if the corresponding ti has elapsed.
When the last HTLC with the receiver is set, then the receiver

reveals R∗ to the previous user in the path in order to get the pay-

ment, starting thereby a chain reaction where each user transfers

R∗ to her predecessor in the path.

We note two important points in this protocol:

• Each HTLC uses a different number of coins α ′i . As described
earlier, this accounts for the transactions fees that each intermediate

user charges for providing the forwarding service.

• Each HTLC uses a different timeout ti . These timeouts must

be set such that ti ≥ ti+1+∆ so that an intermediate user i who gets
to know the outcome of the contract in the channel (vi ,vi+1) has
time ∆ to react accordingly (e.g., show the corresponding opening

information R∗) for her channel (vi−1,vi). Unfortunately, although
staggered timeouts are crucial for the feasibility of HTLC-based

multi-hop payments, they present a severe problem in practice.

In particular, this restriction in setting up timeouts implies that for

every pending payment, some coins are held aside at each payment

channel as collateral until the payment is completed. Although a

payment can complete quickly if payment participants collaborate,

Session 4B: Blockchain II CCS ’19, November 11–15, 2019, London, United Kingdom

803

A B C D E

2. HTLC(A,B ,y ,8,4∆)
−−−−−−−−−−−−−−−−−→

3. HTLC(B ,C ,y ,7,3∆)
−−−−−−−−−−−−−−−−−→

4. HTLC(C ,D ,y ,6,2∆)
−−−−−−−−−−−−−−−−−−→

5. HTLC(D ,E ,y ,5,∆)
−−−−−−−−−−−−−−−−−→

10/222 30/232323 25/191919 10/555

6.R7.R8.R9.R

1.y := H (R)

(a) Example of payment in the LN from A to E for a value 5 us-
ing the HTLC contract. Non-bold (bold) numbers represent the
balance of the channel before (after) the payment. We assume
each user charges a fee of 1 coin.

Tx2

In Out

(A, B); 10; ∅
(A, B); 2; ∅

B ; 8; [R∗ : y = H (R∗)]
(A, B); 8; [elapsed(4∆)]

Sig(A), Sig(B)

Tx3

In Out

(B,C); 30; ∅
(B,C); 23; ∅

C ; 7; [R∗ : y = H (R∗)]
(B,C); 7; [elapsed(3∆)]

Sig(B), Sig(C)

Tx4

In Out

(C , D); 25; ∅
(C , D); 19; ∅

D ; 6; [R∗ : y = H (R∗)]
(C , D); 6; [elapsed(2∆)]

Sig(C), Sig(D)

Tx5

In Out

(D , E); 10; ∅
(C , D); 5; ∅

E ; 5; [R∗ : y = H (R∗)]
(D , E); 5; [elapsed(∆)]

Sig(D), Sig(E)

(b) Transactions required by a payment in the LN. Each transaction con-
tains inputs, outputs and signatures. Each entry in the input/output
fields is a triple of the form (address, coins, condition), where condition
denotes the requirements to spend the coins apart from the signature.

Figure 2.1: Illustrative example of a payment in the LN. Required messages are show in the left. Transactions required in
messages 2 to 5 are shown in the right.

the collateral can be held for long time in case a user misbehaves

(or just goes offline) and the closing transaction solving the dispute

must be included in the blockchain. Importantly, this collateral cost

(i.e., the lost opportunity of using the value of coins held in reserve)

grows with the length of the path and can be up to several hours in

Bitcoin.

3 PROBLEM STATEMENT
3.1 Problem Definition
In this section, we formalize the notion of PCN

+
, a PCN provid-

ing atomic multi-channel updates with reduced collateral that can

be leveraged for applications beyond payments. In particular, our

definition extends the one of a PCN [21] in order to support bidi-

rectional payment channels as well as the functionality required to

perform the update of multiple channels that not necessary form a

path.

Definition 3.1 (PCN
+
) . A PCN+ is defined as a graph

G := (V, E), where V is the set of blockchain addresses and E is
the set of currently opened payment channels. Each payment chan-
nel is defined by a tuple (c ⟨v1,v2 ⟩, β

init
1
, β init

2
, βnow

1
, βnow

2
, t), where

c ⟨v1,v2 ⟩ denotes a channel identifier, β
init
i denotes the initial deposit

amount of vi in the channel, βnowi denotes the current balance of
vi in the channel, and t is the channel’s expiration time. A PCN+

is defined with respect to a blockchain B that stores entries of the
form (v, βon-chain) where v denotes a Bitcoin address and βon-chain

denotes its on-chain balance. For clarity, B[v] denotes the on-chain
balance of v . Moreover, we let time(B) denote the current timestamp
in the blockchain. A PCN+ exposes three operations (openChannel,
closeChannel, updateState) as described below:
• openChannel(v1,v2, β1, β2, t) → {1, 0}. On input two nodes

v1,v2 ∈ V , two initial balances β1, β2 and a timeout t , if the operation
is authorized by v1 and v2, v1 owns at least β1 coins (i.e., B[v1] ≥
β1) and v2 owns at least β2 coins (i.e., B[v2] ≥ β2), openChannel
creates a new payment channel (c ⟨v1,v2 ⟩, β1, β2, β1, β2, t) ∈ E, where
c ⟨v1,v2 ⟩ is a fresh channel identifier. Then it updates the blockchain
as B[v1] := B[v1]−β1,B[v2] := B[v2]−β2 and returns 1. Otherwise,
it returns 0.

• closeChannel(c ⟨v1,v2 ⟩) → {1, 0}. On input a channel
identifier c ⟨v1,v2 ⟩ , the operation works as described below. Let
(c ⟨v1,v2 ⟩, β

init
1
, β init

2
, βnow

1
, βnow

2
, t) ∈ E the channel information for

the channel c ⟨v1,v2 ⟩ . Then:
– If timeout t has expired in blockchain B (i.e., t < time(B)),
closeChannel updates B as B[v1] := B[v1] + β init

1
and B[v2] :=

B[v2] + β init
2

, removes (c ⟨v1,v2 ⟩, β
init
1
, β init

2
, βnow

1
, βnow

2
, t) from E

and returns 0.
– Otherwise,closeChannel updatesB asB[v1] := B[v1]+βnow

1
and

B[v2] := B[v2]+β
now
2

, removes (c ⟨v1,v2 ⟩, β
init
1
, β init

2
, βnow

1
, βnow

2
, t)

from E and returns 1.

• updateState
(
{(c ⟨v2i−1,v ′

2i ⟩
, δi)}i ∈[1...n]

)
→ [bi]i ∈[1,n]. On

input a set of tuples of the form (c ⟨v2i−1,v ′
2i ⟩
, δi), where c ⟨v2i−1,v ′

2i ⟩

denotes a channel identifier and δi the update value for this channel,
the operation works as described below. First, it initalizes output as
an empty array of length n. Second, for each tuple in the input set, let
(c ⟨v2i−1,v2i ⟩, β

init
2i−1, β

init
2i , β

now
2i−1, β

now
2i , ti) ∈ E be the information for

the channel c ⟨v2i−1,v2i ⟩ . Then:
– If the operation is authorized by v2i−1 and βnow

2i−1 −

δi ≥ 0, then updateState updates the channel as
(c ⟨v2i−1,v2i ⟩, β

init
2i−1, β

init
2i , β

now
2i−1 − δi , β

now
2i + δi , ti) and sets

output[i]=1.
– Otherwise, updateState sets output[i]=0.
Finally, after all tuples are processed in the previous step,updateState
returns output.

We note that updateState is a generic multi-channel update

operation for PCNs and thus it provides, among others, the core

functionality to update the network according to payments, as we

discuss in Section 7.

3.2 Security and Privacy Goals
We now introduce informally the security and privacy notions of

interest for PCN
+
.

• Atomicity: We say that a PCN
+
achieves atomicity if for

every state update call updateState
(
{(c ⟨v2i−1,v ′

2i ⟩
, δi)}i ∈[1...n]

)
with output [bi]i ∈[1,n], either every bi = 1 or every bi = 0.

Session 4B: Blockchain II CCS ’19, November 11–15, 2019, London, United Kingdom

804

For this property to make sense, we have to assume that at least

one of the protocol participants is honest. Otherwise, we end up

in a situation where the adversary is running the protocol alone

with payment channels under his control. Thus, the adversary can

always break any notion of atomicity as he can always deviate from

the protocol without any other user checking it.

• Value Privacy: We say that a PCN
+

achieves

value privacy if for every state update call

updateState
(
{(c ⟨v2i−1,v ′

2i ⟩
, δi)}i ∈[1...n]

)
, no adversary other

than protocol participants can determine the transaction values

δi . This property is the same as the one defined by Malavolta

et al. [21], although we provide here a richer functionality (i.e.,

generic state updates instead of only payments). Notice also that

protocol participants are clearly entitled to know their current

balance before and after the multi-channel update is carried out,

thus hiding transacting values from protocol participants seems

inherently hard.

3.3 Ideal World Functionality
AttackerModel.Wemodel users in our protocol as interactive Tur-

ing machines that interact with a trusted functionality F via secure

and authenticated channels. We model the attacker A as an inter-

active Turing machine that has access to an interface corrupt(·)
that on input a user identifier U provides the attacker with the

inputs ofU . Moreover, all subsequent incoming and outgoing com-

munication ofU is then routed throughA. We allow for byzantine

(malicious) corruption of any set of users (i.e., we do not assume

honest majority) but only allow for efficient adversaries that run in

probabilistic polynomial time (PPT) and accept a negligible success
probability from their side. For clarity of presentation, we consider

static corruption only.
2
We note that our attacker model is in line

with the state-of-the-art in the literature [13, 14, 16, 21, 22].

Communication Model. We model the communication with

the secure message transmission functionality Fsmt . This function-

ality informs A whenever a communication between two users

happens and allows the attacker to delay the delivery of the mes-

sages arbitrarily. However, the adversary cannot read nor change

the content of the messages. We refer the reader to [8] for a concrete

description of this functionality.

Moreover, we assume a synchronous communication network

as modeled by Fsyn, where the execution of the protocol happens

in discrete rounds. In particular, the users are always aware of

the current round and if a message is created at round i , then this

message is delivered at the beginning of round (i+1). The adversary
can decide about the order in which messages arrive in a given

round, but he cannot change the order of messages sent between

honest parties. The latter can be achieved by including counters

in the messages. For simplicity, we assume that computation is

instantaneous. We refer the reader to [8, 17] for more details about

Fsyn.

Modeling On-Chain Balances via Global Ledger Function-
ality.We consider a global ideal ledger functionalityL in the global

UC (GUC) model [10], since the ledger functionality contains pub-

licly available information that can be updated not only by our ideal

functionality but also other protocols simultaneously. In particular,

2
Extending our protocols to support adaptive corruption is an interesting open problem.

the state of L is entirely public and it consists of a set of tuples

((v, txid), β) that denote an account v created in transaction with

id txid, its current on-chain balance β . We present the details of L

in Appendix B.

Assumptions. For readability, we assume that there exists only

one channel open at a time between any pair of users. This can be

easily relaxed by adding an additional identifier to each channel

apart from the two users controlling it. We assume that if users i and
j are willing to deposit βi and βj coins in a shared channel c ⟨v1,v2 ⟩ ,

they have exactly those coins in their respective addresses vi and
vj . In practice, if a user i has more coins than βi in her address,

she can split it into two addresses so that this assumption holds.

Moreover, we assume that users have agreed upon a timeout T∆
used to freeze current coins at their payment channels to perform

the updateState operation: We assume that the updateState call

requires a time smaller than T∆, which can be easily achievable

by adjusting the value of T∆ as the system parameter. Finally, we

assume that blockchain follows an UTXOmodel (as in Bitcoin), that

is, each address can be spent only once.

Operations.Wemodel our operations in the UC Framework [8]

as shown in Figure 3.1.

The openChannel operation simply ensures that both users agree

on the opening of the channel (steps 1-2) and, if so, it creates a new

channel account where channel counterparties deposit their coins

(step 3). Finally, the functionality stores the information about the

new channel to be used in future invocations.

The closeChannel operation first checks if the channel is still

active (step 1). If so, then it closes it by enforcing the last agreed

off-chain balance in the ledger (step 2).

The updateState operation updates the current state of the

channel. The operations enters in several rounds where all partic-

ipants are asked to agree on the execution of next phase and the

response is replied to all other participants in the protocol (steps 1-

4). The different phases model the different communication rounds

required to achieve atomic multi-channel updates.

Finally, if the pre-agreed time T∆ has not elapsed yet, then all

the channels are updated with their corresponding updated values.

Otherwise, all users are notified of the fact that the fallback phase

has been reached (step 5).

Restrictions on the Environment. In this work we consider

a restricted environment that is not allowed to perform a set opera-

tions that we separate in two groups. First, the environment never

asks to open a channel c ⟨v1,v2 ⟩ that has already been opened; to

close a channel that has been closed before; to update a channel that

has not been opened before; or to close a channel in a stale state if

a newer state has been satisfactorily updated. This first group of

restrictions are purely to simplify our presentation: Honest parties

could just return ⊥ when the environment tries to re-open or re-

close a channel, or use a stale state. Moreover, our construction can

be easily integrated with the standard revocation mechanism from

PCNs to prevent malicious users to use stale states. [31]

Second, we assume that the environment does not invoke

updateState requests including channels that do not have the suf-

ficient balance. In practice, this assumption can be easily relaxed if

users refuse to participate in a updateState protocol that requests

a channel without sufficient balance. This blocking mechanism

could lead to deadlocks, a known concurrency issue in PCNs [21].

Session 4B: Blockchain II CCS ’19, November 11–15, 2019, London, United Kingdom

805

openChannel:
Upon receiving a message (sid, open-channel,vj , βi , βj , txidi , txidj ,σi) from vi (symmetrical for vj), proceed as follows:

(1) send(sid, ch-op-notify) to vj and receive(sid, ch-op-notify,σj) from vj . If σj = ⊥ aborts. Otherwise, continue.

(2) Create a channel identifier c ⟨v1,v2 ⟩ and send(sid, commit-transfer, ({(txidi ,vi), (txidj ,vj)}, {(c ⟨v1,v2 ⟩, βi + βj)}, 0, {σi ,σj })) to L and

receive(sid,b) from L. If b = ⊥, send(sid, ch-op-abort) to vi and vj . Otherwise, continue.
(3) Otherwise, F +pcn stores the tuple (c ⟨v1,v2 ⟩, txid, β1, β2) in C. Finally, send(sid, ch-op-success) to vi , vj , and the simulator S.

closeChannel:
Upon receiving a message (sid, close-channel, c ⟨vi ,vj ⟩,σi , j) from vi (symmetrical for vj), proceed as follows:

(1) Let c := (c ⟨vi ,vj ⟩, txidβ
now
i , βnowi ,) be the tuple in C that represents the channel between vi and vj .

(2) send(sid, commit-transfer, {(c ⟨vi ,vj ⟩, txid)}, {(vi , β
now
i), (vj , β

now
j)}, {σi , j }) to L and receive(sid,b) from L. If b = ⊥, then

send(sid, ch-cl-abort) to vi and vj . Otherwise, remove c from C and send(sid, ch-cl-success) to vi , vj and the simulator S.

updateState:
Upon receiving a message (sid, state-update, {(c ⟨v2i−1,v ′

2i ⟩
, δi)}i ∈[1...n]), proceed as described below. Let v0 be a pre-defined user among the

set of users (i.e., the one with the lowest identifier after sorting them lexicographically).

(1) For each channel in {(c ⟨v2i−1,v ′
2i ⟩
, δi)} do the following actions: (i) send(sid, setup-query, {(c ⟨v2i−1,v ′

2i ⟩
, δi)} to v2i−1 and v2i ; (ii)

receive(sid,b) from v2i−1 and receive(sid,b ′) from v2i ; (iii) If b = ⊥ or b ′ = ⊥, do send(sid,v, setup-abort) for all v in V .

Otherwise, send(sid,v, setup-success) for all v inV .

(2) For each channel in {(c ⟨v2i−1,v ′
2i ⟩
, δi)} do the following actions: (i) send(sid, lock-query, {(c ⟨v2i−1,v ′

2i ⟩
, δi)} to v2i−1 and v2i ; (ii)

receive(sid,b) from v2i−1 and receive(sid,b ′) from v2i−1; (iii) If b = ⊥ or b ′ = ⊥, do send(sid,v, lock-abort) for all v in V .

Otherwise, send(sid,v, lock-success) for all v inV .

(3) For each channel in {(c ⟨v2i−1,v ′
2i ⟩
, δi)} do the following actions: (i) send(sid, consume-query, {(c ⟨v2i−1,v ′

2i ⟩
, δi)}) to v2i−1 and v2i ; (ii)

receive(sid,b) from v2i−1 and receive(sid,b ′) from v2i ; (iii) If b = ⊥ or b ′ = ⊥, do send(sid,v, consume-abort) for all v in V .

Otherwise, send(sid,v, consume-success) for all v inV .

(4) For each channel in {(c ⟨v2i−1,v ′
2i ⟩
, δi)} do the following actions: (i) send(sid, enable-query, {(c ⟨v2i−1,v ′

2i ⟩
, δi)} to v2i−1 and v2i ; (ii)

receive(sid,b) from v2i−1 and receive(sid,b ′) from v2i ; (iii) If b = ⊥ or b ′ = ⊥, do send(sid,v, enable-abort) for all v in V .

Otherwise, send(sid,v, enable-success) for all v inV

(5) If T∆ < time(L) update each tuple in E corresponding to {c ⟨v2i−1,v ′
2i ⟩
} as (c ⟨v2i−1,v ′

2i ⟩
, βnow

2i−1 − δ2i−1,2i , β
now
2i + δ2i−1,2i). Moreover, do

send(sid, update-success) to vi ∈ V . Otherwise, send(sid, update-fallback) to vi ∈ V .

Figure 3.1: Ideal Functionality for PCN+

Techniques to avoid deadlocks is an interesting and orthogonal

problem considered in the literature [21, 35].

Universal Composability. Definition 3.2 expresses the def-

inition of universal composability from Canetti [8], extended to

consider the interaction with the ledger L, as shown in the litera-

ture [13, 14].

Definition 3.2 (Universal Composability) . Let
execΠ,A,Z∗ denote the random variable (over the local random choices
of all involved machines) describing the output of the restricted envi-
ronment Z∗ when interacting with adversary A and parties running
the protocol Π. We say that protocol Π UC-emulates the ideal func-
tionality F with respect to a ledger L if for any adversary A there
exists a simulator S such that, for any restricted environment Z∗ the
distributions of execΠ,A,Z∗ and execF,S,Z∗ are indistinguishable
(i.e., the probability that Z∗ outputs 1 after interacting withA and Π
differs at most negligibly from the probability that Z∗ outputs 1 after
interacting with F and S.

Discussion. Here we discuss how F captures the security and

privacy notions of interest for a PCN
+
, as discussed in Section 3.2.

Atomicity: In the steps 1 to 4 of updateState, F queries every

user before going to the next step. If any user refuses, then no

channel is updated, every user is notified and the updateState is

aborted. In step 5,F notifies all users of the protocol outcome: either

a successful update or a fallback if the update is unsuccessful (i.e.,T∆
has expired). In the former, F atomically updates the balances of all

channels involved in the protocol. In the latter, F does not update

any channel and notifies all users. Therefore, as F is a trusted party,

the protocol outcome is the same for all users, which shows that

our model captures atomicity.

Value privacy: F interacts only with the channel owners, without

leaking any information to third parties (for off-chain updateState
operations).

4 SOLUTION OVERVIEW
4.1 System Assumptions
Assumptions.We assume that every user participating in the pro-

tocol is aware of all other participants and can send confidential

and authenticated messages. This can be realized in practice by

establishing TLS channels among the participants. We also assume

that the participants in the protocol agree on a coordinator, that
is, one of the participants that help with the coordination of the

protocol phases. This can be easily set by choosing the first user

in a pre-agreed sorted list (e.g., by sorting lexicographically their

blockchain addresses). Note that the coordinator serves to reduce

Session 4B: Blockchain II CCS ’19, November 11–15, 2019, London, United Kingdom

806

Tx1ETH
In Out

A; 5; ∅ B; 2; ∅

A; 3; ∅

Sig(A)

Tx1BTC
In Out

Tx∗BTC[A]; 5; ∅ B ; 2; ∅
A; 3; ∅

Sig(A)

Tx2ETH
In Out

C; 10; ∅ B; 4; ∅

C; 6; ∅

Sig(C)

Tx2BTC
In Out

Tx∗BTC[C]; 10; ∅ B ; 4; ∅
C ; 6; ∅

Sig(C)

Tx3ETH
In Out

B; 6; ∅ D; 1; ∅

B; 5; ∅

Sig(B)

Tx3BTC
In Out

Tx2BTC[B]; 4; ∅ D ; 1; ∅

B ; 3; ∅
Sig(B)

Figure 4.1: Illustrative example account model (left) vs
UTXO model (right). Here, we assume that transactions are
submitted to the blockchain in order (e.g., Tx1 before Tx2).
Here, Tx2BTC[B] denotes the address B created as output in
Tx2BTC . Tx

∗ denotes the identifier of a previous transaction
not specified here.

the number of network messages, but she has not advantage in

terms of security or privacy. We further assume that they under-

lying blockchain follows the UTXO model (e.g., like in Bitcoin),

where each output can be spent only once. We note that virtually

all cryptocurrencies today (with the exception of Ethereum) follow

the UTXO model.

UTXO vs AccountModel.Addresses in the UTXOmodel work

differently to the account model (e.g., in Ethereum). Transactions in

Bitcoin are linked by transaction identifiers,while they are linked by

addresses in Ethereum. In a bit more detail, coins held at an address

in Ethereum can be spent without indicating where they came from

(e.g., what previous transactions sent those coins). In Bitcoin (and

the UTXO model in general), instead, a transaction must indicate

the origin (i.e., previous transaction) of each coin to be transferred.

In the example shown in Figure 4.1, the transaction Tx3ETH does not

specify the origin of the 6 coins stored at address B. This implies that

even if Tx2ETH is not in the blockchain, Tx3ETH can still be added after

Tx1ETH (with the only difference that B would hold 2 coins instead

of 6). The transaction Tx3BTC, instead, indicates that it specifically
uses the coins held at the address B created at Tx2BTC. This implies

that if Tx2BTC is not in the blockchain, Tx3BTC cannot be added to the

blockchain although B has also received coins in Tx1BTC. This a key
difference that we leverage in our solution: A transaction cannot

be added to the blockchain if it points to a previous transaction

that has not been published, even if the pointed address has received
arbitrarily many other coins from other transactions.

4.2 Protocol Overview
Our protocol for atomic multi-channel updates (AMCU) proceeds in

four phases where the protocol participants create authenticated off-
chain transactions, as depicted in Figure 4.2. Notice that all following

phases are conducted off-chain, which is crucial for scalability and

privacy reasons. In the following, we describe these phases.

Phase I: Setup. The first phase requires to freeze the coins avail-
able at each channel involved in the protocol. Doing this naively

(i.e., locking the complete balance in the channel at once) would

lock more coins than required, unnecessarily increasing the collat-

eral in the protocol. Instead, during the setup phase, the balance at

each payment channel is split in two, effectively creating thereby

two sub-channels: one sub-channel is set with the coins required

for the present protocol session, while the other one is set with the

remaining coins, which can then be freely spent.

In the illustrative example shown in Figure 4.2, the setup phase

starts with the userA collaborating with userB to create the transac-

tion TxAsetup , where they split the 10 coins they have in the channel

in two sub-channels: one sub-channel with 8 coins to be used in

the rest of the protocol session and one sub-channel with the rest

(i.e., 2 coins). This transaction is signed by both users so that it can

be eventually enforced on-chain if required. The rest of the users

behave analogously. Note that operations at each channel in this

phase of the protocol can be carried out in parallel. Finally, this

phase ends when all users acknowledge each other of the success

of this phase. For simplicity, we denote this by sending OK to the

coordinator (A in this example). At this point, we consider only

the sub-channel with the amount of coins required for the rest of

the protocol. For instance, in our running example, we consider

only the sub-channel with 8 coins between A and B. We abuse the

notation and call it channel in the rest of this presentation.

Phase II: Lock. At this phase, the off-chain state at each pay-

ment channel is superseded by a new state with same balance but

locked until a certain pre-agreed time (the system parameterT∆) in
the future, which can be realized through the timelock mechanism.

In our running example, the lock phase starts with user A col-

laborating with user B to create the transaction TxAlock , where they
simply transfer the coins from the channel TxAsetup[(A3,B3)] to the

channel (A4,B4) controlled also by them, but adding the condition

that this can be enforced only when the T∆ time has elapsed. As

in the previous phase, this transaction is signed by both users so

that it becomes enforceable on-chain after the condition has been

satisfied; the rest of users behave analogously and operations at

each channel can be performed in parallel; the phase ends when

the coordinator receives the acknowledgement from all parties.

This channel configuration provides two key features. First, if

an adversary prevents any of the future phases to continue, the

channel’s state created at this phase can be retaken as valid after the

T∆ has elapsed, having thereby a safe fallback mechanism. Second,

the locking of each channel provides a period ofT∆ time where the

users can jointly carry out the rest of the phases to build the atomic

multi-channel update that will supersede the currently frozen state.

Phase III: Consume. In the consume phase, each pair of users

sharing a channel update their state in order to transfer the coins to

the receiver. However,we have to ensure that atomicity is preserved,

that is, either all channels do transfer the coins to the corresponding

receiver, or none of them does it. The cornerstone of our approach

towards this goal is that each transaction that sends the coins to the

expected receiver is appendedwith an additional fresh input address

that does not exist yet. In this manner, the whole transaction is not

Session 4B: Blockchain II CCS ’19, November 11–15, 2019, London, United Kingdom

807

Setup:

A B C D E

1. setup(8)
−−−−−−−→

1. setup(7)
−−−−−−−→

1. setup(6)
−−−−−−−→

1. setup(5)
−−−−−−−→

10 30 25 10

2. OK
2. OK

2. OK
2. OK

TxAsetup
In Out

Tx∗[(A1, B1)]; 10; ∅
(A2, B2); 2; ∅

(A3, B3); 8; ∅

Sig(A1), Sig(B1)

TxBsetup
In Out

Tx∗[(B′
1
,C1)]; 30; ∅

(B′
2
,C2); 23; ∅

(B′
3
,C3); 7; ∅

Sig(B′
1
), Sig(C1)

TxCsetup
In Out

Tx∗[(C ′
1
, D1)]; 25; ∅

(C ′
2
, D2); 19; ∅

(C ′
3
, D3); 6; ∅

Sig(C ′
1
), Sig(D1)

TxDsetup
In Out

Tx∗[(D′
1
, E1)]; 10; ∅

(D′
2
, E2); 5; ∅

(D′
3
, E3); 5; ∅

Sig(D′
1
), Sig(E1)

Lock:

A B C D E

3. lock(8, T∆)
−−−−−−−−−−→

3. lock(7, T∆)
−−−−−−−−−−→

3. lock(6, T∆)
−−−−−−−−−−→

3. lock(5, T∆)
−−−−−−−−−−→

8 7 6 5

4. OK
4. OK

4. OK
4. OK

TxAlock
In Out

TxAsetup[(A3, B3)]; 8; ∅ (A4, B4); 8; ∅

Sig(A3), Sig(B3); [elapsed(T∆)]

TxBlock
In Out

TxBsetup[(B
′
3
,C3)]; 7; ∅ (B′

4
,C4); 7; ∅

Sig(B′
3
), Sig(C3); [elapsed(T∆)]

TxClock
In Out

TxCsetup[(C
′
3
, D3)]; 6; ∅ (C ′

4
, D4); 6; ∅

Sig(C ′
3
), Sig(D3); [elapsed(T∆)]

TxDlock
In Out

TxDsetup[(D
′
3
, E3)]; 5; ∅ (D′

4
, E4); 5; ∅

Sig(D′
3
), Sig(E3); [elapsed(T∆)]

Consume:

A B C D E

5. consume(8)
−−−−−−−−−−→

5. consume(7)
−−−−−−−−−−→

5. consume(6)
−−−−−−−−−−→

5. consume(5)
−−−−−−−−−−→

8 7 6 5

6. OK
6. OK

6. OK
6. OK

TxAconsume
In Out

Txenable[(A5, B5)]; 7.99; ∅ B6 ; 8; ∅Txenable[eA,B]; 0.01; ∅

Sig(A3), Sig(B3)

TxBconsume
In Out

Txenable[(B′5,C5)]; 6.99; ∅ C6 ; 7; ∅Txenable[eB ,C]; 0.01; ∅
Sig(B′

5
), Sig(C5)

TxCconsume
In Out

Txenable[(C ′5, D5)]; 5.99; ∅ D6 ; 6; ∅Txenable[eC ,D]; 0.01; ∅

Sig(C ′
5
), Sig(D5)

TxDconsume
In Out

Txenable[(D′5, E5)]; 4.99; ∅ E6 ; 5; ∅Txenable[eD ,E]; 0.01; ∅

Sig(D′
5
), Sig(E5)

Finalize:

A B C D E

7. enable(8)
−−−−−−−−→

7. enable(7)
−−−−−−−−→

7. enable(6)
−−−−−−−−→

7. enable(5)
−−−−−−−−→

7. disable(8)
−−−−−−−−−→

7. disable(7)
−−−−−−−−−→

7. disable(6)
−−−−−−−−−→

7. disable(5)
−−−−−−−−−→

8 7 6 5

8. Disable OK; 9. Enable OK
8. Disable OK; 9. Enable OK

8. Disable OK; 9. Enable OK
8. Disable OK; 9. Enable OK

Txenable
In Out

TxAsetup[(A3, B3)]; 8; ∅
(A5, B5); 7.99; ∅
eA,B ; 0.01; ∅

TxBsetup[(B
′
3
,C3)]; 7; ∅

(B′
5
,C5); 6.99; ∅

eB ,C ; 0.01; ∅

TxCsetup[(C
′
3
, D3)]; 6; ∅

(C ′
5
, D5); 5.99; ∅

eC ,D ; 0.01; ∅

TxDsetup[(D
′
3
, E3)]; 5; ∅

(D′
5
, E5); 4.99; ∅

eD ,E ; 0.01; ∅

(Sig(A3), Sig(B3)), (Sig(B′
3
), Sig(C3)),

(Sig(C ′
3
), Sig(D3)), (Sig(D′

3
), Sig(E3)); ∅

Txdisable
In Out

Txenable[(A5, B5)]; 7.99; ∅
(A7, B7); 8; ∅Txenable[eA,B]; 0.01; ∅

Txenable[(B′5,C5)]; 6.99; ∅
(B′

7
,C7); 7; ∅Txenable[eB ,C]; 0.01; ∅

Txenable[(C ′5, D5)]; 5.99; ∅
(C ′

7
, D7); 6; ∅Txenable[eC ,D]; 0.01; ∅

Txenable[(D′5, E5)]; 4.99; ∅ (D′
7
, E7); 5; ∅Txenable[eD ,E]; 0.01; ∅

(Sig(A5), Sig(B5)), (Sig(B′
5
), Sig(C5)),

(Sig(C ′
5
), Sig(D5)), (Sig(D′

5
), Sig(E5));

[elapsed(T∆)]

Figure 4.2: Overview for the atomic multi-channel update (AMCU) protocol. (Left): Illustrative example of protocol messages
required to execute a call stateUp((c ⟨A,B ⟩, 8), (c ⟨B,C ⟩, 7), (c ⟨C ,D ⟩, 6), (c ⟨D ,A⟩, 5)). The numbers for each text represent the mes-
sage sequence. Messages with the same number can be handled in parallel. For readability, we denote the success of a round
by having every user send an OK message. In the actual protocol, they broadcast it to everybody else. (Right): Transactions
required to execute the illustrative example in the left. Each user U handles keys Ui with her neighbor in the right and U ′

i
with her neighbor in the left. For readability, we denote by Sig(U) the signature of the transaction by the secret key associated
toU . Finally, we denote by Tx[addr], the addr created as output in Tx.

Session 4B: Blockchain II CCS ’19, November 11–15, 2019, London, United Kingdom

808

valid (i.e., cannot be enforced on-chain) until the fresh address is

created and funded (see UTXO vs account model in Section 4.1).

Following with our running example, the consume phase starts

with user A collaborating with user B to create the transaction

TxAconsume . In this transaction, they transfer 7.99 coins from the

channel to the intended receiver (B in this case). The remaining

0.01 coins come from a fresh address eA,B that has not been funded

yet. Hence, even if B attempts to submit TxAconsume to the blockchain,

miners will reject it as one of the inputs includes an identifier for a

transaction that has not been included yet in the blockchain.

We note that, at this point, the coins at the channel between

A and B (i.e., coins at the address (A3,B3) created in TxAsetup) are
referred by two simultaneous and contradictory transactions, none

of which can be enforced yet. First, the TxAlock transfers the coins
back to a fresh channel (A4,B4), but is timelocked until T∆ elapses.

Second, TxAconsume transfers the coins to the receiver end of the

channel, but eA,B must be funded by Txenable first. We also note

the that the rest of channels in the protocol are in an analogous

situation. Thus, what we need to do now is to enable the fresh

addresses ei , j atomically, so that all channels become spendable
simultaneously.

Phase IV: Finalize. In this phase, protocol participants jointly

create a MIMO transaction that transfers coins from each channel

back to a fresh channel controlled by the same participants, except

for a small amount that is used to fund the ei , j fresh address intro-

duced for the atomicity purpose. In principle, collecting signatures

from all participants to make this transaction valid should suffice, as

this would enable atomically each of the Txiconsume transactions. In

other words, after Txenable is signed by all users, each pair of users

have a valid off-chain state (i.e., a chain of signed transactions) that

pays to the intended receiver. For instance, for the channel between

A and B, the transaction Txenable enables the address eA,B that in

turn makes valid the transaction TxAconsume that transfers the coins

from the channel to B (as expected by the protocol). Thus, A and B
would accept this as a valid transition of state as they could enforce

it by submitting Txenable and TxAconsume to the blockchain (in this

order).

However, there is a subtlety that needs to be handled. After

the time T∆ has expired, each channel has two states that can be

enforced in the blockchain. For instance, in the case of the chan-

nel between A and B, they could use TxAlock to transfer the coins

from TxAsetup[(A4,B4)] to another address also managed by them.

Additionally, they could also use Txenable and TxAconsume to get the

coins transferred to B in this case. Thus, at this point there are

two contradictory (still off-chain) states that can be included in the

blockchain.

In order to solve this issue, we have to add a condition to Txenable
of the type make invalid if T∆ has elapsed. Unfortunately, such a

transaction is not built-in in restricted scripting languages such

as the one in Bitcoin: timelock statements allow to make a trans-

action invalid before a given time and valid afterwards, but not

vice-versa, which, however, is what we need here (see [7] for more

details). Thus, we simulate it by letting the protocol participants

create a transaction Txdisable that is defined to revert the effect of

Txenable , that is, to send back all the coins on each channel to another
channel managed by the same users. For instance, in our running

example, Txdisable transfers the coins from Txenable[(A5,B5)] and
Txenable[eA,B] to (A7,B7), an address handled byA and B. Note that
the transaction Txdisable can be added to the blockchain after T∆
has elapsed. This ensures that during T∆, no user would revoke the

state formed by Txenable and the corresponding Txiconsume .

We make three considerations here. First, the Txdisable should be
created and signed before the Txenable so that users make sure that

they can void Txenable if required. Second, the T∆ used in Txdisable
should be the same as the one used in the different Txilock so that

(if required), users must choose between submitting the pair of

transactions (Txenable , Txdisable) or the transactions Txilock . Finally,
it is theoretically possible that miners choose to mine Txenable and
refuse to mine Txdisable . A miner can always censor transactions

and this is an interesting but orthogonal problem. Moreover, even if

Txdisable gets censored, honest users do not directly lose their coins

as Txenable sends the coins from one channel to another channel

owned by the same two users.

5 THE AMCU PROTOCOL
5.1 Building Blocks
Timelock Mechanism.We require a timelock mechanism avail-

able in the blockchain that enforces that a transaction is added to

the blockchain only after a certain time (set as parameter of the

transaction) has elapsed. In practice, virtually all cryptocurrencies

implement such timelock mechanism where the time is defined as

the block height. In a bit more detail, assume a transaction can be

appended with a block height h. Let h∗ be the current block height

in the blockchain. Then, the transaction will be rejected by the

miners and thus notincluded in the blockchain while it holds that

h < h∗. We refer the reader to [6] for more details. We note that

as the blockchain is probabilistically extended, the block height at

a certain point in time can only be estimated. This could lead to

longer timeouts to safely account for the probabilistic bias. This is

an orthogonal problem common to many blockchain applications

(even Ethereum-based ones) that rely on the same timemanagement

mechanism.

Digital Signature Scheme. A digital signature scheme is a tu-

ple of algorithms (Gen, Sign,Verify) defined as follows. sk, vk ←
Gen(1λ) takes as input the security parameter 1

λ
and returns a

public of signing and verification keys (sk, vk). σ ← Sign(sk,m)
takes as input the signing key sk and a message m and returns

a signature σ . Finally, {1, 0} ← Verify(vk,m,σ) takes as input a
verification key vk, a messagem and a signature σ and returns 1 if

σ is a valid signature on messagem created with the signing key

corresponding to vk. Otherwise, it returns 0. We refer the reader

to [9] for the security definition in the UC framework.

MIMO Transactions. A MIMO transaction supports multiple

addresses as input and multiple addresses as output. Such a trans-

action is valid on-chain if the following conditions hold: (i) each

input address has been previously funded with a certain amount

of coins Ii ; (ii) Let O j the amount of coins set to the output j, then∑
i Ii =

∑
j O j ; (iii) The complete transaction is signed with the

signing keys associated to each input address. MIMO transactions

are available in virtually all cryptocurrencies today.

Session 4B: Blockchain II CCS ’19, November 11–15, 2019, London, United Kingdom

809

openChannel(sid,vj , βi , βj ,σi , t):
The caller vi creates a transaction Tx1 := ({({vi }, txidi), {vj }, txidj }, {({vi ,vj }, βi + βj)}, 0), calculates its transaction id txid1 as well

as Tx2 := ({({vi ,vj }, txid1)}, {({vi }, βi), ({vj }, βj)}, 0), signs both and forwards Sig(Tx2) to vj . Upon receiving the signature vj signs
Tx1 and Tx2 and sends both signatures to vi . Finally vi signs Tx1 and sends the signature to vj . Finally vi sends (sid, commit-transfer,
{({vi }, txidi), {vj }, txidj }, {({vi ,vj }, βi + βj)}, 0, {σi ,σj }) to L.
closeChannel(sid, c ⟨vi ,vj ⟩,σi , j):
Party vi uses the stored σj to send (sid, commit-transfer, {({vi ,Pj }, txid1)}, {({vi }, βi), ({vj }, βj)}, 0, {σi ,σj }) to L.
updateState(sid, {(c ⟨vi ,vj ⟩, δi , j)}i , j ∈[1...n]):
Let E := {(c ⟨v2i−1,v ′

2i ⟩
, δi)}i ∈[1...n] be the set of all updates,V the set of all users affected by the state update and v0 the node initiating the

updateState protocol.

Main Protocol:
(1) v0 sends the message (sid, init-update, E) to all parties inV .

(2) All parties vi receive (sid, init-update, E) and validate E and decide whether to continue with the protocol. In case they do not

continue they send (sid, reject-update) to all vi ∈ V .

(3) Then, for all (c ⟨vi ,vj ⟩, δi , j) ∈ E, the participants vi and vj create Txsetup := ({({vi ,vj }, txid1)}, {({vi }, δi , j), ({vi }, βi −
δi , j), ({vj }, βj)}, 0) and exchange signatures. Then create Txlock := ({({vi }, txidTxsetup)}, {({vi }, δi , j)}, t + ∆), where βi and βj are set

to the current state of the channel and t the current time sign it and exchange their signatures and send (sid, accept-update) to v0 if
all of them succeed and (sid, reject-update) to all vi ∈ V otherwise.

(4) Upon receiving (sid, accept-update) from all participants,v0 sends (sid, transactions-update,GenTxenable (v0, E),GenTxdisable (v0, E, txidTxenable))
to all vi ∈ V . Then vi create σTxdisable := Sig(Txdisable) and sends (sid, disable-update,σTxdisable) to all other parties vj ∈ V .

(5) After receiving all (sid, disable-update,σTxdisable), for each (c ⟨vi ,vj ⟩, δi , j) ∈ E, vi and vj create Txi , jconsume :=

({({vi }, txidTxsetup), ({vj }, txidTxenable)}, {({vj }, δi , j)}, t + ∆) and exchange signatures.

(6) All parties vi create σTxenable := Sig(Txenable) and send (sid, enable-update,σTxenable) to all other parties vj ∈ V .

(7) Once they received all (sid, enable-update,σTxenable), all parties advance the round with Fsyn.

Error Cases:
(1) If the protocol aborts before the party vi has created (sid, get-transfer, txidTxenable), the party aborts the protocol

(2) If a party receives (sid′, notify-transfer, txidTxenable) from L

• if Txdisable is already valid send (sid, commit-transfer, Txdisable, {σkTxdisable }k ∈V) to L

• else send (sid, commit-transfer, Txi , jconsume, {σ
k
Txconsume

}k ∈{i , j }) for all channels to L

GenTxenable (v, E):

LetV in
:= {(v, ·)},Vout

:= {({vj }, ϵ)|(c ⟨vi ,vj ⟩, δi , j) ∈ E} where ϵ is the minimum value supported by L and return (V in,Vout, 0)

GenTxdisable (v, E, txidTxenable):

LetV in
:= {({vj }, txidTxenable)|(c ⟨vi ,vj ⟩, δi , j) ∈ E},V

out
:= {v} and return (V in,Vout, t + ∆)

Figure 5.1: AMCU protocol

5.2 Formal Description of the Protocol
We formalize our PCN

+
protocol in the (Fsmt ,Fsyn,L)-hybridmodel,

as detailed in Figure 5.1, where Fsyn and Fsmt are taken from

Canetti [8] and L is defined in Appendix B. We choose this def-

inition of L over other existing ones [13, 14, 21, 22] because it

models the timeout functionality, which is a key operation in our

protocol. For a given session identifier sid, we will also use sidn as

a shorthand for (sid,n). We assume a well-ordering on the set of

participants which can, for example, be realized by lexicographical

order of their public keys and denote the first participant, who also

acts as a leader, by v0. The set of all participants is denoted byV .

For readability, we assume that every user is able to compute a

transaction identifier from the transaction content itself.

The openChannel and closeChannel work as defined for other

PCNs. Thus, we focus on the description of updateState. Here,

steps 1 and 2 ensure that all users want to participate in the pro-

tocol and if so, they create their corresponding Txsetup and Txlock
in step 3. Then, the coordinator sends an unsigned version of the

Txenable and Txdisable to all participants, who sign the Txdisable first.
This ensures that they have the fallback mechanism signed before

they enable the transfer of coins in Txenable . Similarly, protocol

participants sign their corresponding Txconsume in step 5. As before,

this ensures that every participant can send the coins from Txenable
to the corresponding receiver if the protocol is successful. Finally,

steps 6 and 7 finalize the protocol by exchanging the signatures

for the Txenable and advancing the round for a new execution of

updateState. In case that a party aborts the protocol or does not

answer within the fixed timeframe, there are two cases to consider.

If Txenable has not yet been signed (Case 1), then no new state can be

enforced by any party and no further action is required. If however

a party has sent its signature on Txenable (Case 2) there might exist

Session 4B: Blockchain II CCS ’19, November 11–15, 2019, London, United Kingdom

810

a party that can publish Txenable and therefore enforce the state

update. If Txenable is indeed published within ∆ each party needs to

enforce the new state using Txconsume . Otherwise parties are free to

continue using their channels but need to timely publish Txdisable
if Txenable is published.

5.3 Discussion
Reducing the Memory Overhead. As presented so far, the

AMCU protocol requires that users store several transactions off-

chain as part of the final state. For instance, for the success case,

user A needs to store TxAsetup , Txenable and TxAconsume as part of the

new state. The same applies for the fallback cases. We note that if

channel users are honest and collaborate with each other, they can

reduce the memory overhead by simplifying the required number

of transactions to represent the state.

The main idea is that all three possible states contain a common

transaction Txisetup that is also the one required to trigger the rest

of transactions in the state. In other words, independently of the

state the protocol ends up, each user must submit first Txisetup to the
blockchain to be able to enforce the other transactions in the state.

Therefore, users can replace the three transactions in the state by a

single one that represents the same distribution of coins, after hav-

ing invalidated Txisetup . For instance, assume the protocol execution

depicted in Figure 4.2. Further assume that the protocol ends up

with each user holding a valid state as defined for the successful ex-

ecution of the protocol. Here, A and B must hold TxAsetup , Tx
A
consume

and Txenable as the state information regarding their shared channel.

Now, if they collaborate, they can revoke TxAsetup using the standard
mechanism already implemented in the Lightning Network [31].

This mechanism allows users to atomically replace that revocation

information through another transaction. This transaction should

contain then the same outcome as if TxAsetup , Tx
A
consume and Txenable

are enforced on-chain. In our example, it should transfer 10 coins

from (A1,B1) and send them as 8 coins to B6 and 2 coins to (A2,B2).
Here, we have used the example of A and B, but the rest of users

can perform analogous operations. Moreover, the same technique

can be applied to the state resulting from the other protocol out-

comes.

Accountability. The AMCU sacrifices strong privacy guaran-

tees such as relationship anonymity [21] to achieve not only atom-

icity and reduced collateral but also a notion of accountability. In

particular, if in any of the protocol phases one of the users reports

a failure instead of success, the protocol allows the blaming user to

provide a proof of misbehavior. In a nutshell, provided that all users

have agreed on the set of addresses composing the channels set as

protocol inputs, the steps of the protocol are deterministically de-

fined. Thus, at each step a user can blame the channel counterparty

if she does not provide the signature for the transaction created at

that phase. Note that the counterparty can also show that she was

falsely blamed by actually providing the missing signature. In this

case, the protocol can continue to the following phase.

5.4 Security Analysis
The security of AMCU is established in Theorem 5.1. We defer the

security proof to Appendix A. We note that in Section 3, we have

discussed how the ideal functionality F +pcn achieves atomicity and

value privacy. Here, Theorem 5.1 shows that AMCU UC-realizes

F +pcn. Thus, AMCU provides both atomicity and value privacy.

Theorem 5.1 . If the signature scheme is EU-CMA secure, then
AMCU UC-realizes F +pcn in the (Fsmt ,Fsyn,)-hybrid-model.

We now give an intuition on how AMCU achieves atomicity and

value privacy.

Atomicity. AMCU aims at enforcing the following invariant: If

the coins – held at one of the channels – are sent to the intended

receiver (i.e., the Txconsume is ready to be pushed on the blockchain),

then all the other senders should be in the condition of pushing

their Txconsume on the blockchain too. Notice that parties may push

such transactions on the blockchain, but in an ideal case they will

not since the whole protocol is supposed to run off-chain.

Let us now illustrate how this invariant is enforced by consider-

ing the most significant execution cases. First, assume that some

participants reach step 3 ({Txilock} are signed) but some other par-

ticipant aborts. In this case, each Txilock transfers the coins from one

channel to another fresh channel owned by the same two partici-

pants and the coins become available again. Second, some partic-

ipants exchange the signatures for {TxCi }, Txdisable , and Txenable
in this order (steps 4 to 6). Here there are three possibilities: (i)

some of them publishes Txenable before T∆ has expired. In this case,

everybody can use their corresponding Txiconsume to send the coins

to their intended receivers, thereby successfully completing the

protocol; (ii) some participant publishes Txenable after T∆. In this

case, everybody can publish Txdisable to go back to the initial coin

distribution; and (iii) some user publishes Txilock after T∆. In this

case, Txenable is invalid as the referred inputs have been spent and

each other participant can use their Tx jlock to get the coins back into
a fresh channel.

Value Privacy. AMCU must achieve the following invariant:

For a successful execution of updateState, the transaction values

must be known only to protocol participants. This is easy to see as

updateState is a peer-to-peer protocol executed only among proto-

col participants on secret, authenticated channels (i.e., no auxiliary

third party is involved).

6 EVALUATION
Here, we evaluate the performance of AMCU. We denote by n
the number of protocol participants andm the number payment

channels.

Implementation-Level Optimizations. At each phase, each

pair of users can create the signatures over the corresponding trans-

action independently from other users. Moreover, the setup, lock

and consume phases can be performed in parallel as they create

transactions that cannot be enforced (i.e., Txiconsume) or transactions

that result in a safe fallback state (i.e., Txisetup and Txilock). Finally,
details about Txenable and Txdisable can be exchanged in parallel.

However, they have to be signed sequentially to ensure that ev-

ery user gets Txdisable (i.e., fallback mechanism), before Txenable is
signed.

Number of Transactions. Let us assume a transaction onm
channels. AMCU requires two transactions independently on the

number of channels (i.e., Txenable and Txdisable). Moreover, it re-

quiresm setup transactions,m lock transactions, andm consume

Session 4B: Blockchain II CCS ’19, November 11–15, 2019, London, United Kingdom

811

transactions. We note, however, that these 3 ·m+ 2 transactions are
handled off-chain, thus they do not impose any on-chain overhead.

Number of Rounds. Our protocol requires 3 synchronization
rounds. First, each party must check that all others received the

expected signatures on the Txisetup , Tx
i
lock , and Txiconsume . Second,

parties must synchronize to get the signatures over the Txdisable .
Finally, in the last round, they jointly sign the transaction Txenable
to finalize the protocol. In summary, AMCU requires a constant

(i.e., 3) number of rounds, independently on the number of parties.

Communication Overhead. First, for each channel c ⟨vi ,vj ⟩
bothvi andvj sign Txisetup ,Tx

i
lock as well as Tx

i
consume and exchange

the signatures. Moreover, each user signs Txdisable and transmits

the signature. Then, for each channel c ⟨vi ,vj ⟩ each user transmits

an additional signature over the transaction Txenable . Thus, AMCU

requires the exchange of 2n + 6m signatures for n users and m
channels in total. Moreover, as a constant number of signatures are

included in every message, the communication overhead is almost

only limited by the network latency.

Computation Time. The AMCU protocol does not require any

costly cryptography. In particular, it requires that each user verifies

locally the signatures for the involved transactions. Moreover, each

user must compute three signatures per channel and two extra

signatures independent of the number of her channels. These are

also simple computations than can be executed in negligible time

even with commodity hardware.

Comparison with LN. While the LN requiresm transactions

(i.e., an HTLC transaction per channel), AMCU requires 3m + 2

transactions. However, while the 3m transactions can be handled

in parallel (see implementation-level optimizations), them transac-

tions are inherently sequential in the LN. In fact, the LN requires

2n synchronization rounds among channel counterparties while

AMCU requires only 3 rounds, independently of the number of

channels in the path. Regarding communication overhead, LN re-

quires 2m messages while AMCU requires 2n+6m. As before, while

AMCU requires more messages, the overall protocol execution time

is similar as the 6m messages can be handled in parallel.

7 APPLICATIONS
Payment Channel Networks (PCN). A PCN enables multi-hop

payments, that is, a payment between a sender and a receiver that do

not have an opened channel between them, but rather are connected

through a path of opened payment channels.

We can use AMCU to design the first Bitcoin-compatible PCN

with constant collateral as follows. Assume a pair of sender vs
and receiver vr that want to carry out a payment through a path

of intermediate users v1, . . . ,vn . Further assume that vs wants

to send β coins to vr and that each vi charges a fee of γi . Such
payment can be carried out in AMCU as a call to updateState
of the form: updateState({(c ⟨vs ,v1 ⟩, β +

∑
i ∈[1,n] γi), (c ⟨v1,v2 ⟩, β +∑

i ∈[2,n] γi), . . . , (c ⟨vn ,vr ⟩, β)}).
Rebalancing. Another fundamental challenge for practical

PCNs consists in the refunding of payment channels. Repeated pay-

ment patterns in a PCN lead to depleted channels. A depleted chan-

nel is forcing two on-chain transactions per channel to top it up:

(i) closing of the channel and (ii) opening of a new channel with

fresh balances. Avoiding the refunding of depleted channels is not

a desirable alternative either: users need to choose longer and thus

more expensive (in terms of fees) routes.

We can leverage AMCU to encode the first Bitcoin-compatible

rebalancing protocol with constant collateral: prior work achieved

a similar result in Ethereum [13, 14, 18], but it was an open ques-

tion whether or not the same could be done in Bitcoin-compatible

blockchains. Assume that users va,vb ,vc have jointly agreed in

rebalancing 20 coins in the loopva → vb → vc . Such a rebalancing
can be carried out in AMCU as a call to updateState of the form:

updateState({(c ⟨va ,vb ⟩, 20), (c ⟨vb ,vc ⟩, 20), (c ⟨va ,vc ⟩, 20)}).
Crowdfunding. Assume a set of users v1, . . . ,vn that jointly

want to fund another user vr . In such setting, crowdfunding con-

sists of a multi-payment operation where each sender vi sends an
amount βi of coins to vr so that

∑
i βi is the funding amount ex-

pected by the receiver. For such a protocol,multi-payment atomicity

is highly desirable as it ensures that either every user vi actually
pays the expected βi or each user gets her coins back.

Assume that each sender vi has a direct payment channel to the

receiver. If a sender vj is connected through a path to the receiver

instead, our protocol can be trivially extended by including all chan-

nels in the path from vj to vr . In such setting, a updateState is

a crowdfunding operation among a set of users v1, . . . ,vn for a

receiver vr if it is of the form updateState({(c ⟨vi ,vr ⟩, βi)}i ∈[1,n]).

8 RELATEDWORK
The severe scalability issues present in virtually all current cryp-

tocurrencies have motivated a wide range of proposals for PCNs

from both in academia and industry. In this section, we situate

AMCU in the landscape of the state-of-the-art (see Table 1).

First, we study atomicity. All protocols achieve it, except for the

Lightning Network, which is vulnerable to a wormhole attack [22].

This is fixed in the AMHL construction and in AMCU, as all partic-

ipants are aware of all channels used in the protocol due to the use

of the MIMO transaction.

Second, we consider the collateral. In particular, we note two

possible scenarios: (i) staggered, where each channel in the pay-

ment path requires to hold coins for a time period longer that the

one in the next channel; (ii) constant, where the time that coins

are required to be locked is the same at all channels in the path.

Constant collateral has the clear advantage in practice of reduc-

ing the amount of time that coins are locked in the PCN, which

can then be faster reused for other payments. It also mitigates the

attacker power for griefing attacks. The only systems achieving

constant collateral, however, were up to now only those based on

trusted execution environment (i.e., TeeChain) or on Ethereum,

and it was conjectured that the same was not possible in Bitcoin-

compatible PCNs [25]. We refute this conjecture by presenting the

first Bitcoin-compatible offchain payment system with constant col-

lateral. AMCU shows thus that generic applications possible today

in Ethereum-based solutions like Perun or in TEE-enabled systems

like Teechain, can potentially be deployed in cryptocurrencies with

restricted scripting language.

Finally, we compare the functionality provided by each alterna-

tive. Most of the considered protocols have been tailored to offer

a PCN functionality. Revive is an off-chain payment system that

Session 4B: Blockchain II CCS ’19, November 11–15, 2019, London, United Kingdom

812

Required blockchain Atomicity Collateral Functionality

Multi-HTLC [21] Bitcoin Yes staggered PCN

AMHL [22] Bitcoin Yes staggered PCN

Lightning Network [31] Bitcoin No staggered PCN

Perun [13, 14] Ethereum Yes constant Generic

Sprites [25] Ethereum Yes constant PCN

Raiden [5] Ethereum Yes constant PCN

Revive [18] Ethereum Yes - Rebalancing

BOLT [15] ZCash Yes - Payment hub

TeeChain [19] None (TEE) Yes constant Payment hub, PCN

AMCU Bitcoin Yes constant Generic

Table 1: Comparison among state-of-the-art in the literature for PCN protocols.

provides rebalancing operation built-in. Moreover, BOLT is tai-

lored to payment hubs (i.e., payments with a single intermediary)

and it is unclear how to extend it to support multi-hop payments.

Although Perun [13] initially provided a PCN functionality, its ex-

tension [14] shows that it is possible to leverage Turing-complete

language to build generic applications. AMCU also offers a generic

updateState protocol that can be used to encode different pro-

tocols compatible with Bitcoin, eliminating the requirement for a

Turing-complete language. We have shown for instance how to

leverage updateState to encode a payment, a rebalancing opera-

tion and a crowdfunding operation.

9 CONCLUSIONS
In this work, we presented AMCU, the first multi-channel update

protocol for PCNs on cryptocurrencies with restricted scripting

that achieves constant collateral. We define channel updates in

terms of an ideal functionality and prove our protocol secure in the

Universal Composability framework. We further show how AMCU

mitigates the griefing attack in PCNs and, at the same time, enables

the design of a large class of applications of practical interest, such

as rebalancing procedures, crowd-funding, and more.

As a future work, we intend to explore cryptographic techniques

to strengthen the privacy of individual channel updates with respect

to the other protocol parties. Furthermore, it would be interesting

to formalize and analyze the various forms of accountability pro-

vided by the current PCN constructions, formally exploring the

connection between atomicity, accountability, and privacy.

ACKNOWLEDGMENTS
This work has been partially supported by the the European Re-

search Council (ERC) under the European Union’s Horizon 2020

research (grant agreement 771527-BROWSEC); by Netidee through

the projectEtherTrust (grant agreement 2158) and PROFET (grant

agreement P31621); by the Austrian Research Promotion Agency

through the Bridge-1 project PR4DLT (grant agreement 13808694);

by COMET K1 SBA, ABC; by Chaincode Labs; by the Austrian Sci-

ence Fund (FWF) through the Lisa Meitner program; by the German

research foundation (DFG) through the collaborative research cen-

ter 1223; by the German Federal Ministry of Education and Research

(BMBF) through the project PROMISE (16KIS0763); and by the State

of Bavaria at the Nuremberg Campus of Technology (NCT). NCT is a

research cooperation between the Friedrich-Alexander-Universität

Erlangen-Nürnberg (FAU) and the Technische Hochschule Nürn-

berg Georg Simon Ohm (THN).

REFERENCES
[1] [n. d.]. C-Lightning Network. https://github.com/ElementsProject/lightning.

[2] [n. d.]. CoinMarketCap. Website. https://coinmarketcap.com/currencies/bitcoin.

[3] [n. d.]. Eclair Network. https://github.com/ACINQ/eclair.

[4] [n. d.]. Lightning Network Daemon. Github repository. https://github.com/

lightningnetwork/lnd.

[5] [n. d.]. Raiden Network. https://raiden.network/.

[6] 2018. Bitcoin protocol documentation. https://en.bitcoin.it/wiki/Protocol_

documentation.

[7] 2019. Bitcoin Script Wiki. https://en.bitcoin.it/wiki/Script.

[8] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for

Cryptographic Protocols. In 42nd Annual Symposium on Foundations of Computer
Science. IEEE Computer Society Press, 136–145. https://doi.org/10.1109/SFCS.

2001.959888

[9] Ran Canetti. 2003. Universally Composable Signatures, Certification and Authen-

tication. Cryptology ePrint Archive, Report 2003/239. https://eprint.iacr.org/

2003/239.

[10] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. 2007. Universally

Composable Security with Global Setup. In TCC 2007: 4th Theory of Cryptography
Conference (Lecture Notes in Computer Science), Salil P. Vadhan (Ed.), Vol. 4392.

Springer, Heidelberg, 61–85. https://doi.org/10.1007/978-3-540-70936-7_4

[11] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed E.

Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song,

and RogerWattenhofer. 2016. On Scaling Decentralized Blockchains - (A Position

Paper). In Financial Cryptography and Data Security - FC 2016 International Work-
shops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26, 2016,
Revised Selected Papers. 106–125. https://doi.org/10.1007/978-3-662-53357-4_8

[12] Christian Decker. 2018. Eltoo: A Simple Layer2 Protocol for Bitcoin. (2018), 1–24.

https://blockstream.com/eltoo.pdf

[13] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski. 2019. Perun: Virtual

Payment Hubs over Cryptocurrencies. In 2019 2019 IEEE Symposium on Security
and Privacy (SP), Vol. 00. 311–328. https://doi.org/10.1109/SP.2019.00020

[14] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. 2018. General

State Channel Networks. In ACM CCS 2018: 25th Conference on Computer and
Communications Security, David Lie, Mohammad Mannan, Michael Backes, and

XiaoFeng Wang (Eds.). ACM Press, 949–966. https://doi.org/10.1145/3243734.

3243856

[15] Matthew Green and Ian Miers. 2017. Bolt: Anonymous Payment Channels for

Decentralized Currencies. In ACM CCS 2017: 24th Conference on Computer and
Communications Security, Bhavani M. Thuraisingham, David Evans, Tal Malkin,

and Dongyan Xu (Eds.). ACM Press, 473–489. https://doi.org/10.1145/3133956.

3134093

[16] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and Sharon

Goldberg. 2017. TumbleBit: An Untrusted Bitcoin-Compatible Anonymous Pay-

ment Hub. In 24th Annual Network and Distributed System Security Symposium,
NDSS 2017, San Diego, California, USA, February 26 - March 1, 2017.

[17] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. 2013. Universally

Composable Synchronous Computation. In TCC 2013: 10th Theory of Cryptogra-
phy Conference (Lecture Notes in Computer Science), Amit Sahai (Ed.), Vol. 7785.

Springer, Heidelberg, 477–498. https://doi.org/10.1007/978-3-642-36594-2_27

[18] Rami Khalil and Arthur Gervais. 2017. Revive: Rebalancing Off-Blockchain Pay-

ment Networks. In ACM CCS 2017: 24th Conference on Computer and Communica-
tions Security, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan

Xu (Eds.). ACM Press, 439–453. https://doi.org/10.1145/3133956.3134033

Session 4B: Blockchain II CCS ’19, November 11–15, 2019, London, United Kingdom

813

https://github.com/ElementsProject/lightning
https://coinmarketcap.com/currencies/bitcoin
https://github.com/ACINQ/eclair
https://github.com/lightningnetwork/lnd
https://github.com/lightningnetwork/lnd
https://raiden.network/
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Script
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://eprint.iacr.org/2003/239
https://eprint.iacr.org/2003/239
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-662-53357-4_8
https://blockstream.com/eltoo.pdf
https://doi.org/10.1109/SP.2019.00020
https://doi.org/10.1145/3243734.3243856
https://doi.org/10.1145/3243734.3243856
https://doi.org/10.1145/3133956.3134093
https://doi.org/10.1145/3133956.3134093
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1145/3133956.3134033

[19] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Peter R. Pietzuch, and

Emin Gün Sirer. 2018. Teechain: Reducing Storage Costs on the Blockchain

With Offline Payment Channels. In International Systems and Storage Conference.
125.

[20] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. 2017.

SilentWhispers: Enforcing Security and Privacy in Decentralized Credit Networks.

In ISOC Network and Distributed System Security Symposium – NDSS 2017. The
Internet Society.

[21] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Sri-

vatsan Ravi. 2017. Concurrency and Privacy with Payment-Channel Networks.

In ACM CCS 2017: 24th Conference on Computer and Communications Security,
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.).

ACM Press, 455–471. https://doi.org/10.1145/3133956.3134096

[22] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and

Matteo Maffei. 2019. Privacy-preserving Multi-hop Locks for Blockchain Scalabil-

ity and Interoperability. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24 - February 27,
2019.

[23] PatrickMcCorry, Surya Bakshi, Iddo Bentov,AndrewMiller, and SarahMeiklejohn.

2018. Pisa: Arbitration Outsourcing for State Channels. Cryptology ePrint

Archive, Report 2018/582. https://eprint.iacr.org/2018/582.

[24] Patrick Mccorry, Malte Möser, Siamak F. Shahandasti, and Feng Hao. 2016.

Towards Bitcoin Payment Networks. In Proceedings, Part I, of the 21st Aus-
tralasian Conference on Information Security and Privacy - Volume 9722. Springer-
Verlag New York, Inc., New York, NY, USA, 57–76. https://doi.org/10.1007/

978-3-319-40253-6_4

[25] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, Christopher Cordi, and Patrick

McCorry. 2019. Sprites and State Channels: Payment Networks That Go Faster

than Lightning. In Financial Cryptography and Data Security - FC 2019 Inter-
national Workshops, BITCOIN, VOTING, and WTSC, St. Kitts, February 18, 2019,
Revised Selected Papers.

[26] PedroMoreno-Sanchez,Aniket Kate,MatteoMaffei, andKim Pecina. 2015. Privacy

Preserving Payments in Credit Networks: Enabling trust with privacy in online

marketplaces. In ISOC Network and Distributed System Security Symposium –
NDSS 2015. The Internet Society.

[27] Pedro Moreno-Sanchez, Navin Modi, Raghuvir Songhela, Aniket Kate, and So-

nia Fahmy. 2018. Mind Your Credit: Assessing the Health of the Ripple Credit

Network. In Proceedings of the 2018WorldWideWeb Conference (WWW ’18). Inter-
nationalWorldWideWeb Conferences Steering Committee, Republic and Canton

of Geneva, Switzerland, 329–338. https://doi.org/10.1145/3178876.3186099

[28] Pedro Moreno-Sanchez, Tim Ruffing, and Aniket Kate. 2017. PathShuffle: Credit

Mixing and Anonymous Payments for Ripple. PoPETs 2017, 3 (2017), 110. https:

//doi.org/10.1515/popets-2017-0031

[29] Pedro Moreno-Sanchez, Muhammad Bilal Zafar, and Aniket Kate. 2016. Listening

to Whispers of Ripple: Linking Wallets and Deanonymizing Transactions in the

Ripple Network. Proceedings on Privacy Enhancing Technologies 2016, 4 (Oct.

2016), 436–453. https://doi.org/10.1515/popets-2016-0049

[30] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. (2009),

9. https://bitcoin.org/bitcoin.pdf

[31] Joseph Poon and Thaddeus Dryja. 2016. The Bitcoin Lightning Network: Scal-

able Off-Chain Instant Payments. (2016), 1–59. https://lightning.network/

lightning-network-paper.pdf

[32] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. 2018.

Settling Payments Fast and Private: Efficient Decentralized Routing for Path-

Based Transactions. In ISOC Network and Distributed System Security Symposium
– NDSS 2018. The Internet Society.

[33] Daira Hopwood Sean Bowe. 2017. Hashed Time-Locked Contract transactions.

Bitcoin Improvement Proposal. https://github.com/bitcoin/bips/blob/master/

bip-0199.mediawiki.

[34] Manny Trillo. 2013. Stress Test Prepares VisaNet for the Most Wonder-

ful Time of the Year. http://www.visa.com/blogarchives/us/2013/10/10/

stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.

html. Accessed: 2017-08-07.

[35] Shira Werman and Aviv Zohar. 2018. Avoiding Deadlocks in Payment Channel

Networks. In Data Privacy Management, Cryptocurrencies and Blockchain Tech-
nology, Joaquin Garcia-Alfaro, Jordi Herrera-Joancomartí, Giovanni Livraga, and

Ruben Rios (Eds.). Springer International Publishing, Cham, 175–187. https:

//doi.org/10.1007/978-3-030-00305-0_13

A SECURITY OF AMCU PROTOCOL
Our proof will proceed by describing a simulator S that interacts

with the ideal functionality F +pcn and emulates an indistinguishable

protocol execution for an adversary A against π+pcn. As a visual

clue we use pine green to mark messages in the ideal world and

blue violet to mark messages in the real world.

We focus on the updateState method. The security

openChannel and closeChannel follows along the same

lines.

The simulator starts by forwarding all corruption requests to the

functionality. It also maintains a consistent set of signing keys for

the simulated honest users so it can sign transactions on their behalf.

If it receives any invalid message from A it aborts the execution.

Triggered by Honest User. If the update was triggered

by an honest user, S continues as follows. First, S receives

(sid, setup-query, E) from F +pcn. It then sends (sid, init-update, E)
on behalf of that honest user to A. If A responds with

(sid, reject-update), it sends (sid,⊥) to the functionality as response
to setup-query and aborts the simulation, otherwise it sends (sid,⊤).
S then waits for the (sid,v, setup-success) message from F +pcn and

creates Txsetup and Txlock on behalf of honest users neighboring

compromised users and then simulates the exchange of signatures

with the adversary and sends (sid,⊥) as response to lock-query to

F +pcn if any of these fail.

S creates (sid, transactions-update,GenTxenable (v0, E),
GenTxdisable (v0, E, txidTxenable)) and sends it to the adversary

on behalf of v0 and collects the (sid, disable-update,σTxdisable)
responses from the adversary. If A does not send the response

for all compromised users, S sends (sid,⊥) as response to

lock-query to F +pcn and aborts and sends (sid,⊤) otherwise. S
then simulates the following interaction for any channel shared

between compromised and honest participants: Create Txi , jconsume
and simulate the exchanged signatures with the adversary on

txidTxconsume . If any of the simulations fail send (sid,⊥) to F +pcn as

response to consume-query and abort, otherwise send (sid,⊤).
Next, S simulates the creation of signatures on Txenable for all

honest users and sends them to A. If A produces signatures on

Txenable for all corrupted parties, S sends (sid,⊤) as response to
enable-query and (sid,⊥) otherwise. Finally advances the round

with Fsyn .

Triggered by A. Instead of receiving (sid, setup-query, E)
from F +pcn, S receives (sid, init-update, E) from A, sends

(sid, state-update, {(c ⟨v2i−1,v2i ⟩, δi)}i ∈[1...n]) to F +pcn and re-

ceives (sid, setup-query, {(c ⟨v2i−1,v2i ⟩, δi)}i ∈[1...n]). If A sends

(sid, reject-update) for any compromised user, it sends (sid,⊥) to
the functionality and aborts the simulation, otherwise it sends

(sid,⊤). Then it creates Txsetup and Txlock on behalf of honest users

neighboring compromised users and simulates the exchange of

signatures with the adversary. If any of these fail, it sends (sid,⊥)
as response to lock-query and (sid,⊤) otherwise.
S then receives (sid, transactions-update,GenTxenable (v0, E),

GenTxdisable (v0, E, txidTxenable)) from the adversary and responds

with with (sid, disable-update,σTxdisable). If A does not send the

response for all compromised users S sends (sid,⊥) as response
to lock-query to F +pcn and abort, otherwise send (sid,⊤). Next, S
simulates the following interaction for any channel shared between

compromised and honest participants: Create Txi , jconsume and sim-

ulate the exchange signatures with the adversary on txidTxconsume .

Session 4B: Blockchain II CCS ’19, November 11–15, 2019, London, United Kingdom

814

https://doi.org/10.1145/3133956.3134096
https://eprint.iacr.org/2018/582
https://doi.org/10.1007/978-3-319-40253-6_4
https://doi.org/10.1007/978-3-319-40253-6_4
https://doi.org/10.1145/3178876.3186099
https://doi.org/10.1515/popets-2017-0031
https://doi.org/10.1515/popets-2017-0031
https://doi.org/10.1515/popets-2016-0049
https://bitcoin.org/bitcoin.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
https://doi.org/10.1007/978-3-030-00305-0_13
https://doi.org/10.1007/978-3-030-00305-0_13

Init
Upon receiving a message (sid, init), set B = ∅, P = ∅ and T = 0. Reject any further messages of the form (sid, init)
Create Account
Upon receiving a message (sid, create-acc,V, β) insert the tuple ((V, ·), β,) in B. Update T := T + 1.

Commit transfer
Assume the reception of a message (sid, commit-transfer, {(Vi , txidi)}i ∈[1,n], {(Vj , βj)}, t,σ := {σi }i ∈[1,n])

(1) Let {((Vi , txidi), βi , ti)} be the set of tuples in B corresponding to {(Vi , txidi)}i ∈[1,n]. Then, L checks the following conditions:

•
∑
i βi =

∑
j βj

• For all signer groupsVj and signers vj ∈ Vj there exists a signature σj ∈ σ
• t < T

(2) If any of the previous conditions is not satisfied, L returns the message (sid,⊥). Otherwise, L removes the entries in {(Vi , txidi , βi }
from B and for eachVj , it inserts a new entry of the form (Vj , txid, βj). where txid is the transaction id of the commited transaction.

(3) Finally, send (sid, notify-transfer, txid) to all users and update T := T + 1.

Figure B.1: Ledger functionality L

If any of the simulations fail send (sid,⊥) to F +pcn, as response to
consume-query and abort. Otherwise send (sid,⊤).
S then simulates the creation of signatures on Txenable for all

honest users and sends them to A. If A produces signatures on

Txenable for all corrupted parties, S sends (sid,⊤) as response to
enable-query and (sid,⊥) otherwise. Finally, advance the round

with Fsyn .

B LEDGER FUNCTIONALITY
In this section, we describe the ledger functionality L that serves

to model a blockchain. We use then L to interact with other ideal

functionalities to model PCNs.

Notation. We denote by B a set of tuples of the form

((V, txid), β)whereV is a set of addresses (e.g., a multi-sig defining

a channel) that were created at transaction txid. Then, β denotes

the amount of coins that are held in the addressV . Moreover, we

denote by T the current timestamp in the ledger.

Assumptions. We assume that B and T are publicly available.

Session 4B: Blockchain II CCS ’19, November 11–15, 2019, London, United Kingdom

815

	Abstract
	1 Introduction
	2 Background
	2.1 Payment Channels
	2.2 Payment Channel Network (PCN)
	2.3 Multi-Hop Payments Atomicity

	3 Problem Statement
	3.1 Problem Definition
	3.2 Security and Privacy Goals
	3.3 Ideal World Functionality

	4 Solution Overview
	4.1 System Assumptions
	4.2 Protocol Overview

	5 The AMCU Protocol
	5.1 Building Blocks
	5.2 Formal Description of the Protocol
	5.3 Discussion
	5.4 Security Analysis

	6 Evaluation
	7 Applications
	8 Related Work
	9 Conclusions
	Acknowledgments
	References
	A Security of AMCU protocol
	B Ledger Functionality

