2019 IEEE Symposium on Security and Privacy

Postcards from the Post-HTTP World:
Amplification of HTTPS Vulnerabilities in the Web Ecosystem

Riccardo Focardi
Ca’ Foscari Univ.
& Cryptosense
focardi @unive.it

Stefano Calzavara
Ca’ Foscari Univ.
calzavara@dais.unive.it

Abstract—HTTPS aims at securing communication over the
Web by providing a cryptographic protection layer that ensures
the confidentiality and integrity of communication and enables
client/server authentication. However, HTTPS is based on the
SSL/TLS protocol suites that have been shown to be vulnerable
to various attacks in the years. This has required fixes and
mitigations both in the servers and in the browsers, producing a
complicated mixture of protocol versions and implementations in
the wild, which makes it unclear which attacks are still effective
on the modern Web and what is their import on web application
security. In this paper, we present the first systematic quantitative
evaluation of web application insecurity due to cryptographic
vulnerabilities. We specify attack conditions against TLS using
attack trees and we crawl the Alexa Top 10k to assess the import
of these issues on page integrity, authentication credentials and
web tracking. Our results show that the security of a consistent
number of websites is severely harmed by cryptographic weak-
nesses that, in many cases, are due to external or related-domain
hosts. This empirically, yet systematically demonstrates how a
relatively limited number of exploitable HTTPS vulnerabilities
are amplified by the complexity of the web ecosystem.

I. INTRODUCTION

The HTTP protocol is the central building block of the
Web, yet it does not natively provide any confidentiality or
integrity guarantee. HTTPS protects network communication
against eavesdropping and tampering by running HTTP on top
of cryptographic protocols like Secure Socket Layer (SSL) and
its successor Transport Layer Security (TLS), which allow for
the establishment of encrypted bidirectional communication
channels. Besides confidentiality and integrity, HTTPS also
ensures authentication, because clients and servers may prove
their identity by presenting certificates signed by a trusted cer-
tification authority. HTTPS has been increasingly recognized
as a cornerstone of web application security over time and it
is routinely employed by more and more websites, to the point
that the average volume of encrypted web traffic has surpassed
the average volume of unencrypted traffic according to data
from Mozilla [36]. It is plausible to believe that, in a near
future, HTTP will be (almost) entirely replaced by HTTPS,
thanks to initiatives like Let’s Encrypt and the actions taken
by major browser vendors to mark HTTP as ‘not secure’ [73].

Security experts know well that the adoption of HTTPS
is necessary for web application security, but not sufficient.
Web applications can be attacked at many different layers, for
example on session management [17]. Moreover, the correct

© 2019, Stefano Calzavara. Under license to IEEE. 281

DOI 10.1109/SP.2019.00053

Matus Nemec
Ca’ Foscari Univ.
& Masaryk Univ.

matus.nemec @unive.it

Alvise Rabitti Marco Squarcina
Ca’ Foscari Univ. TU Wien
alvise.rabitti@unive.it marco.squarcina@tuwien.ac.at

deployment of HTTPS itself is far from straightforward [52].
For instance, bad security practices like the lack of adoption of
HTTP Strict Transport Security (HSTS) may allow attackers to
sidestep HTTPS and completely void its security guarantees.
But even when HTTPS is up and running, cryptographic flaws
in SSL/TLS may undermine its intended security expectations.
Many attacks against SSL/TLS have been found, allowing for
information disclosure via side-channels or fully compromis-
ing the cryptographic keys used to protect communication [1],
[4], [9], [11], [14], [59]. These attacks are not merely theo-
retical: they have been shown to be effective in the wild and
open data from Qualys [64] suggest that many servers are
vulnerable to them. Several papers have also discussed the
results of similar data collections [14], [28], [39], [84], [85].

Despite this availability of data, however, previous analyses
provide only a very limited picture of how much cryptographic
weaknesses in HTTPS implementations harm the security
of the current Web. First, these studies are based on large-
scale detections of server-side vulnerabilities, but they do not
provide a thorough account of their exploitability on modern
clients. Many known vulnerabilities such as Bleichenbacher’s
padding oracle attack on PKCS #1 v1.5 RSA encryption [13]
or various padding oracle attacks on Cipher Block Chaining
(CBC) mode ciphers [3], [59], [88] rely on specific assump-
tions on both the client and the server to be exploited, such
as that the TLS peers will negotiate a specific ciphersuite like
RSA key exchange or use a symmetric cipher in CBC-mode,
respectively. Hence, the mere existence of a vulnerability does
not necessarily imply the possibility to attack a TLS con-
nection between an up-to-date client and a vulnerable server,
since all modern browsers implement various mitigations that
prevent many of the known TLS attacks. Moreover, attacks
against TLS at the transport layer may drastically differ in
terms of their impact at the application layer: for example,
the POODLE-TLS attack [78] can gradually leak a secret, but
it requires the attacker to force the browser into re-sending the
secret many times. Thus, the attack can leak a session cookie
by injecting requests from a page under the attacker’s control,
but not a password that is inserted by the user on a secure
login page and only sent once.

In this paper we present the first systematic quantitative
evaluation of web application insecurity due to cryptographic
HTTPS vulnerabilities. The analysis relies on a characteri-

Fig. 1. An anonymized top Alexa website (central circle) and its sub-domains
(gray, on the right) and dependencies (white, with arrows). The website is
entirely deployed over HTTPS, but becomes insecure due to three vulnerable
sub-domains and three vulnerable dependencies (striped circles).

zation of TLS vulnerabilities in terms of attack trees [74]
capturing the conditions for the various attacks to be enabled
and on a crawl of the top 10,000 websites from Alexa sup-
porting HTTPS, including all their dependencies (hosts from
which sub-resources are included) and sub-domains. Crawling
dependencies and sub-domains is of ultimate importance, as
secure websites might be broken by importing sub-resources
or sending domain cookies over vulnerable TLS channels. The
complexity of the web ecosystem, in fact, amplifies the effect
of TLS vulnerabilities, as illustrated in Figure 1. Our results
are disquieting:

« 898 websites are fully compromisable, allowing for script
injection, while 977 websites present low integrity pages
that the attacker can tamper with. Fully compromisable
sites include e-commerce sites such as alibaba.com, e-
banking services such as deutsche-bank.de and major
websites such as myspace.com and verizon.com. 660
out of the 898 compromisable websites (73.5%) include
external scripts from vulnerable hosts, thus empirically
demonstrating that the complexity of web applications
enormously amplifies their attack surface;

e 10% of the detected login forms have confidentiality
issues, which may enable password theft. 412 websites
may be subject to cookie theft, exposing to session
hijacking, and 543 websites are subject to cookie integrity
attacks. Interestingly, we found that more than 20% of
the analyzed domain cookies can be potentially leaked,
suggesting that the organization of web applications as
related sub-domains amplifies their attack surface and
needs to be carefully analyzed;

e 142 websites include content from vulnerable hosts of
the popular tracker PubMatic and thus expose users to
profiling attacks. Remarkably, this privacy attack can
be amplified by the previous finding on compromisable
websites, so as to affect up to 968 websites. This shows
once more that attacks against TLS on external resources
may expose otherwise secure websites to severe threats.

One of the original aspects of our work is that all of the
presented attacks on web applications are exclusively due to
practical TLS vulnerabilities that are enabled on the server
and not prevented by modern browsers, thus potentially ex-
ploitable. Our findings show that a limited number of practical

TLS vulnerabilities are amplified by the web ecosystem and
have a huge practical impact on otherwise secure websites
that depend on or are related to the vulnerable hosts. We
found vulnerabilities in popular, security-conscious websites.
For example, because of TLS weaknesses in related hosts or
dependencies, it is possible to break password confidentiality
on myspace.com, session security on yandex.com and cookie
integrity on live.com. We responsibly disclosed our findings
to the interested websites.

Contributions and paper structure: In this paper, we
make the following contributions:

1) we review existing cryptographic attacks against TLS,
identifying those which are still effective on modern
clients. We then characterize such attacks in terms of
attack trees, which identify conditions to break the confi-
dentiality and/or integrity properties of the TLS protocol.
To the best of our knowledge, this is the most system-
atic model of such attacks presented in the literature
— with a special focus on their practical impact — and
can serve other security researchers working in the area
(Section III);

2) we build an analysis platform which implements the
checks defined by the attack trees and we run it on
the homepages of the top 10,000 websites of the Alexa
ranking supporting HTTPS. As part of this data collection
process, we also scan 90,816 hosts which either (i) store
sub-resources included in the crawled pages or (ii) are
sub-domains of the websites. These hosts have a major
import on the security of the crawled websites, which we
precisely assess (Section 1V);

3) we rigorously identify a number of severe web application
attacks enabled by vulnerable TLS implementations and
we run automated checks for them on the collected data.
We focus on three different aspects of web application
security: page integrity (Section V), authentication cre-
dentials (Section VI) and web tracking (Section VII). This
list is not meant to be exhaustive, yet it is rich enough to
cover important security implications of existing crypto-
graphic flaws of TLS on major websites.

Finally, Section II provides background on TLS and Sec-

tion VIII provides our closing perspective, discussing related
work, ethical issues and limitations of our study.

II. BACKGROUND ON TLS

In this section, we describe TLS 1.0, 1.1 and 1.2. Readers
who are already familiar with TLS can safely skip this section.
‘We do not discuss TLS 1.3 [66], as there are no known attacks
against it due to the removal of vulnerable cryptographic
constructions used in previous protocol versions [66, Section
1.2]. Notice that version 1.3 is not yet widely supported in
the wild: only 5.2% of hosts in our scan supported some draft
version of TLS 1.3 (the final version was not yet published at
the time of the scan). Moreover, we do not discuss certificate-
based client authentication as it is rarely adopted on the Web.

The TLS protocol consists of the following sub-protocols:

282

Record Protocol carries the data, that are optionally en-
crypted and authenticated, of the application data protocol
and the remaining TLS sub-protocols;

Handshake Protocol negotiates cryptographic keys and au-
thenticates the server;

Change Cipher Spec Protocol signals to the other peer that
the subsequent records will be encrypted and authenti-
cated under the negotiated keys;

Alert Protocol signals status changes, with warnings and
terminating fatal alerts, following e.g., decryption errors.

A. The Handshake Protocol

We describe in detail the Handshake Protocol, as it is the one
responsible for agreeing on the cryptographic algorithms and
keys used to protect messages and for authenticating the server.
As such, it constitutes a clearly sensitive target for network
attackers. The Handshake Protocol is an authenticated key
exchange protocol. The peers negotiate the TLS version and
the cryptographic algorithms (ciphersuites) for key exchange,
server authentication, and Record Protocol protection.

The client initiates the handshake with a ClientHello
message, that includes the highest supported TLS protocol ver-
sion, a random nonce for key derivation, the session identifier,
the list of supported ciphersuites, the supported compression
methods (usually empty, as TLS compression is deprecated
for security reasons), and optional TLS extensions.

The server responds with a ServerHello message with
the lower between its highest supported protocol version and
the client’s version, a random nonce, the session identifier,
the selected ciphersuite and compression method, and selected
extensions (a subset of those offered by the client). The server
should follow an ordering of the ciphersuites, ideally selecting
the most secure ciphersuite offered by the client. If there are
no supported algorithms in common, the server responds with
a handshake failure alert.

The server also sends its X.509 certificate in the
Certificate message, that links its identity to its public
key. Depending on the selected ciphersuite, it may send a
ServerKeyExchange message contributing to the key ma-
terial. The client sends the ClientKeyExchange message
with its key material. The shared key material is called the Pre-
master Secret (PMS) and is used together with the exchanged
random nonces to compute the Master Secret, which is in turn
used to derive the session keys for the Record Protocol. Once
the Master Secret is shared, the peers run the Change Cipher
Spec Protocol and start protecting their messages.

Finally, the client and the server mutually exchange the
Finished message containing a transcript of the handshake.
If the peers received different messages, possibly due to
tampering by an attacker, their transcripts will differ. Since
the communication is encrypted and authenticated with the
session keys at this point, the attacker cannot tamper with the
transcripts. The PMS is shared using a public key that is tied
to the identity of the server, hence the server authenticates by
using the PMS to compute the session keys.

B. Ciphersuites

A key ingredient of the Handshake Protocol is the negotia-
tion of the cryptographic mechanisms in the ciphersuite. The
most common algorithms are:

Key exchange: how to share the PMS:

RSA key exchange: the client randomly generates a
PMS, encrypts it with the RSA public key of the server
obtained from the server’s trusted certificate, and sends
it in the ClientKeyExchange;

Static Diffie-Hellman key exchange — (EC)DH: the
DH parameters are defined either on a prime field
(DH) or on an elliptic curve (ECDH). The client
generates a random (EC)DH key and sends the public
part in the ClientKeyExchange. The public key
of the server is contained within its certificate. The
shared DH secret is used as the PMS;

Ephemeral Diffie-Hellman key exchange — (EC)DHE:
similar to the previous case, however the client and
the server generate fresh (ephemeral) (EC)DHE keys
and send them in the Client- and Server-—
KeyExchange messages, respectively. The server
must sign its message with a private key corresponding
to its certificate. DHE uses RSA or DSA [60], ECDHE
uses RSA or ECDSA [60].

Confidentiality and integrity: how messages sent over the
Record Protocol are protected:

Block ciphers in AEAD mode: Authenticated Encryp-
tion with Associated Data (AEAD) combines encryp-
tion and authentication in a single primitive. Examples
are AES in the GCM or CCM mode of operation;

Block ciphers in CBC mode with MAC: combination
of CBC mode of operation of a symmetric block
cipher with Keyed-hash Message Authentication Code
(HMAC) for authentication. The order of operations
is MAC-then-Pad-then-Encrypt. For example, AES,
Camellia, Triple-DES or DES in CBC mode combined
with HMAC based on SHA-2, SHA-1 or MDS5;

Stream cipher with MAC: for example, ChaCha20
with Poly1305 (that combine into an AEAD primitive)
or RC4 with HMAC based on SHA-1 or MDS5.

III. ATTACK TREES FOR TLS SECURITY

We describe notable cryptographic attacks against TLS and
divide them by their impact on confidentiality and integrity of
the communication. We discuss how the attacks are mitigated
by client configuration and specific countermeasures, focusing
on attacks that fall under our threat model. See Appendix A
for out of scope attacks and Appendix B for more details on
the attacks introduced in this section.

A. Threat Model

We assume an active network attacker able to add, remove
or modify messages sent between a client and a server. The
attacker also controls a malicious website, say at evil.com,
which is navigated by the attacked client. By means of the

283

website, the attacker can inject scripts in the client from an
attacker-controlled origin, which is relevant for a subset of
the attacks. However, the attacker can neither break the Same
Origin Policy (SOP)! nor exploit any bug in the browser. We
assume the attacker cannot exploit timing side-channels, since
the feasibility of such attacks is generally hard to assess.
The client is a modern browser that (i) supports TLS 1.0,
1.1, and 1.2 with key establishment based on ECDH and
AEAD ciphersuites (cf. MozillaWiki [89] for the purpose
of “Modern” compatibility); (i) does not support SSLv3
or lower, does not offer weak or anonymous ciphersuites
(such as DES, RC4 and EXPORT ciphers, or suites without
encryption or authentication) and enforces a minimal key size
of cryptographic algorithms; (7iz) correctly handles certificate
validation and rejects certificates with weak algorithms. All
the major browsers released in the last two years satisfy these
assumptions, starting from Firefox 44, Chrome 48, IE 11 on
Windows 7, Edge, Opera 35, Safari 10, and Android 6.0.

B. Review of Known Attacks against TLS

Protocol version downgrade: A TLS server should respond
toa ClientHello with the offered version of the protocol,
or the highest it supports. However, some legacy servers
simply drop connections with unsupported TLS versions,
without offering an alternative. Thus, browsers may repeat the
handshake with a lower protocol version. An attacker in the
middle could drop ClientHello messages until the client
downgrades to an older, vulnerable version of the protocol.
To prevent this attack, the client attaches a fake ciphersuite
to repeated handshake attempts, as defined in RFC 7507 [58],
indicating that the handshake did not use the highest client-
supported TLS version. The presence of that ciphersuite in
a ClientHello, with a TLS version that is lower than
the highest supported by the server, reveals a potential attack
and should be treated as such by the server. Safari, Internet
Explorer, and Edge fall back to TLS 1.0. Only Safari appends
the ciphersuite. Firefox, Chrome, and Opera, instead, removed
insecure fallback entirely when the ClientHello messages
are dropped.

RSA decryption oracles: In the RSA key exchange, the
client chooses the PMS and sends it to the server, encrypted
under the server’s public RSA key. TLS uses the padding
scheme defined in PKCS #1 v1.5 [47], which is known to
be vulnerable to a padding oracle attack [13]. The attack
is possible when the server provides a padding oracle, i.e.,
when it behaves differently when decrypting messages that
have invalid paddings. An attacker can multiply a ciphertext
to create a new ciphertext (RSA is malleable), until a new
correctly padded message is forged. When this happens, the
attacker learns partial information about the plaintext message
and the process can be iterated until the key exchange is
fully decrypted. The original attack was proposed by Ble-
ichenbacher in 1998 [13] and requires on the order of million
connections to decrypt a ciphertext. The attack was later

Uhttps://developer.mozilla.org/docs/Web/Security/Same-origin_policy

improved [5], [46], [50], [57], especially in the presence of
an oracle that does not strictly enforce the padding scheme
[5], to require on the order of tens of thousands of messages.
In our analysis, we only consider such strong version of the
oracle as exploitable.

RSA signature oracles: A very fast decryption oracle can
be used to compute RSA signatures. Hence, even without the
knowledge of the private key, an attacker can impersonate
the server in the (EC)DHE exchange with such oracle. The
attack applies to all TLS versions up to TLS 1.2. However, the
signature generation using a Bleichenbacher’s oracle is even
slower than the decryption [14]. Therefore, the attacker would
prefer the decryption of RSA key exchange, if supported by the
targeted host. Interestingly, a signature oracle makes it possible
to impersonate the target server even with other certificates
valid for that target (such as wildcard certificates).

Advanced RSA padding oracles — DROWN and key reuse:
When a server is vulnerable to the decryption oracle, all
servers that use the same RSA key for key encryption (e.g.,
due to using the same certificate) are vulnerable to the de-
cryption of the key exchange, even if they do not provide the
oracle directly. Furthermore, TLS can be enabled for other
application level protocols than HTTPS, such as email (SMTP,
POP3, and IMAP with STARTTLS, or SMTPS, IMAPS,
POP3S). The attack surface of the DROWN attack [4] was
in fact amplified by the possibility of using vulnerable servers
supporting SSLv2 in order to break servers running newer
protocol versions. DROWN uses the fact that SSLv2 provides
the padding oracle in combination with weak export grade
ciphersuites and specific OpenSSL bugs. The attack comes
in two variants, General and Special, requiring respectively
about 8 hours and less than a minute to complete. Thus, only
the Special case is suitable for Man In The Middle (MITM)
attacks. Not all handshakes are vulnerable: 1 out of 900, for
the General case, and 1 out of 260 for the Special case.

RSA padding oracle countermeasures: TLS 1.0 [25], 1.1
[26], and 1.2 [27] introduced countermeasures to remove the
padding oracle, instead of replacing the padding scheme. How-
ever, the ROBOT attack [14] has shown that a surprisingly high
number of implementations in the wild still present padding
oracles that can be used to decrypt RSA encrypted messages.
The attacks are partially mitigated by the support for Perfect
Forward Secrecy, typically by preferring the elliptic curve
Diffie-Hellman key establishment with ephemeral private keys
(ECDHE) over the RSA key exchange on the server side. Since
all modern web browsers support ECDHE cipher suites [89],
the RSA key exchange will be voluntarily negotiated only with
servers that prefer it due to lack of ECDHE support or bad
configuration. It would be thus recommended to completely
disable RSA encryption at the server side [14].

CBC mode padding oracles: TLS uses the CBC mode of
operation of a symmetric block cipher with MAC-then-Pad-
then-Encrypt scheme for record-level encryption. Since the
padding is not covered by the MAC, changing the padding
does not change the integrity of the message, and could enable
a padding oracle vulnerability. A class of vulnerabilities of

284

the MAC-then-Pad-then-Encrypt construction was described
by Vaudenay [88] and Canvel et al. [21]. The attacks are
based on distinguishing failures due to bad padding and due
to failed integrity check. In TLS, the server should issue the
same response in both situations, however there are buggy
implementations (e.g., [79]) that produce different errors. The
POODLE attack [59] leverages the above padding oracle prob-
lem in combination with the fact that SSLv3 (and some flawed
TLS implementations) only checks the last byte of padding.
Since a padding error ends in a termination of the session,
the attacker must be able to force the client to open a new
session every time she wants to make a guess. Furthermore, the
client must repeat the target secret s in every connection, e.g.,
when s is a secret cookie attached to every HTTPS request.
All CBC attacks can be mitigated in TLS 1.2 by supporting
either AEAD ciphersuites or stream ciphers that do not require
padding, on both servers and clients (as in modern browsers).
TLS version downgrades must also be mitigated, to prevent a
downgrade to a version that only supports CBC-mode ciphers.

Heartbleed: Due to memory management problems in
server implementations, an attacker could reveal the long-term
private keys of the server, thus allowing a full impersonation
of the server [83], [33].

C. Insecure Channels

To understand the import of cryptographic flaws of TLS
on web application security, it is useful to categorize known
cryptographic attacks in terms of the security properties they
break. We propose three categories of insecure channels:

Leaky: a channel established with servers vulnerable to con-
fidentiality attacks, which give the attacker the ability to
decrypt all the network traffic (Section III-D);

Tainted: a channel susceptible to Man In The Middle (MITM)
attacks, which give the attacker the ability to decrypt and
arbitrarily modify all the network traffic (Section III-E).
Tainted channels are also leaky;

Partially leaky: a channel exposing side-channels which give
the attacker the ability to disclose selected (small) secrets
over time. These channels typically rely on a secret
repetition assumption, because the attacker abuses the
exchange of repeated messages containing the secret on
the vulnerable channel (Section III-F). Leaky and tainted
channels also qualify as partially leaky.

In the rest of this section, we precisely characterize how
we mapped existing cryptographic attacks against TLS to the
proposed channel categories in terms of attack trees.

D. Leaky Channels

Channels are leaky when established with servers vulnerable
to attacks that fully compromise confidentiality. The attacker
tries to obtain the PMS to learn the session keys, giving her
the ability to decrypt all the captured network traffic.

Figure 2 shows the attack tree of conditions that enable the
attacker to learn the session keys. The main goal is listed on
the first line. Each goal or sub-goal may have alternative ways
of reaching it (marked as logical OR ‘|’) or it may require

GOAL Learn the session keys (allows decryption)
| 1 Decrypt RSA key exchange offline
& 1 RSA key exchange is used
| 1 RSA key exchange is preferred in the
highest supported version of TLS
| 2 Downgrade is possible to a version of TLS
where RSA key exchange is preferred
RSA decryption oracle (DROWN or Strong
Bleichenbacher’s oracle) is available on:
| 1 This host
| 2 Another host with the same certificate
| 3 Another host with the same public RSA key

Fig. 2. Attack tree for leaky channels

GOAL Potential MITM (decryption and modification)
| 1 Force RSA key exchange by modifying ClientHello
and decrypt it before the handshake times out
& 1 RSA key exchange support in any TLS version
& 2 Fast RSA decryption oracle (Special DROWN or
Strong Bleichenbacher’s oracle) available on:
| 1 This host
| 2 Another host with the same certificate
| 3 Another host with the same public RSA key
| 2 Learn the session keys of a long lived session
& 1 Learn the session keys (Figure 2)
& 2 Client resumes the session
| 1 Session resumption with tickets
| 2 Session resumption with session IDs
| 3 Forge an RSA signature in the key establishment
& 1 Fast RSA signature oracle (Strong
Bleichenbacher’s oracle) is available on:
1 This host
2 Another host with the same certificate
3 Another host with the same public RSA key
4 A host with a certificate where the Subject
Alternative Names (SAN) match this host
The same RSA key is used for RSA key exchange
and RSA signature in ECDHE key establishment
| 4 Private key leak due to the Heartbleed bug

|
|
|
|
& 2

Fig. 3. Attack tree for tainted channels

several sub-goals to be valid at once (marked as logical AND
‘&’). Sub-goals are differentiated from their parent goal by
increased indentation. Leaves, i.e., goals without sub-goals,
evaluate to True or False based on a concrete test (e.g., for the
presence of a vulnerability), a detected server configuration,
or are the result of a stand-alone, separate tree. If the entire
tree evaluates to True, the host suffers from an exploitable
vulnerability that can facilitate the main goal.

The attacker may obtain the PMS by decrypting the key
exchange (1). The parties must use RSA key exchange (1.1).
Hence, the client must support it and the server must prefer
it either in the highest version of TLS supported by both
parties (1.1.1), or in any other commonly supported version, if
protocol version downgrade is not properly mitigated (1.1.2).
The attacker decrypts the RSA key exchange (1.2) either using
Strong Bleichenbacher’s oracle [14] or with the DROWN
attack [4]. The oracle could be present on the target host
directly (1.2.1), or on a different host that uses the same
certificate (1.2.2) or at least the same RSA key (1.2.3).

285

E. Tainted Channels

Channels are fainted if the attacker can mount a MITM
attack that gives her the ability to decrypt and modify all
the traffic between the server and the client. Hence, tainted
channels are also leaky. The attacker must learn the PMS of an
active session or she must influence its value and successfully
impersonate the server. The attack tree is shown in Figure 3
and described below.

The attacker can force the use of RSA key exchange by
modifying the ClientHello sent to the server to only
contain such ciphersuites (1). Naturally, the server must
support such ciphersuite (1.1). The modification leads to
different handshake transcripts, hence the decryption of the
key exchange must be performed very fast, in order to generate
valid Finished messages before the peers time out. Hence,
the attacker needs access to a fast instantiation of Strong
Bleichenbacher’s oracle [14] or to a server vulnerable to the
Special variant of the DROWN attack [4] (1.2). The authors
of the ROBOT attack [14] estimate that it should be feasible to
decrypt the key exchange fast enough (in a few seconds) if the
attacker can parallelize the requests across multiple servers of
the attacker and the target. An analysis of such parallel attack
was done by Ronen et al. [69].

Alternatively, the attacker may gain more time to obtain the
session keys, if they are long lived (minutes to hours) (2).
She captures an RSA key exchange and decrypts it offline
(2.1), through the techniques of Section III-D (Figure 2) as
she cannot modify the initial ClientHello at will. She
then intercepts a resumed session with full MITM capabilities
(2.2). Server may support session resumption without server-
side state (2.2.1) [71] or with server-side state (2.2.2) [27].

Under some conditions, a very efficient RSA decryption
oracle can be used to forge signatures (3). The oracle can be
found on a variety of hosts (3.1.1—3.1.3). Additionally, a host
can be attacked using a certificate that it neither uses nor shares
an RSA key with, if the host appears on the certificate’s list
of Subject Alternative Names (SAN) (3.1.4). The certificate’s
RSA key used for signing (EC)DHE parameters must be the
same as the RSA key used for RSA key exchange by a server
with a decryption oracle (3.2).

Finally, the attacker might obtain the private key of the
server due to the Heartbleed memory disclosure bug (4) [83].
For ethical reasons, we did not attempt to extract the private
keys when we detected Heartbleed, yet it was reliably shown
possible [45].

FE. Partially Leaky Channels

Channels are partially leaky if they allow for a partial
confidentiality compromise of secrets sent by the client to the
server. Leaky and tainted channels are also partially leaky.
The conditions are described by the attack tree in Figure 4.
To exploit a CBC padding oracle (1), the attacker must force
repeated requests containing the secret (secret repetition) and
she is required to partially control the plaintext sent by the
client to a vulnerable server, e.g., by modifying the URL in the
header of the request. We check the server for the presence of

GOAL Partial decryption of messages sent by Client
| 1 CBC padding oracle on the server
| 1 POODLE-TLS padding oracle
& 1 Server checks TLS padding as in SSLv3
& 2 Any vulnerable CBC mode ciphersuite is used
| 1 A CBC mode ciphersuite is preferred
in the highest supported version of TLS
Downgrade is possible to a version of TLS
where a CBC mode ciphersuite is preferred
CBC padding oracle - OpenSSL AES-NI bug
& 1 Server is vulnerable to CVE-2016-2107
& 2 A ciphersuite with AES in CBC mode is used
| 1 AES in CBC mode is preferred in the
highest supported TLS version
| 2 Downgrade is possible to a TLS version
where AES in CBC mode is preferred

| 2

Fig. 4. Attack tree for partially leaky channels

two CBC padding oracle types (as explained in Section III-B).
They are instantiated as the TLS version of the POODLE
attack [78], [59] (1.1) due to incorrect padding checks (1.1.1)
and as a buggy implementation [79] providing a Vaudenay
CBC padding oracle [88] (1.2) when using hardware acceler-
ated AES (AES-NI) in certain versions of OpenSSL (1.2.1).
Both attack types require the server to choose a vulnerable
ciphersuite (1.1.2,1.2.2). It could be chosen by the server
in the highest TLS version (1.1.2.1,1.2.2.1) or following a
protocol version downgrade (1.1.2.2,1.2.2.2).

IV. EXPERIMENTAL SETUP

We developed an analysis platform to identify exploitable
cryptographic weaknesses in TLS implementations and esti-
mate their import on web application security. The platform
employs a crawler to perform a vulnerability scan of the
target website, testing also hosts which either store sub-
resources included by the homepage or belong to related
domains. Confidentiality and integrity threats are identified by
matching the relevant conditions of the attack trees introduced
in Section III against the output of existing analysis tools.

A. Analysis Platform

The analysis platform performs the following steps: (i) ac-
cess the website, such as example.com, by instrumenting
Headless Chrome with Puppeteer;” (ii) collect the DOM of
the page at example.com, along with its set of cookies
and the hosts serving sub-resources (such as scripts, images,
stylesheets and fonts) included by the page; (iii) enumerate the
sub-domains of example.com by querying the Certificate
Transparency? logs and by testing for the existence of common
sub-domains, such as mail.example.com; (iv) run existing
analysis tools to identify cryptographic vulnerabilities on the
target website and on all the hosts collected in the previous
steps; (v) map the output of the tools to the conditions of the
attack trees to find exploitable vulnerabilities.

Zhttps://github.com/GoogleChrome/puppeteer
3https://www.certificate- transparency.org/

286

The analysis tools include testssl.sh,* TLS-Attacker [80]
and the nmap plugin for Special DROWN,> which combined
provide enough information. For ethical reasons, we did not
perform any aggressive testing for the presence of oracles
other than the checks run by these tools, e.g., we did not
evaluate the performance of servers with respect to the number
of oracle queries they can answer in a short time. Still, if
some untested conditions have been considered realistic in the
literature, e.g., the performance of a Strong Bleichenbacher’s
Oracle for online decryption or for signature computation [14],
we report the vulnerability as exploitable.

B. Data Collection and Findings

We used our analysis platform to collect data from the
Alexa top 1M list retrieved on July 20, 2018. We scanned
sequential batches of websites up to collecting 10,000 websites
served over HTTPS. Their sub-resources and related domains
added up to 90,816 more hosts that underwent a vulnerability
analysis, completed at the beginning of August 2018.

Our tool reported exploitable TLS vulnerabilities in 5,574
hosts (5.5%). 4,818 hosts allow for the establishment of
tainted channels, which is the most severe security threat.
733 hosts allow for the establishment of leaky channels,
while 912 allow for partially leaky channels. The majority
of vulnerabilities is due to the 20 years old Bleichenbacher’s
attack [13] and its newest improvement ROBOT [14]. Only
6.5% of the scanned hosts actually prefer RSA key exchange in
their highest supported TLS version, yet 76.9% hosts support
it, presumably to maintain backward compatibility with old
clients. More than 90% of servers support a key exchange that
provides Perfect Forward Secrecy. Hence, the majority of the
exploitable hosts could be secured by stopping the support for
RSA key exhange. We provide a breakdown of the identified
insecure channels in Table I and we comment it below.

Leaky channels: The connections to 733 hosts could be de-
crypted using ROBOT or DROWN after the attacker captured
the traffic — goal (1) of Figure 2. 727 hosts preferred the RSA
key exchange (1.1.1), hence no action would be necessary to
make the peers negotiate RSA. Only on 6 hosts the attacker
would need to use the protocol version downgrade to force the
usage of RSA key exchange (1.1.2) instead of Diffie-Hellman
(DH). We found 136 hosts vulnerable to ROBOT that used
ECDHE in their highest protocol version and properly imple-
mented protocol version downgrade mitigation, showing the
importance of the countermeasure. Out of the 733 vulnerable
hosts, 592 hosts were directly exploitable (1.2.1), while 141
were only exploitable due to sharing a certificate (1.2.2) or an
RSA key (1.2.3) with a vulnerable host. Hence, a conventional
tool that only checks the host directly for the presence of
ROBOT would not detect confidentiality problems on 19% of
the exploitable hosts.

Tainted channels: In total, 4,818 hosts made connections
over tainted channels due to MITM attacks (Figure 3). 615

4https:// github.com/drwetter/testssl.sh
Shttps://nmap.org/nsedoc/scripts/sslv2-drown.html

hosts were exploitable due to the compromise of a resumed
session (2), where the attacker can decrypt the key exchange
over a longer period. 1,877 additional hosts were susceptible
to online RSA key exchange decryption attacks (1). The attack
was also possible for the previously mentioned 615 hosts,
without relying on the client to resume the session (2.2), yet
requiring a faster computation (1.2). When a decryption oracle
is available on a host, each certificate that uses the same RSA
key for signatures could be used to impersonate all the hosts
that appear in its Subject Alternative Name extension (SAN)
(3). We found 2,279 such hosts, that could not be impersonated
with a less demanding version of the MITM attack: (1) or (2).
It is worth noticing that only 1,893 hosts in our scan had a
strong ROBOT oracle, yet the number of exploitable servers
due to ROBOT is much higher. This shows that the sharing
of certificates and RSA public keys, as well as the list of
hostnames in the SAN extension, should be kept minimal.
Luckily, only 47 hosts were vulnerable to Heartbleed (4).
When a private RSA key is extracted in this way, the attacker
can repeatedly impersonate the host without its involvement.
Fartially leaky channels: Exploitable partially leaky chan-
nels (Figure 4) were found on 912 hosts. Out of the 816
hosts with an exploitable POODLE-TLS padding oracle (1.1),
797 hosts preferred the vulnerable ciphersuite (1.1.2.1) and
additional 19 hosts could be exploited after being downgraded
to an older version of TLS due to a lack of protection
from downgrades (1.1.2.2). Out of the 96 hosts with an
exploitable OpenSSL AES-NI padding oracle (1.2), only 20
hosts were vulnerable in the preferred TLS version (1.2.2.1)
and additional 76 hosts could be exploited after an unmitigated
version downgrade (1.2.2.2). Other 68 hosts have been found
affected by POODLE-TLS and 2 exposed OpenSSL AES-NI
padding oracle, yet a modern browser would negotiate a more
secure cipher making the vulnerabilities non-exploitable.

C. Roadmap

The presence of so many insecure channels is concerning,
but their actual import on web application security is un-
clear. In the rest of the paper, we investigate and quantify
this delicate point by focusing on selected aspects of web
application security. Since we are interested in cryptographic
attacks against HTTPS, we stipulate that every time we refer
to pages | channels we implicitly refer to HTTPS pages /
channels, unless otherwise specified. Attacks enabled by the
(partial) adoption of HTTP are out of the scope of this study.

V. PAGE INTEGRITY

In this section, we describe a number of attacks enabled by
the presence of tainted channels, whose security import ranges
from content injection to SOP bypasses.

A. Security Analysis

If a web page is received from a tainted channel, the attacker
may be able to arbitrarily corrupt its contents, thus completely
undermining its integrity guarantees. Moreover, even if the
page was received from an untainted channel, the subsequent

287

TABLE I
OVERVIEW OF THE DETECTED INSECURE CHANNELS

Insecure channel Attack Attack tree reference | Vulnerable hosts
Leaky Decrypt RSA key exchange offline (1) Figure 2 733
Force RSA key exchange and decrypt it online (1) 1,877
Tainted Learn the session keys of a long lived session (2) Figure 3 615
Forge an RSA signature in the key establishment (3) 2,279
Private key leak due to the Heartbleed bug (4) 47
. POODLE-TLS padding oracle 1.1 . 816
Partially leaky CBC padding olr)acle —gOpenSSL AES-NI bug Emg Figure 4 96

inclusion of scripts sent over tainted channels in the top-level
document may fully compromise integrity. The only protection
mechanism available in modern browsers against the latter
threat is Subresource Integrity (SRI) [2], a relatively recent
web standard which allows websites to bind to <script>
tags an integrity attribute storing a cryptographic hash
of the script which is expected to be included by them. If
the included script does not match the hash, the script is not
executed, so SRI can be used to prevent the threats of script
injection via network attacks.

The two integrity attacks above are equally dangerous and
the most severe ones in terms of security, because they grant
to the attacker active scripting capabilities on the web page,
which we can thus deem as compromisable.

Definition 1 (Compromisable Page). A page is compromisable
if and only if any of the following conditions holds:

1) the page is received from a tainted channel;
2) the page includes scripts in the top-level document from
tainted channels without using SRI.

Notice that the definition does not refer to Content Security
Policy (CSP) [93], a web standard which can be used to
prevent the execution of inline scripts and restrict content
inclusion on web pages by means of a white-listing mech-
anism. In fact, CSP is ineffective against network attackers:
if a page is compromisable because it is received from a
tainted channel, the attacker may just strip away the CSP
headers and <meta> tags to disable the protection; if instead a
page is compromisable because it includes scripts from tainted
channels, observe that CSP does not prevent the replacement
of legitimate scripts with arbitrary malicious contents.

A second class of threats we are interested in allows SOP
bypasses through compromisable pages. If a host contains at
least one compromisable page, SOP becomes largely inef-
fective at defending it, because the attacker may get active
scripting capabilities in its web origin and get access e.g.,
to its cookies and web storage. This motivates the following
definition.

Definition 2 (Compromisable Host). A host is compromisable
iff it is possible to retrieve a compromisable page from it.

Finally, besides these obvious threats, it is worth noticing
that there are also other integrity attacks which are subtler
than script injection, but may achieve results as severe as
page compromise under specific circumstances. For example:

() the inclusion of stylesheets and web fonts can be used to
perform scriptless attacks, which may enable the exfiltration of
confidential information stored in the DOM [41]; (i7) the in-
clusion of Scalable Vector Graphics (SVG) images using tags
like <embed> may lead to the injection of malicious HTML
and JavaScript contents [40]; (ii¢) the inclusion of iframes can
lead to exploitations against the top-level document via the
postMessage API [81]; (iv) the result of an XMLHttpRequest
can be passed to a function like eval, which converts strings
into executable code and thus enables script injection [91].

To comprehensively characterize the pages suffering from
these potential integrity issues, we leverage the Mixed Con-
tent [92] specification, which defines the reference security
policy for the inclusion in HTTPS pages of contents delivered
over HTTP channels. The key idea to uniformly capture
these attacks is to reuse the definition of blockable request
introduced in the Mixed Content specification, which mandates
that compliant browsers must prevent HTTPS pages from
sending this type of requests over HTTP channels.

Definition 3 (Blockable Request). A request is blockable if
and only if it is not requesting any of the following resources:

1) images loaded via or CSS;
2) video loaded via <video> and <source>;
3) audio loaded via <audio> and <source>.

We similarly consider blockable requests over tainted chan-
nels as a possible source of integrity attacks, which leads to
the following definition of low integrity page.

Definition 4 (Low Integrity Page). A page has low integrity
if and only if any of the following conditions holds:
1) the page is compromisable;
2) the page includes sub-resources (other than scripts) via
blockable requests sent over tainted channels.

Low integrity pages which only satisfy the second condition
do not necessarily provide active scripting capabilities to the
attacker, yet they might still pose significant security threats
in specific scenarios. That said, in the next sections we will
often reason about the integrity of web pages to characterize
additional web application attacks and our analysis will always
be optimistic, i.e., we will assume that the attacker gets active
scripting capabilities only in compromisable web pages and
not in low integrity pages. We will also dispense with poten-
tial information leakages enabled by scriptless attacks [41],
because they are not easy to exploit and depend on the details

288

of specific web technologies. This conservative approach will
limit the number of false positives in our security analysis.

B. Experimental Results

The homepages of the 10,000 crawled websites included
sub-resources from 32,642 hosts. Our analysis exposed 977
low integrity pages (9.8%), including 898 compromisable
pages where an attacker can get active scripting capabilities.
Examples of major security-sensitive websites whose home-
page was found compromisable include e-shops (alibaba.com,
aliexpress.com, tmall.com), online banks (bankia.es, deutsche-
bank.de, sparkasse.at, icicibank.com), social networks (mys-
pace.com, linkedin.com, last.fm) and other prominent services
(verizon.com, webex.com, livejournal.com).

Out of 898 compromisable pages, there are 238 pages
received from tainted channels and 660 pages including scripts
from tainted channels. Although the security dangers of these
two cases are the same, the latter cases are particularly intrigu-
ing, because they show that the majority of the compromisable
pages (73.5%) is harmed by the inclusion of external scripts.
Since the majority of these scripts is hosted on domains which
are not under the direct control of the embedding pages, SRI
is the way to go to mitigate their threats: unfortunately, SRI
is only used in 329 pages (3.3%) and does not prevent any
page compromise in our dataset. Rather, we observe that there
are 25 pages using SRI on some script tags, but are still
compromisable because SRI is not deployed on all the script
tags including contents from tainted channels.

Based on the previous considerations on external scripts, it
is noteworthy that there exist popular script providers which
are deployed on top of vulnerable HTTPS implementations,
thus severely harming the integrity of a very large number
of websites which include contents from them. Table II re-
ports the most popular script providers which allow for the
establishment of tainted channels, along with the number of
the Alexa websites which include at least one script from
them in their top-level document. These numbers show that by
targeting only a couple of carefully chosen hosts, an attacker
can fully undermine the integrity of a much larger number
of websites, thus making integrity attacks cost-effective. For
instance, consider the LinkedIn Insight Tag, a JavaScript code
that enables the collection of visitors’ data on webpages
which include it and provides web analytics for LinkedIn
ad campaigns. The script is loaded from a tainted channel
served on snap.licdn.com (second row of Table II), which
is vulnerable to MITM attacks due to a host affected by
ROBOT at rewards.wholefoodsmarket.com, that presents a
valid certificate for snap.licdn.com. The inclusion of this
script threatens the integrity of 126 websites among the ones
we analyzed, including notable examples such as authO.com,
britishairways.com, linode.com and teamviewer.com.

VI. AUTHENTICATION CREDENTIALS

In this section, we discuss the import of (partially) leaky
and tainted channels on the security of common authentication
credentials, i.e., passwords and cookies.

TABLE I
TOP SCRIPT PROVIDERS INTRODUCING INTEGRITY FLAWS

Script Provider Including Websites
hm.baidu.com 188
snap.licdn.com 126
ads.pubmatic.com 47
zz.bdstatic.com 39
cdn.tagcommander.com 37
tag.baidu.com 20
geid.wbtrk.net 19
cdn.wbtrk.net 19
cdn.blueconic.net 14
dup.baidustatic.com 12

A. Security Analysis

In a typical web session, a website authenticates a user by
checking her access credentials in the form of a username and
a password. Upon their successful verification, the website
stores in the user’s browser a set of session cookies, which
are automatically attached to the next requests sent to the
website in order to authenticate them. There are quite a few
well-known security threats in this common scenario [17] and
vulnerable HTTPS implementations may severely compromise
the security of web sessions. For example, if a user’s password
is disclosed to the attacker, the attacker will become able to
start new sessions on the user’s behalf and impersonate her
at the website. Moreover, web session security requires both
the confidentiality and the integrity of session cookies: lack of
the former allows the attacker to hijack the user’s session [16],
while lack of the latter allows the attacker to force the user in
the attacker’s session [94]. Though the latter threat is easily
underestimated, it may have serious security consequences on
many web applications: for instance, e-payment websites may
be targeted by such attacks to fool honest users into storing
their credit card numbers in an attacker-controlled session.

Confidentiality of Passwords: A critical requirement for the
confidentiality of passwords is that they are only input on
HTTPS pages and only sent over HTTPS channels. Modern
web browsers indeed warn users when these security impor-
tant requirements are not met [72]. Unfortunately, vulnera-
ble HTTPS implementations may make this security check
insufficient: password confidentiality cannot be ensured when
the password is sent over a leaky channel or entered into a
compromisable web page where the attacker can get active
scripting capabilities, thus becoming able to leak the password
from the DOM.

Definition 5 (Low Confidentiality Password). A password
has low confidentiality if and only if any of the following
conditions holds:

1) the password is submitted over a leaky channel;
2) the page where the password is input is compromisable.

Notice that partially leaky channels cannot be exploited
to steal passwords, because the secret repetition assumption
required by such side-channels is not satisfied by them.

Confidentiality of Cookies: The confidentiality of cookies
against network attackers can be enforced by means of the

289

Secure attribute, because browsers ensure that Secure cookies
are only sent on HTTPS channels and only made accessible
to scripts running in HTTPS pages [6]. However, this defense
mechanism becomes useless when HTTPS does not provide
the expected security guarantees: for example, even partially
leaky channels may be sufficient to disclose the content of
Secure cookies, since cookies are automatically attached by
browsers and thus satisfy the secret repetition assumption
required by attacks like POODLE-TLS. Moreover, compro-
misable pages can be exploited to steal Secure cookies by
means of malicious scripts which exfiltrate them, unless these
cookies are also protected with the HttpOnly attribute, which
prevents script accesses to them.

To make this intuition more precise, given a cookie ¢, we
let hosts(c) note the set of the hosts matching the domains
which are entitled to access the content of ¢, as prescribed by
RFC 6265 [6]. Intuitively, c is attached to a request towards
h if and only if h € hosts(c).

Definition 6 (Low Confidentiality Cookie). A cookie c set by
the host h has low confidentiality if and only if any of the
following conditions holds:

1) there exists a host h' € hosts(c) which allows for the
establishment of partially leaky channels;

2) c does not have the HttpOnly attribute set and there exists
a compromisable host h' € hosts(c).

Notice that breaking the confidentiality of a single session
cookie may not be enough to let the attacker hijack the sessions
of legitimate users, because websites may use multiple cookies
for authentication purposes [20]. However, if all the session
cookies of a website have low confidentiality, we have definite
evidence that there is room for session hijacking.

Integrity of Cookies: Cookie integrity has notoriously been
a major problem on the Web for many years, because cookies
do not provide isolation by protocol, hence HTTP traffic can
be abused to forge cookies which are indistinguishable from
legitimate cookies set over HTTPS [6]. Also, cookies can be
set by potentially untrusted related domains, i.e., domains that
share a common suffix which is not included in the Public
Suffix List.® The recommended way to enforce cookie integrity
against network attacks on the current Web is configuring
HSTS so that all the hosts entitled to set cookies can only
be contacted over HTTPS [94]. An alternative approach is
using cookie prefixes,! a recent addition to web browsers
which can be used to prevent the setting of cookies over
HTTP (when the __Secure- prefix appears in the cookie name)
and, potentially, also from untrusted related domains (when
the ___Host- prefix appears in the cookie name, preventing
cookie sharing between related domains). Unfortunately, these
defenses might fail when HTTPS suffers from cryptographic
flaws, because compromisable hosts would allow the attacker
to break cookie integrity by corrupting HTTPS traffic; in

Shttps://publicsuffix.org/
Thttps://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis-02

particular, if the __Host- prefix is not used, any compromisable
host on a related domain would be enough for the attack.

More precisely, given a host h, we let related(h) note the
set of the hosts whose domain is related to the domain of h.
Technically, this implies that any host 4/ € related(h) can set
a cookie ¢ such that h € hosts(c), which means that ¢ might
be eventually received by h and harm its security. Notice that,
although A’ may not be able to directly overwrite host-only
cookies set by h, it could still obtain the same effect by cookie
shadowing, i.e., by setting domain cookies with the same name
of host-only cookies so that the target website is fooled into
accessing the former [94]. Also, the domain cookies may be
set before the host-only cookies are ever issued, which makes
cookie shadowing attempts undetectable in general.

Definition 7 (Low Integrity Cookie). A cookie ¢ set by the
host h has low integrity if and only if any of the following
conditions holds:
1) h is compromisable;
2) ¢ does not have the __Host- prefix and there exists a
compromisable host I/ € related(h).

B. Experimental Results

We first isolated from the 10,000 crawled websites the 4,018
websites with a private area, i.e., supporting the establishment
of authenticated sessions. This was assessed heuristically by
checking any of the following two conditions:

1) the page includes a login form, i.e., a form with both a

text/email field and a password field,;

2) the page includes a single sign-on library from a list of

popular identity providers.

Out of the 4,018 websites with a private area, we found 404
cases where password confidentiality was not ensured (10.0%),
either because the password was sent over a leaky channel or
because the page with the login form was compromisable.
Attacks against these pages would allow an attacker to imper-
sonate legitimate users and start new sessions on their behalf.

We then turned our attention to the security analysis of
cookies. The left portion of Table III reports the number
of low confidentiality and low integrity cookies collected
from the full set of 10,000 websites. In total, 19.1% of
all cookies have low confidentiality, while 18.7% have low
integrity, which suggests that the risks of cookie leakage
and cookie tampering in the wild are far from remote. The
most interesting observation is that ensuring confidentiality
for domain cookies is much harder than for host-only cookies:
21.6% of the domain cookies have low confidentiality, while
this percentage decreases to 12.5% for host-only cookies. The
reason is that the attack surface for domain cookies is much
larger, because it is enough to find one related domain which
suffers from confidentiality issues to leak them; yet, 73.1% of
the collected cookies are domain cookies. As to integrity, the
difference between domain cookies and host-only cookies is
almost negligible and the most concerning observation there
is that only one of the 10,000 websites we crawled makes use
of cookie prefixes to improve cookie integrity.

290

TABLE III

COOKIE CONFIDENTIALITY AND INTEGRITY ISSUES

All cookies

Session cookies

Host-only (11,784)

Domain (31,998)

Total (43,782)

Hostonly (3,942)

Domain (7,818)

Total (11,760)

Low confidentiality
Low integrity

1,469 (12.5%)
2,093 (17.8%)

6,003 (21.6%)
6,116 (19.1%)

8,372 (19.1%)
8,209 (18.7%)

425 (10.8%)
694 (17.6%)

1,633 (20.1%)
1,435 (18.3%)

2,058 (17.5%)
2,129 (18.1%)

To better understand the import of these numbers on web
session security, we restricted our attention just to the session
cookies set from the 4,018 websites featuring a private area.
Session cookies were identified using a heuristic proposed in
previous work [16], which was shown to be fairly accurate
in practice and nicely fits our large-scale investigation. The
right portion of Table III presents the results of such analysis,
which shows that the high-level picture does not change
significantly when we focus just on session cookies. Moreover,
we observed that 412 websites (10.2%) may leak all their
session cookies due to cryptographic flaws, which may allow
network attackers to impersonate legitimate users of these
websites. It is worth noticing that, if all these cookies could
be marked as HttpOnly without breaking the functionality of
the websites, the number of websites vulnerable to this threat
would reduce to 207 (5.1%). This shows that a complete
deployment of the HttpOnly attribute would be quite effective,
yet not sufficient to fully protect honest users against session
hijacking, since session cookies could still be sent over par-
tially leaky channels.

Finally, we found 543 websites (13.5%) whose session
cookies all have low integrity, which may allow the attacker
to force honest users into attacker-controlled sessions (cookie
forcing). In all cases, the cookie integrity problems were due
to the presence of a vulnerability in a related domain, but we
also found 404 cases where also the base domain suffers from
integrity flaws. The __ Host- cookie prefix would be useful to
improve session security in the 139 cases (25.6%) where the
integrity vulnerabilities are confined to related domains, but
unfortunately only one of the crawled websites (dropbox.com)
uses cookie prefixes. Remarkably, we observe that 22 out of
these 139 cases (15.8%) could safely introduce the __ Host-
prefix without compatibility problems, as none of their session
cookies is a domain cookie.

C. Detected Attacks

Since the numbers in the previous section may have been
affected by the use of heuristics to detect private areas
and session cookies, we report on a selected set of manual
experiments to confirm the existence of credential stealing
and session hijacking attacks on prominent websites in the
wild. For ethical reasons, we did not tamper with websites
to test concrete attacks. Rather, we carefully checked all the
conditions required to mount attacks against the targets and
employed a local proxy to simulate the attack.

One notable example where password confidentiality is not
ensured is Myspace. The login page and the endpoint where
the password is sent are both served on myspace.com, that is

directly vulnerable to ROBOT. Thus, an attacker could either
sniff the password from a tainted channel or actively inject a
script in the page to leak access credentials from the DOM.

Session hijacking has been identified as a realistic threat on
the yandex.com web portal. In this case the main host itself
is secure, but the presence of a partially leaky channel on
api.developer.store.yandex.com makes possible for an attacker
to disclose all domain cookies by forcing the victim’s client
to iterate requests against that specific host from an attacker’s
controlled origin. All cookies set by the website after logging
in are domain cookies, including Session_id that is used to
authenticate user sessions, proving the attack to be practical.

Finally, cookie forcing has been found on the Microsoft
webmail live.com. Our large-scale assessment found that the
host exchange.backcountry.com is vulnerable to ROBOT and
presents a certificate valid also for outlook.live.com. Since the
host of one of the related domains of live.com is compromis-
able, an attacker could mount a MITM to overwrite the cookies
of a honest user, forcing her into the attacker’s session.

VII. WEB TRACKING

In this section, we discuss how leaky and tainted channels
can be abused to track navigation behaviours of web users and
breach privacy at scale.

A. Security Analysis

Online tracking is pervasive on the Web and has significant
privacy implications [68], [34]. Third-party tracking is partic-
ularly dangerous for user privacy, because it allows trackers
to reconstruct a cross-site navigation profile of online users
at scale. In this form of tracking, the tracker is embedded on
external websites in a third-party position, i.e., using iframes,
so that it is able to set a tracker-owned cookie containing a
unique identifier in the user’s browser. Every time the user
accesses a website where the tracker is present, her browser
will automatically send a request including the cookie to the
tracker: since this request also includes the Referer header,
which tracks the page from which the request was sent, the
tracker becomes able to reconstruct the navigation profile of
the user identified by the cookie.

Network attackers can easily disclose a lot of information
about navigation patterns just because they are in control of
the network. For instance, they can link a given IP address to
all the domain names requested from it. However, this does
not necessarily allow the attacker to build a navigation profile
of the target user, e.g., because the same IP address is shared
by multiple users (in case of NATSs) or because the same user
is assigned different IP addresses upon different connections.

291

TABLE IV

TOP TRACKERS INTRODUCING PRIVACY FLAWS

Tracker Including Websites
snap.licdn.com 126
L.betrad.com 100
hbopenbid.pubmatic.com 76
kraken.rambler.ru 66
ads.pubmatic.com 47
simage2.pubmatic.com 30
counter.rambler.ru 25
tag.1rx.io 20
fw-sync.nuggad.net 18
t.pubmatic.com 17

Still, it is known that network attackers may become able to
build cross-site navigation profiles of users by monitoring the
presence of tracking cookies in the HTTP traffic [35]. Here we
discuss a similar attack, which exploits existing confidentiality
issues in the HTTPS implementations of web trackers.

Assume the attacker wants to learn whether a user identified
by the tracking cookie c has ever accessed the page p. If the
page p includes sub-resources from a tracker-controlled host
h € hosts(c) over a leaky channel, the attacker may be able
to associate the value of ¢ to the page p via the Referer header.
However, even if p does not include anything from the tracker,
the attacker can force such leaky content inclusion when p
itself is compromisable, thus amplifying the privacy risks. This
leads to the following definition.

Definition 8 (Profiling). A tracking cookie ¢ allows profiling
on the page p if and only if there exists a host h € hosts(c)
which allows for the establishment of leaky channels and any
of the following conditions holds:

1) p sends a request to h;
2) p is compromisable.

B. Experimental Results

We downloaded a list of 2,399 prominent tracking domains
provided by Disconnect® and we checked for content inclu-
sions from them in the 10,000 websites taken from Alexa. In
particular, we focused on inclusions from any sub-domain of
the trackers, because domain cookies could be used to perform
tracking when including contents (of any type) from them. By
doing this, we managed to identify a set of 4,226 tracker-
controlled hosts which may potentially be abused to perform
user profiling on the Alexa websites. We then analyzed these
hosts, checking whether they allow the establishment of leaky
channels, and it turned out that 82 (1.9%) of them suffer from
this security issue.

We report in Table IV the list of the most popular vulnerable
tracker-controlled hosts, along with the number of websites
from Alexa which included contents from them. These vul-
nerable hosts are controlled by different companies basing
their business on web tracking and analytics. By checking
against Cookiepedia,’ we confirmed that at least four of these

Shttps://github.com/disconnectme/disconnect-tracking-protection
“https://cookiepedia.co.uk/

companies rely on the practice of setting long-lived domain
cookies for third-party tracking: PubMatic, Rambler, Rhyth-
mOne and nugg.ad. To understand the privacy implications
of these security issues, we focused on the hosts controlled
by PubMatic, which are the most numerous: attacking the
vulnerable hosts of PubMatic would allow one to reconstruct
navigation profiles over 142 websites which include contents
from them. Moreover, by injecting references to these hosts in
any of the 898 compromisable homepages from our dataset,
this privacy attack could be further amplified to track naviga-
tion behaviors across 968 websites (9.7%).

VIII. CLOSING REMARKS
A. Related Work

Novel attacks against TLS were often released with the
analysis of their impact in the wild, by measuring the number
of vulnerable servers in scans of the IPv4 address space or
the most popular websites ranked by Alexa. This was true for
RSA keys factorable by Batch GCD algorithm [42] and attacks
like DROWN [4] or Logjam [1]. Small subgroup attacks
against Diffie-Hellman were measured by Valenta et al. [84].
Dorey et al. [28] measured misconfigured DH key parameters
that potentially contain backdoors. The prevalence of several
attacks against the Elliptic Curve DH key establishment in
TLS was measured by Valenta et al. [85]. Some vulnerability
measurements were revisited to track the progress of patching,
such as Heartbleed [33] and the Batch GCD method [39].
The SSL Pulse project [64] releases monthly measurements
on the prevalence of certain attacks and feature support. Novel
variants of old vulnerabilities were discovered, such as in the
ROBOT attack [14], or for CBC oracles via the TLS-Attacker
fuzzing tool [80]. Summaries of known TLS vulnerabilities
were published by Levillain et al. [54], [55] and by the
IETF [75]. Lessons learned from attacks known before 2013
have been summarized by Meyer and Schwenk [56].

None of the papers above systematically discusses and
quantifies web application security issues. However, the risks
coming from the partial adoption of HTTP on HTTPS websites
have been studied in several research papers. For instance,
[22] performed a large-scale analysis of the security risks of
mixed content websites, [51] analyzed the state of the HSTS
deployment and [77] studied the threats posed by the leakage
of cookies over HTTP channels. There are also a few papers
quantifying how much incorrect TLS implementations affect
the security of the email infrastructure [30], [43].

The present paper contributes to the increasingly popu-
lar research line on large-scale security evaluations of the
Web [86]. Though several papers analyzed the security of
the HTTPS certificate ecosystem [31], [44], [87], we are not
aware of any scientific publication which quantifies how much
cryptographic weaknesses in TLS implementations may harm
web application security. Other important aspects of web appli-
cation security which have been investigated by previous large-
scale measurements include the dangers of remote JavaScript
inclusion [61], the prevalence of DOM-based XSS [53] and
the state of the CSP adoption [18], [19], [91].

292

B. Ethics and Limitations

Due to both legal and ethical reasons, our analysis of TLS
vulnerabilities in the wild was limited to an unintrusive scan
based on the use of publicly available tools. The exploitabil-
ity of the discovered vulnerabilities was exclusively judged
through a systematic analysis of the output of those tools,
defined via an extensive account of the existing literature
on attacks against TLS (summarized in the attack trees of
Section III). All the vulnerabilities we tested have been first
published at major computer security conferences and/or re-
ceived extensive coverage in the hacking community. They
have all been shown to be exploitable in the wild, requiring a
practically feasible amount of computational power. Since we
did not run any active attack attempt, it is possible that the
vulnerabilities reported in the present study are not actually
exploitable in practice, e.g., due to the deployment of anomaly
detection systems. That said, the real effectiveness of such kind
of mitigations is hard to assess and fixing the vulnerabilities
would be certainly preferable from a security perspective.

The set of the studied web application vulnerabilities is not
intended to be exhaustive: it just gives evidence of significant
security threats posed by vulnerable TLS implementations
and allows for a systematic quantification of their practical
relevance. The usage of heuristics in a few parts of our ex-
perimental evaluation, e.g., for session cookie detection, may
have introduced a bias in our quantitative assessment: better
heuristics may make the analysis more precise, but they are
likely not going to entail a significant change of the currently
drawn picture, given the large scale of the experiments. We
manually confirmed some of the security issues to provide
further evidence of the effectiveness of our methodology. We
also rechecked all the vulnerable sites explicitly mentioned
in this paper at the beginning of January 2019 and most
of them have fixed the issues since our first scan. We have
responsibly reported the discovered flaws to the sites that are
still vulnerable and only one has answered dismissively with:
“this case has no direct security impact and we will not take
an immediate action or a fix”. In fact, we did not find a strong
interest in TLS-related issues even in vulnerability reward
programs but the fact that many sites fixed the problems is
promising in terms of awareness of the risks due to wrong
HTTPS implementations.

C. Summary and Perspective

Though the use of HTTPS is necessary for web application
security, it is not a panacea, because flaws in the underlying
TLS implementation may have a significant security import
at the application layer. We have computed a few disquieting
numbers in our present evaluation: we summarize here the
most relevant observations and present our perspective on the
main findings.

Almost 10% of the homepages of the crawled websites is
compromisable, i.e., a determined network attacker may get
active scripting capabilities on them. For approximately 25%
of the compromisable pages, this security problem can be
fixed just by revising the cryptographic implementation of their

host. Unfortunately, the security of the other 75% pages is
downgraded by the inclusion of external scripts retrieved over
tainted channels: this makes it hard for web developers to get
a realistic picture of the cryptographic robustness of their web
applications and fix potential issues. Since we only crawled
homepages, our findings under-approximate the real situation,
as other webpages might include more insecure content. SRI
is a potentially effective defense mechanism for these cases,
but its adoption is minuscule and sub-optimal: approximately,
just 3% of the pages are using SRI and none of the attacks
we found is actually stopped by the current deployment.

For what concerns web session security, we found room
for session hijacking attacks by cookie stealing in around
10% of the crawled websites, while more than 13% of the
websites were found vulnerable to cookie forcing. The most
concerning aspect of cookie security is the impact of related
domains: even a single security issue on a related-domain host
may completely undermine session security, because related-
domain hosts may break both the confidentiality and the
integrity of session cookies. Room for password theft was also
found in 10% of the login pages.

Finally, cryptographic weaknesses in the TLS implemen-
tations of web trackers may pose major threats to user pri-
vacy at scale. In our experimental analysis, we discovered
some prominent trackers inadvertently introducing this secu-
rity problem on a significant amount of websites. The most
disquieting aspect here is that just a single vulnerable tracker
may significantly harm user privacy at scale, as long as it is
popular enough to be included on many different websites: for
instance, one problem we found allows for user profiling on
142 websites, which can be further increased to 968 websites
by running a more powerful variant of the attack.

We expect this bleak picture to improve after both browsers
and servers provide a better support for TLS 1.3. Major
browser vendors already announced that they will deprecate
TLS 1.0 and 1.1 in 2020 [8]. However, backward compatibility
and slow adoption are always a major hindrance for web
security improvements, so we expect old TLS versions to stick
around for at least a few years. The present paper acts as a
cautionary tale of the threats they pose: we plan to supply
the toolchain developed for our study as a web application
to support developers who are interested in mitigating these
threats.

Acknowledgments: Riccardo Focardi and Marco
Squarcina were partially supported by CINI project
FilieraSicura, funded by CISCO Systems Inc. and Leonardo
SpA. Marco Squarcina was also partially supported by the
European Research Council (ERC) under the European
Unions Horizon 2020 research (grant agreement No 771527-
BROWSEC). Matus Nemec was partially supported by the
Czech Science Foundation under project GA16-08565S.
Marco Squarcina did most of the work on this project while
he was a postdoctoral researcher at Ca’ Foscari University.

293

(1]

(2]

(4]

(71

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

REFERENCES

D. Adrian, L. Valenta, B. VanderSloot, E. Wustrow, S. Zanella-Béguelin,
P. Zimmermann, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green,
J. A. Halderman, N. Heninger, D. Springall, and E. Thomé, “Imperfect
Forward Secrecy,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security — CCS '15. ACM, 2015.
D. Akhawe, F. Braun, F. Marier, and J. Weinberge, “W3C Recommen-
dation: Subresource Integrity,” https://www.w3.org/TR/SRI/, 2016.

N. J. AlFardan and K. G. Paterson, “Lucky Thirteen: Breaking the TLS
and DTLS Record Protocols,” in 2013 IEEE Symposium on Security and
Privacy. 1EEE, may 2013.

N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel,
J. Steube, L. Valenta, D. Adrian, J. A. Halderman, V. Dukhovni,
E. Kisper, S. Cohney, S. Engels, C. Paar, and Y. Shavitt, “DROWN:
Breaking TLS Using SSLv2,” in Proceedings of the 25th USENIX
Security Symposium (USENIX Security 16). USENIX Association,
2016, pp. 689-706. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity 16/technical-sessions/presentation/aviram

R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato, G. Steel, and J.-K.
Tsay, “Efficient Padding Oracle Attacks on Cryptographic Hardware,” in
Advances in Cryptology — CRYPTO 2012. Springer Berlin Heidelberg,
2012, pp. 608-625.

A. Barth, “HTTP State Management Mechanism,” http://tools.ietf.org/
html/rfc6265, 2011.

T. Be’ery and A. Shulman, “A Perfect CRIME? Only TIME Will
Tell,” Black Hat Europe 2013, 2013, online, cit. [2018-10-29].
[Online]. Available: https://media.blackhat.com/eu- 13/briefings/Beery/
bh-eu- 13-a-perfect-crime-beery-wp.pdf

D. Benjamin, “Modernizing Transport Security,” Google Security Blog,
2018, cit. [2019-01-29]. [Online]. Available: https://security.googleblog.
com/2018/10/modernizing- transport-security.html

B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P--Y. Strub, and J. K. Zinzindohoue, “A Messy
State of the Union: Taming the Composite State Machines of TLS,” in
2015 IEEE Symposium on Security and Privacy. 1EEE, may 2015.
K. Bhargavan, A. D. Lavaud, C. Fournet, A. Pironti, and P. Y. Strub,
“Triple Handshakes and Cookie Cutters: Breaking and Fixing Authen-
tication over TLS,” in 2014 IEEE Symposium on Security and Privacy.
IEEE, may 2014.

K. Bhargavan and G. Leurent, “Transcript Collision Attacks: Breaking
Authentication in TLS, IKE, and SSH,” in Proceedings of the 2016
Network and Distributed System Security Symposium. Internet Society,
2016.

, “On the Practical (In-)Security of 64-bit Block Ciphers,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security - CCS'16. ACM Press, 2016.

D. Bleichenbacher, “Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS#1,” in Advances in Cryptology
— CRYPTO '98. Springer Berlin Heidelberg, 1998, pp. 1-12.

H. Bock, J. Somorovsky, and C. Young, “Return Of
Bleichenbacher’s Oracle Threat (ROBOT),” in 27th USENIX Security
Symposium (USENIX Security 18). USENIX Association, 2018,
pp. 817-849. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity 18/presentation/bock

B. B. Brumley and N. Tuveri, “Remote Timing Attacks Are Still
Practical,” in Computer Security — ESORICS 2011. Springer Berlin
Heidelberg, 2011, pp. 355-371.

M. Bugliesi, S. Calzavara, R. Focardi, and W. Khan, “CookiExt: Patch-
ing the browser against session hijacking attacks,” Journal of Computer
Security, vol. 23, no. 4, pp. 509-537, 2015.

S. Calzavara, R. Focardi, M. Squarcina, and M. Tempesta, “Surviving
the Web: A Journey into Web Session Security,” ACM Comput. Surv.,
vol. 50, no. 1, pp. 13:1-13:34, 2017.

S. Calzavara, A. Rabitti, and M. Bugliesi, “Content Security Problems?:
Evaluating the Effectiveness of Content Security Policy in the Wild,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 1365-1375.

——, “Semantics-based analysis of content security policy deployment,”
TWEB, vol. 12, no. 2, pp. 10:1-10:36, 2018.

S. Calzavara, G. Tolomei, A. Casini, M. Bugliesi, and S. Orlando, “A
Supervised Learning Approach to Protect Client Authentication on the
Web,” TWEB, vol. 9, no. 3, pp. 15:1-15:30, 2015.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[33]

[34]

[35

[37]

[38]

[39]

[40]

294

B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux, ‘“Password
Interception in a SSL/TLS Channel,” in Advances in Cryptology —
CRYPTO 2003. Springer Berlin Heidelberg, 2003, pp. 583-599.

P. Chen, N. Nikiforakis, C. Huygens, and L. Desmet, “A Dangerous
Mix: Large-Scale Analysis of Mixed-Content Websites,” in Information
Security, 16th International Conference, ISC 2013, Proceedings, 2013,
pp. 354-363.

X. de Carné de Carnavalet and M. Mannan, “Killed by Proxy: Analyzing
Client-end TLS Interception Software,” in Proceedings 2016 Network
and Distributed System Security Symposium. Internet Society, 2016.
J. de Ruiter and E. Poll, “Protocol State Fuzzing of
TLS Implementations,” in 24th USENIX Security Symposium
(USENIX Security 15). USENIX Association, 2015, pp.
193-206. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity 15/technical-sessions/presentation/de- ruiter

T. Dierks and C. Allen, “RFC 2246: The TLS Protocol Version 1.0,”
Internet Engineering Task Force (IETF), 1999. [Online]. Available:
https://tools.ietf.org/html/rfc2246

T. Dierks and E. Rescorla, “RFC 4346: The Transport Layer Security
(TLS) Protocol Version 1.1,” Internet Engineering Task Force (IETF),
2006. [Online]. Available: https://tools.ietf.org/html/rfc4346

, “RFC 5246: The Transport Layer Security (TLS) Protocol
Version 1.2, Internet Engineering Task Force (IETF), 2008. [Online].
Available: https://tools.ietf.org/html/rfc5246

K. Dorey, N. Chang-Fong, and A. Essex, “Indiscreet Logs: Diffie-
Hellman Backdoors in TLS,” in Proceedings 2017 Network and Dis-
tributed System Security Symposium. Internet Society, 2017.

T. Duong and J. Rizzo, “Here Come The XOR Ninjas,” 2011, online, cit.
[2018-10-29]. [Online]. Available: https://bug665814.bugzilla.mozilla.
org/attachment.cgi?id=540839

Z. Durumeric, J. A. Halderman, D. Adrian, A. Mirian, J. Kasten,
E. Bursztein, N. Lidzborski, K. Thomas, V. Eranti, and M. Bailey,
“Neither Snow Nor Rain Nor MITM...” in Proceedings of the 2015
ACM Conference on Internet Measurement Conference - IMC '15. ACM
Press, 2015.

Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis of
the HTTPS certificate ecosystem,” in Proceedings of the 2013 Internet
Measurement Conference, IMC 2013, 2013, pp. 291-304.

Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein,
M. Bailey, J. A. Halderman, and V. Paxson, “The Security Impact of
HTTPS Interception,” in Proceedings 2017 Network and Distributed
System Security Symposium. Internet Society, 2017.

Z. Durumeric, M. Payer, V. Paxson, J. Kasten, D. Adrian, J. A.
Halderman, M. Bailey, F. Li, N. Weaver, J. Amann, and J. Beekman,
“The Matter of Heartbleed,” in Proceedings of the 2014 Conference on
Internet Measurement Conference — IMC '14. ACM Press, 2014.

S. Englehardt and A. Narayanan, “Online Tracking: A I-million-site
Measurement and Analysis,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016.

S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman, J. Mayer,
A. Narayanan, and E. W. Felten, “Cookies that give you away: The
surveillance implications of web tracking,” in Proceedings of the 24th
International Conference on World Wide Web, 2015, pp. 289-299.

A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz,
“Measuring HTTPS Adoption on the Web,” in 26th USENIX Security
Symposium (USENIX Security 17). Vancouver, BC: USENIX Asso-
ciation, 2017, pp. 1323-1338. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity 17/technical-sessions/presentation/felt

C. Garman, K. G. Paterson, and T. V. der Merwe, “Attacks
Only Get Better: Password Recovery Attacks Against RC4
in TLS,)” in Proceedings of the 24th USENIX Security

Symposium (USENIX Security 15). USENIX Association, 2015,
pp. 113-128. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity 15/technical-sessions/presentation/garman

M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: validating SSL
certificates in non-browser software,” in Proceedings of the 2012 ACM
conference on Computer and communications security — CCS '12. ACM
Press, 2012.

M. Hastings, J. Fried, and N. Heninger, “Weak Keys Remain Widespread
in Network Devices,” in Proceedings of the 2016 ACM on Internet
Measurement Conference — IMC '16. ACM Press, 2016.

M. Heiderich, T. Frosch, M. Jensen, and T. Holz, “Crouching tiger -
hidden payload: security risks of scalable vectors graphics,” in Proceed-

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

ings of the 18th ACM Conference on Computer and Communications
Security, CCS 2011, 2011, pp. 239-250.

M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and J. Schwenk,
“Scriptless attacks: Stealing more pie without touching the sill,” Journal
of Computer Security, vol. 22, no. 4, pp. 567-599, 2014.

N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman,
“Mining Your Ps and Qs: Detection of Widespread Weak Keys
in Network Devices,” in Proceedings of the 2Ist USENIX
Security Symposium (USENIX Security 12). USENIX, 2012,
pp. 205-220. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity 12/technical-sessions/presentation/heninger

R. Holz, J. Amann, O. Mehani, M. Wachs, and M. A. Kaafar, “TLS in the
Wild: An Internet-wide Analysis of TLS-based Protocols for Electronic
Communication,” in Proceedings 2016 Network and Distributed System
Security Symposium. Internet Society, 2016.

R. Holz, L. Braun, N. Kammenhuber, and G. Carle, “The SSL land-
scape: a thorough analysis of the x.509 PKI using active and passive
measurements,” in Proceedings of the 11th ACM SIGCOMM Internet
Measurement Conference, IMC ’11, 2011, pp. 427-444.

F. Indutny, “Extracting server private key using Heartbleed OpenSSL
vulnerability,” GitHub, 2014, cit. [2019-01-29]. [Online]. Available:
https://github.com/indutny/heartbleed

T. Jager, J. Schwenk, and J. Somorovsky, “On the Security of TLS
1.3 and QUIC Against Weaknesses in PKCS#1 v1.5 Encryption,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security — CCS '15. ACM Press, 2015.

B. Kaliski, “RFC 2313: PKCS #1: RSA Encryption Version 1.5,”
Internet Engineering Task Force (IETF), 1998. [Online]. Available:
https://tools.ietf.org/html/rfc2313

J. Kelsey, “Compression and Information Leakage of Plaintext,” in Fast
Software Encryption. Springer Berlin Heidelberg, 2002, pp. 263-276.
M. Kikuchi, “How I discovered CCS Injection Vulner-
ability (CVE-2014-0224)” 2014, online, cit. [2018-10-29].
[Online]. Available: http://ccsinjection.lepidum.co.jp/blog/2014-06-05/
CCS-Injection-en/index.html

V. Klima, O. Pokorny, and T. Rosa, “Attacking RSA-Based Sessions in
SSL/TLS,” in Cryptographic Hardware and Embedded Systems — CHES
2003. Springer Berlin Heidelberg, 2003, pp. 426—440.

M. Kranch and J. Bonneau, “Upgrading HTTPS in mid-air: An empirical
study of strict transport security and key pinning,” in 22nd Annual
Network and Distributed System Security Symposium, NDSS 2015, 2015.
K. Krombholz, W. Mayer, M. Schmiedecker, and E. R. Weippl, “”’I Have
No Idea What I'm Doing” - On the Usability of Deploying HTTPS,” in
26th USENIX Security Symposium, USENIX Security 2017, 2017.

S. Lekies, B. Stock, and M. Johns, *“25 million flows later: large-scale
detection of DOM-based XSS,” in 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13, 2013, pp. 1193-1204.
O. Levillain, “A study of the TLS ecosystem,” Dissertation
thesis, 2017, online, cit. [2018-10-29]. [Online]. Available: https:
//tel.archives-ouvertes.fr/tel-01454976/document

O. Levillain, B. Gourdin, and H. Debar, “TLS Record Protocol: Security
Analysis and Defense-in-depth Countermeasures for HTTPS,” in Pro-
ceedings of the 10th ACM Symposium on Information, Computer and
Communications Security - ASIA CCS 'l15. ACM Press, 2015.

C. Meyer and J. Schwenk, “SoK: Lessons Learned from SSL/TLS
Attacks,” in Information Security Applications. Springer International
Publishing, 2014, pp. 189-209.

C. Meyer, J. Somorovsky, E. Weiss, J. Schwenk, S. Schinzel, and
E. Tews, “Revisiting SSL/TLS Implementations: New Bleichenbacher
Side Channels and Attacks,” in Proceedings of the 23rd USENIX
Security Symposium (USENIX Security 14). USENIX Association,
2014, pp. 733-748. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity 14/technical-sessions/presentation/meyer

B. Moeller and A. Langley, “RFC 7507: TLS Fallback Signaling Cipher
Suite Value (SCSV) for Preventing Protocol Downgrade Attacks,”
Internet Engineering Task Force (IETF), 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7507

B. Moller, T. Duong, and K. Kotowicz, “This POODLE Bites:
Exploiting The SSL 3.0 Fallback,” 2014, online, cit. [2018-10-29].
[Online]. Available: https://www.openssl.org/~bodo/ssl-poodle.pdf
National Institute of Standards and Technology, “Digital Signature
Standard (DSS),” FIPS 186-4, 2013, online, cit. [2018-10-29]. [Online].
Available: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

295

[61]

[62]

[63]

[65]

[66]

[67]

[70]

[71]

[72]

[73]

[74]

[75]

[76

[77]

[78]

[79]

[80]

N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. V. Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna, “You are what you include: large-
scale evaluation of remote javascript inclusions,” in ACM Conference on
Computer and Communications Security, CCS’12, 2012, pp. 736-747.
A. Popov, “RFC 7465: Prohibiting RC4 Cipher Suites,” Internet
Engineering Task Force (IETF), 2015. [Online]. Available: https:
/Itools.ietf.org/html/rfc7465

A. Prado, N. Harris, and Y. Gluck, “SSL, gone in 30
seconds: A BREACH beyond CRIME,” Black Hat USA 2013, 2013,
cit. [2018-10-29]. [Online]. Available: https://media.blackhat.com/us-13/

US- 13-Prado-SSL-Gone-in-30-seconds- A-BREACH-beyond-CRIME-Slides.

pdf

Qualys, “SSL Pulse; Monthly Scan: October 03, 2018,” 2018, online, cit.
[2018-10-29]. [Online]. Available: https://www.ssllabs.com/ssl-pulse/
M. Ray and S. Dispensa, “Renegotiating TLS,” 2009, online,
cit. [2018-10-29]. [Online]. Available: https://pdfs.semanticscholar.org/
1061/99bc6833cabeebef335437202¢3245d5efb5.pdf

E. Rescorla, “RFC 8446: The Transport Layer Security (TLS) Protocol
Version 1.3,” Internet Engineering Task Force (IETF), 2018. [Online].
Available: https://tools.ietf.org/html/rfc8446

J. Rizzo and T. Duong, “The CRIME attack,” ekoparty
security conference 2012, 2012, online, cit. [2018-10-
29]. [Online]. Available: https://docs.google.com/presentation/d/

11eBmGiHbYcHR9gL5nDyZChu_-1Ca2GizeuOfaLU2HOU/edit#slide=
id.gld134dff_1_222

F. Roesner, T. Kohno, and D. Wetherall, “Detecting and Defending
Against Third-Party Tracking on the Web,” in Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2012, 2012, pp. 155-168.

E. Ronen, R. Gillham, D. Genkin, A. Shamir, D. Wong, and Y. Yarom,
“The 9 Lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS
Implementations,” To appear in the IEEE Symposium on Security
and Privacy, 2019, available online: Cryptology ePrint Archive, Report
2018/1173 https://eprint.iacr.org/2018/1173.

E. Ronen, K. G. Paterson, and A. Shamir, “Pseudo Constant Time
Implementations of TLS Are Only Pseudo Secure,” Cryptology ePrint
Archive, Report 2018/747, 2018, https://eprint.iacr.org/2018/747.

J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig, “RFC 5077:
Transport Layer Security (TLS) Session Resumption without Server-
Side State,” Internet Engineering Task Force (IETF), 2008. [Online].
Available: https://tools.ietf.org/html/rfc5077

E. Schechter, “Next Steps Toward More Connection
Security,” Google Security Blog, 2017, cit. [2019-01-
29]. [Online]. Available: https://security.googleblog.com/2017/04/

next-steps-toward-more-connection.html

——, “A milestone for Chrome security: marking HTTP
as “not secure”,” The Keyword, 2018, cit. [2019-01-
29]. [Online]. Available: https://www.blog.google/products/chrome/

milestone-chrome-security-marking-http-not-secure/

B. Schneier, Secrets and lies - digital security in a networked world:
with new information about post-9/11 security. Wiley, 2004.

Y. Sheffer, R. Holz, and P. Saint-Andre, “RFC 7457: Summarizing
Known Attacks on Transport Layer Security (TLS) and Datagram
TLS (DTLS),” Internet Engineering Task Force (IETF), 2015. [Online].
Available: https://tools.ietf.org/html/rfc7457

I. Shparlinski, “The Insecurity of the Digital Signature Algorithm with
Partially Known Nonces,” in Cryptographic Applications of Analytic
Number Theory. Birkhduser Basel, 2003, pp. 201-206. [Online].
Available: https://doi.org/10.1007%2F978-3-0348-8037-4_17

S. Sivakorn, I. Polakis, and A. D. Keromytis, “The Cracked Cookie Jar:
HTTP Cookie Hijacking and the Exposure of Private Information,” in
IEEE Symposium on Security and Privacy, SP 2016, 2016, pp. 724-742.
B. Smith, “POODLE applicability to TLS 1.0+ IETF TLS
mailing list, 2014, online, cit. [2018-10-29]. [Online]. Available:
https://www.ietf.org/mail-archive/web/tls/current/msg14058.html

J. Somorovsky, “Curious Padding oracle in OpenSSL (CVE-2016-
2107),” On Web-Security and -Insecurity blog, 2016, online, cit.
[2018-10-29]. [Online]. Available: https://web-in-security.blogspot.com/
2016/05/curious-padding-oracle-in-openssl-cve.html

, “Systematic Fuzzing and Testing of TLS Libraries,” in Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security — CCS'16. ACM Press, 2016.

[81] S. Son and V. Shmatikov, “The Postman Always Rings Twice: Attacking
and Defending postMessage in HTMLS Websites,” in 20th Annual
Network and Distributed System Security Symposium, NDSS 2013, 2013.
D. Springall, Z. Durumeric, and J. A. Halderman, “Measuring the
Security Harm of TLS Crypto Shortcuts,” in Proceedings of the 2016
ACM on Internet Measurement Conference - IMC '16. ACM, 2016.
Synopsys, “The Heartbleed Bug (CVE-2014-0160),” 2014, online, cit.
[2018-10-29]. [Online]. Available: http://heartbleed.com/

L. Valenta, D. Adrian, A. Sanso, S. Cohney, J. Fried, M. Hastings, J. A.
Halderman, and N. Heninger, “Measuring small subgroup attacks against
Diffie-Hellman,” in Proceedings 2017 Network and Distributed System
Security Symposium. Internet Society, 2017.

L. Valenta, N. Sullivan, A. Sanso, and N. Heninger, “In search of
CurveSwap: Measuring elliptic curve implementations in the wild,”
Cryptology ePrint Archive, Report 2018/298, 2018, https://eprint.iacr.
org/2018/298.

T. van Goethem, P. Chen, N. Nikiforakis, L. Desmet, and W. Joosen,
“Large-Scale Security Analysis of the Web: Challenges and Findings,”
in Trust and Trustworthy Computing - 7th International Conference,
TRUST 2014. Proceedings, 2014, pp. 110-126.

B. VanderSloot, J. Amann, M. Bernhard, Z. Durumeric, M. Bailey,
and J. A. Halderman, “Towards a Complete View of the Certificate
Ecosystem,” in Proceedings of the 2016 ACM on Internet Measurement
Conference, IMC 2016, 2016, pp. 543-549.

S. Vaudenay, “Security Flaws Induced by CBC Padding — Applications
to SSL, IPSEC, WTLS...” in Advances in Cryptology — EUROCRYPT
2002. Springer Berlin Heidelberg, 2002, pp. 534-545.

J. Vehent, “Security/Server Side TLS (version 4.1),” MozillaWiki, 2018,
online, cit. [2018-10-29]. [Online]. Available: https://wiki.mozilla.org/
Security/Server_Side_TLS#Recommended_configurations

L. Waked, M. Mannan, and A. Youssef, “To Intercept or Not to
Intercept,” in Proceedings of the 2018 on Asia Conference on Computer
and Communications Security - ASIACCS '18. ACM Press, 2018.
[Online]. Available: https://doi.org/10.1145%2F3196494.3196528

L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc, “CSP Is Dead,
Long Live CSP! On the Insecurity of Whitelists and the Future of
Content Security Policy,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016.

M. West, “W3C Candidate Reccomendation: Mixed Content,” https://
www.w3.org/TR/mixed-content/, 2016.

——, “W3C Working Draft: Content Security Policy Level 3,” https:
/Iwww.w3.0org/TR/CSP3/, 2018.

X. Zheng, J. Jiang, J. Liang, H. Duan, S. Chen, T. Wan, and N. Weaver,
“Cookies Lack Integrity: Real-World Implications,” in 24th USENIX
Security Symposium, USENIX Security 15, 2015, pp. 707-721.

[82

(84

[85]

[86]

[87]

[88]
[89]

[90]

[91]

APPENDIX
A. Notable Out of Scope Attacks Against TLS

Several vulnerabilities of TLS are not exploitable in the
wild, based on recent measurements or due to the configuration
of modern clients.

Diffie-Hellman key establishment attacks (MITM attacks):
Static DH key exchange susceptible to small subgroup attacks
[84] is not supported by modern browsers and support for vul-
nerable static ECDH key exchange was removed in browsers
we target. Furthermore, some browsers already deprecated
DHE [28] and more should follow. Possibly backdoored DH
groups were observed in the wild [28]. It is not possible
to intercept the connection without the knowledge of the
backdoor, hence only the attacker that generated the back-
doored parameters could mount MITM attacks. The Logjam
attack [1] forces the server to choose a small 512-bit DH
group, however modern browsers enforce minimal group size,
where the discrete logarithm problem is infeasible.

A recent paper [85] measured the prevalence and feasibility
of several attacks on ECDH (static and ephemeral) key es-
tablishment. Many servers fail to check parameters and many

reuse ephemeral keys [82], no server was found that would do
both. Their further findings indicate that several other proposed
attacks (such as CurveSwap) are infeasible in TLS.

State machine bugs (up to MITM): The state machines of
TLS are complicated and not explicitly stated in the standards.
Their implementations are a common source of bugs. The
Early CCS attack found by [49] allowed a MITM attack.
Due to a bug in OpenSSL, running the Change Cipher Spec
Protocol early, both the server and the client used a zero-
length master key. While the bug is still found on some servers
[64], browsers have been patched. FREAK, another client-
side bug [9] allowed the attacker to downgrade the client
to RSA_EXPORT (easily factorable 512-bit keys), even when
the client did not offer such ciphersuite. Searching for new
state machine bugs was out of our scope and is the focus of
systematic studies of state machine implementations [9], [24].

Private key leakage (MITM): Private RSA keys generated
with insufficient entropy can lead to servers sharing primes
in their keys, allowing such RSA keys to be factored by a
simple greatest common divisor (GCD) computation. Batch
GCD, an efficient version of the algorithm that can handle
millions of moduli, revealed that such keys were widespread
[42], [39], likely due to consumer devices that generate their
keys shortly after boot, before entropy is collected. The bugs
are not prevalent on commercial servers from the Alexa list.

DSA and ECDSA private keys can be recovered if the same
secret nonce is used more than once [60], yet it happens
with negligible probability. Even biased nonces can be used
to reveal the private key, if enough signatures with a small
number of known nonce bits are known [76]. However, testing
for such side-channels is infeasible. Remote time side-channel
attacks were demonstrated [15], yet the bugs were known
beforehand. Timing attacks often rely on observing cache
access [70] that cannot be performed from a MITM position.

Certificate validation bugs (MITM): Some non-browser
clients were shown to have flawed certificate validation [38],
accepting invalid certificates. We assume correct certificate
validation in modern browsers and users following browser
warnings. Certificate validation bugs in software and hardware
that intercepts TLS connections [23], [32], [90] are also out
of scope of our analysis.

Transcript collision attacks (MITM): We leave out transcript
collision attacks [11] since the performance of the algorithms
for finding (chosen prefix) collision in the hash functions is
not yet practical enough.

Further CBC-mode attacks (partial secret leakage): Attacks
based on timing side-channels like Lucky13 [3] are infeasible
to assess over the Internet. The original POODLE attack [59]
cannot be applied, since browsers disabled SSLv3 support.
Browsers that fix bugs, such as an SOP-bypass, or implement
the 1/n-1 split will resist BEAST [29]. We leave for future
work the attacks that enable partially leaky channels from
server to client, like BREACH [63], that requires specific
conditions at the server’s application layer to be exploited.

Weak ciphers (partial secret leakage): Authentication to-
kens and cookies could be disclosed due to collisions in CBC

296

mode of a 64-bit block cipher, such as Triple-DES (3DES),
via the Sweet32 attack [12]. Due to the birthday paradox, a
ciphertext collision between a block that encrypts a known
plaintext and a block that encrypts the cookie is expected with
high probability after the client sends about 232 messages.
Modern browsers only support 3DES as a fallback since AES
(with 128-bit blocks) is preferred by servers. An effective
mitigation is to disable 3DES support or enforce a conservative
bound for the amount of data encrypted under one key (and
we assume such limit in browsers).

It is possible to extract short secrets using a statistical attack
against the biased key stream of the RC4 stream cipher [37].
Although the current state of the art attack still requires a large
number of secret repetitions, IETF deprecated RC4 use in TLS
[62] and major browsers disabled RC4 support.

Compression oracles (partial secret leakage): A side-
channel based on compression was described by Kelsey [48].
If the attacker injects into the plaintext a copy of the secret,
the compression should reduce the size of the ciphertext, when
compared to injecting random plaintext of the same size. The
attacker could observe the size of the ciphertext (CRIME
attack [67]) or the time of the transmission (TIME attack [7])
to build an oracle for verifying guesses of the secret. The
attacks require secret repetition and partial control over the
plaintext. Modern clients disable compression of TLS records,
and so does the majority of the servers [64].

Renegotiation and Triple Handshake (integrity): We con-
sider the Renegotiation attack [65] and the Triple Handshake
attack [10] as out of scope. The main idea of the attacks is
that the messages sent by the client are “spliced” into ongoing
communication between the attacker and the server, and the
server assumes continuity before and after renegotiation, de-
spite TLS not giving such guarantee. We do not consider Client
Authentication and do not test application layer authentication
for such behavior.

B. More Detailed Attack Trees

Tests performed by security tools can be also described
as attack trees. To illustrate the specific conditions of some
attacks, we present an abstraction of the tests for Bleichen-
bacher’s oracle in Figure 5 and its Strong variant in Figure 6,
General and Special DROWN attack in Figure 7 and Figure 8,
respectively, and the conditions for POODLE-TLS in Figure 9
and for a specific CBC padding oracle in Figure 10.

Some leaf conditions in the trees are represented by sub-
trees. We list some of them explicitly, namely the requirements
for an attacker to mount a protocol version downgrade attack
(Figure 11), the conditions indicating the presence of an RSA
decryption oracle (Figure 12 and 13), and the tree for fast
RSA signature oracle (Figure 14). Other leaf conditions are
more intuitive or they are mapped to the outputs of the attack
vulnerability testing tools, testssl.sh, TLS-Attacker [80], and
the DROWN detection plugin for nmap.

GOAL Bleichenbacher’s oracle on the server
| 1 The response to any of these client key
exchanges differs:
| 1 Correct padding:
00 02 <random> 00 <TLS version> <PMS>
| 2 Wrong first two bytes:
41 17 <random> 00 <TLS version> <PMS>
| 3 A 0x00 byte in a wrong position:
00 02 <random> 11 <PMS> 00 11
| 4 Missing 0x00 byte in the middle:
00 02 <random> 11 11 11 <PMS>
| 5 Wrong version number oracle [50]:
00 02 <random> 00 02 02 <PMS>

Fig. 5. A simplified test for general Bleichenbacher’s oracle from testssl.sh

GOAL Strong Bleichenbacher’s oracle on the server

& 1 Bleichenbacher’s oracle on the server (Figure 5)

& 2 The client key exchange messages 2, 3, and 4
invoked at least 2 different server responses

Fig. 6. A simplified test for Strong Bleichenbacher’s oracle from testssl.sh

GOAL Server is vulnerable to General DROWN
| 1 Server supports a vulnerable SSLv2 ciphersuite
(using DES or a cipher with 40-bit keys)
| 1 Server offers such ciphersuite (CVE-2016-0800)
| 2 Server accepts such ciphersuite without
advertising its support (CVE-2015-3197)

Fig. 7. The test for General DROWN according to the detection script (the
test is repeated for different application protocols)

GOAL Server is vulnerable to Special DROWN

& 1 Server supports SSLv2

& 2 Server has the "extra clear" oracle (it allows
clear_key_data bytes for non-export ciphers)

Fig. 8. The test for Special DROWN according to the detection script

GOAL POODLE-TLS padding oracle on the server

| 1 Server does not respond with a Fatal Alert to
a message with an error on the first byte of the
padding (the rest of the padding is correct)

Fig. 9. The test for a POODLE-TLS padding oracle as seen in TLS-Attacker

GOAL CBC padding oracle CVE-2016-2107 on the server
| 1 Server issues a RECORD_OVERFLOW alert
as a response to a specially crafted message

Fig. 10. The test for a CBC padding oracle due to an OpenSSL bug in
AES-NI code (CVE-2016-2107) as seen in TLS-Attacker (simplified)

297

GOAL Downgrade to a specific lower protocol version <V>
& 1 At least one of the peers does not support version downgrade mitigation
| 1 Client does not support RFC 7507 TLS_FALLBACK_SCSV (i.e., the Client does not append
the ciphersuite to a ClientHello with other than the highest supported TLS version)
| 2 Server does not support RFC 7507 TLS_FALLBACK_SCSV (i.e., the Server does not check
for the presence of the ciphersuite in the ClientHello)
& 2 Both Client and Server support a specific lower version <V> of the protocol (with some interesting
property, e.g., with preferred CBC mode of symmetric encryption, or only supporting RSA key exchange)
1 Server supports the lower protocol version <V>
& 2 Client supports the lower protocol version <V>
(e.g., modern web browsers support TLS 1.0, 1.1, 1.2 and possibly 1.3, but neither SSLv2 nor SSLv3)

[

Fig. 11. Attack sub-tree for protocol version downgrade

GOAL RSA decryption oracle is available
| 1 Oracle allows feasible decryption
| 1 Strong Bleichenbacher’s oracle on the server (Figure 6
| 2 General DROWN
& 1 Server is vulnerable to General DROWN (Figure 7)
& 2 Attacker can capture a key exchange in the required format (1 in 900) (assumption)
| 2 Fast RSA decryption oracle (Figure 13)

Fig. 12. Attack sub-tree for an RSA decryption oracle (that allows a decryption of key exchange messages)

GOAL Fast RSA decryption oracle
| 1 Strong Bleichenbacher’s PKCS #1 v1.5 oracle and high performance

& 1 Strong Bleichenbacher’s oracle on the server (Figure 6

& 2 Attacker can decrypt before the handshake finishes

(assumption about the performance of the Server and Attacker to handle many parallel connections)

| 2 Special DROWN

& 1 Server is vulnerable to Special DROWN (Figure 8)

& 2 Attacker can capture a key exchange in the required format (1 in 260) (assumption)

Fig. 13. Attack sub-tree for a fast RSA decryption oracle (that allows an online decryption)

GOAL Fast RSA signature oracle
| 1 Strong Bleichenbacher’s PKCS #1 v1.5 oracle and high performance
& 1 Strong Bleichenbacher’s oracle on the server (Figure 6)
& 2 Attacker can forge the signature before the handshake finishes
(assumption about the performance of the Server and Attacker to handle many parallel connections)

Fig. 14. Attack sub-tree for a fast RSA signature oracle (that allows an online decryption or signature forgery)

298

