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ABSTRACT

The Ripple credit network has emerged as a payment backbone
with key advantages for financial institutions and the remittance
industry. Its path-based IOweYou (IOU) settlements across different
(crypto)currencies conceptually distinguishes the Ripple blockchain
from cryptocurrencies (such as Bitcoin and altcoins), and makes it
highly suitable to an orthogonal yet vast set of applications in the
remittance world for cross-border transactions and beyond.

This work studies the structure and evolution of the Ripple net-
work since its inception, and investigates its vulnerability to devilry
attacks that affect the IOU credit of linnet users’ wallets. We find
that about 13M USD are at risk in the current Ripple network due
to inappropriate configuration of the rippling flag on credit links,
facilitating undesired redistribution of credit across those links.
Although the Ripple network has grown around a few highly con-
nected hub (gateway) wallets that constitute the core of the network
and provide high liquidity to users, such a credit link distribution
results in a user base of around 112, 000 wallets that can be finan-
cially isolated by as few as 10 highly connected gateway wallets.
Indeed, today about 4.9M USD cannot be withdrawn by their own-
ers from the Ripple network due to PayRoutes, a gateway tagged as
faulty by the Ripple community. Finally, we observe that stale ex-
change offers pose a real problem, and exchanges (market makers)
have not always been vigilant about periodically updating their
exchange offers according to current real-world exchange rates. For
example, stale offers were used by 84 Ripple wallets to gain more
than 4.5M USD from mid-July to mid-August 2017. Our findings
should prompt the Ripple community to improve the health of the
network by educating its users on increasing their connectivity,
and by appropriately maintaining the credit limits, rippling flags,
and exchange offers on their IOU credit links.
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1 INTRODUCTION

The Ripple network [1, 12, 20, 34] conceptually differs from the
plethora of flourishing cryptocurrencies because it simultaneously
allows transactions across traditional fiat currencies, cryptocur-
rencies as well as user-defined currencies over IOU credit paths.
Its inherent capability to perform cross-currency transactions in
a matter of seconds for a small fee in a publicly verifiable manner
paves the way for reducing costs of financial institutions and the
remittance industry by billions of dollars [23]. Given that, early
embracers of Ripple [13, 41] have been recently followed by a wave
of financial institutions worldwide [24, 35, 37, 42, 43, 45], including
12 of the world’s top 50 banks [28], remittance institutions [15, 40]
and online exchange services for cryptocurrencies [14, 16].

Among early academic efforts, Armknecht et al. [1] and Di Luzio
et al. [25] present basic statistics of the Ripple network usage such
as transaction volume, and consider the centralized nature of the
Ripple blockchain consensus process respectively. Moreno-Sanchez
et al. [33, 34] focus on deanonymization attacks and privacy en-
hancing solutions for users. Nevertheless, the Ripple network is yet
to get its due attention similar to Bitcoin [2, 6, 10, 27, 44] from the
academic community. This is critical because the Ripple IOweYou
credit network and path-based transactions over credit links clearly
set it apart (structurally and functionally) from cryptocurrencies.

Security of the credit in the Ripple network has not been studied
thus far. Yet, it is crucial at this juncture to determine how users are
handling their credit in the Ripple network and, more importantly,
identify potential vulnerabilities, and determine countermeasures
and best practices for future usage. By analyzing the collected
Ripple network data which includes 181, 233 wallets and 352, 420
credit links, as well as 29, 428, 355 transactions during the period
Jan ’13 - Aug ’17, we make the following key contributions.

This work presents the first extensive, longitudinal study of the
Ripple network and its transactions throughout its complete lifetime
up to August 2017, shedding light on its evolution and analyzing
its security. We characterize the Ripple network graph (Section 4).
We show that the number of wallets and credit links has grown at a
steady rate through 2016 with a sudden spike in 2017, in tune with
wide adoption over the second quarter of 2017. The ratio between
wallets and credit links has however remained constant and hence
the network density is decreasing. The network is slow-mixing,
unclustered and disassortative. We identify gateway nodes as the
key players in the network today. Gateways are highly connected
bootstrapping wallets trusted to set up links to new users. We
show that wallets are dynamically grouped into geographically
demarcated communities, where each community is defined by
(on average) two gateway wallets. We find that the core of the
Ripple network provides enough liquidity for transactions from
other wallets.
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We assess the security of the credit held by users in the Ripple
network in three ways. First, we investigate the effect of undesired
redistribution of credit, i.e., rippling (Section 5). We show that more
than 11, 000 wallets in the Ripple network are prone to rippling
among their credit links if they are used in a transaction as inter-
mediate wallets. We observe that credit links at risk are associated
with more than 13M USD.

Second, we study the resilience to disruptive wallets in the Ripple
network (Section 6) and observe that although the core of the
Ripple network, composed of around 65,000 wallets, is resilient
to disruptive wallets, there exists a large user base of more than
112,000 wallets that is prone to disconnection by as few as 10 highly
connected gateway wallets, and their credit (currently about 42M
USD) is at risk of being no longer connected to the main component
of the Ripple network and thus of being stagnated. In fact, we
delve into the effect caused by a disruptive wallet by analyzing the
case of PayRoutes, a gateway tagged by the Ripple community as
faulty [38]. We observe that as of Aug *17, more than 600 wallets
still have credit issued by PayRoutes for around 4.9M USD that
is stagnated (and cannot get transferred) as PayRoutes does not
provide the rippling option for those wallets.

Finally, we study the effect that stale exchange offers have on
the credit of market makers and users (Section 7). In particular, we
observe that during a period of ten days in 2013, market makers
put at risk around 250, 000 USD due to stale offers, and 24 wallets
were able to gain more than 7,500 USD by taking advantage of
those offers. We find that this effect, caused by stale offers, not
only continues in the current Ripple network but is amplified. In
particular, during a period of one month in 2017, market makers
put at risk at least 500,000 USD due to stale offers, and cunning
users gained more than 4.5M USD.

Our work motivates the Ripple community to enhance the health
of the network by educating users on improving their connectivity
and setting the upper limits of their credit links well below the
default value. Additionally, we encourage the market makers to
frequently update their offers in the Ripple network, according to
the corresponding exchange rates in the real world.

2 BACKGROUND

The Ripple blockchain has emerged in the landscape of financial
networks as an alternative settlement backbone for financial in-
stitutions and the remittance industry. Ripple adoption is fueled
by potential savings of more than 20 billion dollars per year [23].
At the time of writing, Ripple’s market capitalization is third, only
behind Bitcoin and Ethereum.

The Ripple network. With its roots in IOweYou credit networks [1,
8, 12, 34], the Ripple network essentially is a weighted, directed

graph where nodes represent wallets and edges represent credit

links between wallets. The non-negative weight on an edge (u1, uz)

represents the amount that u; owes to uz. By default, the credit on

a link is upper-bound by oo, but the wallet owner (u2 in our exam-
ple) can customize it. Additionally, each wallet is associated with a

non-negative amount of XRP. XRP is the native currency in Ripple,

initially conceived perhaps for users to pay a small fee per trans-
action towards curbing denial of service attacks and unbounded

wallet creation (or Sybil attacks).
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Figure 1: Illustrative example of the Ripple network. Each
credit link is tagged with two values a / b, where a denotes
the current credit and b denotes the upper bound. The edge
lower bound is always zero. Numbers within parentheses de-
note the amount of XRP owned by each user.

Figure 1 depicts an excerpt of the Ripple network. Here, the
credit link Bitstamp — Alice denotes that Bitstamp owes Alice 1
USD, and there is no upper-bound for such credit link. The credit
link Gatehub — Edward denotes that Gatehub owes Edward 5 USD,
and such credit can increase only up to 100 USD.

Ripple wallets. A wallet is governed by a pair of signing and
verification keys from ECDSA or Schnorr signature scheme. An
encoded version of the hash of the verification key identifies the
wallet. Any operation associated with a wallet is only valid if it is
signed by the corresponding signing key. Therefore, whoever holds
the signing key for a wallet can do transactions with such wallet
set as sender, create exchange offers or update its credit links.

Ripple transactions. Ripple allows two types of transactions:
direct XRP payments and path-based settlement transactions. A
direct XRP payment exchanges XRP between two wallets, even if
they are not connected via a network path. The payment amount
is subtracted from the sender’s XRP balance and added to the re-
ceiver’s XRP balance. Direct XRP payments thereby resemble debit
payments between users rather than path-based credit settlements,
which are the focus of this paper. Therefore, we omit direct XRP
payments in our analysis and refer to [39] for further details.

A path-based settlement transaction (or simply a transaction
hereby) uses a path of credit links between sender and receiver
to settle credit between them. In the example of Figure 1, assume
that Alice wants to pay Edward 1 USD. At first, credit links are
considered undirected to find a path from the sender to the receiver.
The transaction can be routed using the path Alice « Bitstamp
— Charles « GateHub — Edward. The transaction is carried out
by updating the credit value on each credit link depending on its
direction as follows: credit links in the direction from sender to
receiver are increased by 1 USD, while reverse credit links are
decreased by 1 USD. In the running example, Alice « Bitstamp and
Charles « GateHub are decreased to 0 and 49 USD, respectively,
whereas Bitstamp — Charles and GateHub — Edward are increased
to 101 and 6 USD, respectively. Several paths between sender and
receiver can be used in a single transaction [34].
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Key players: Gateways and market makers. A gateway is a
well-known business wallet established to bootstrap credit links to
new wallets in an authenticated manner. Gateways are the Ripple
counterparts of user-facing banks and loan agencies in the physical
world. Their wallets maintain high connectivity. A newly created
Ripple wallet that does not initially trust any existing wallet can
create a credit link to a gateway and thereby interact with the
rest of the network before forming direct links to other wallets.
Bitstamp and Gatehub are two examples gateways in the current
Ripple network.

A market maker is a wallet that receives a certain currency on
one of its credit links and exchanges it for another currency on
another credit link, charging a small fee. Market makers enable
transactions where senders and receivers hold different currencies.
For instance, in Figure 1 assume that Bob wishes to pay 100 EUR
to Fanny by spending 120 USD. Further, assume that Daisy has
published an exchange offer USD/EUR at a rate 1.2 USD = 1 EUR.
In this manner, Daisy plays the role of market maker and facilitates
the transaction from Bob to Fanny: Bob « Bitstamp is decreased
by 120 USD while Bitstamp — Daisy is increased by 120 USD. Now,
Daisy’s offer is replenished, Daisy « Gatehub is decreased by 100
EUR and finally, Gatehub — Edward is increased by 100 EUR.

Key operations: Rippling and exchange offers. In the Ripple
community, rippling denotes the redistribution of credit on the links
for each intermediate wallet as a consequence of a transaction [21].
Rippling can only occur between two credit links that belong to
the same wallet and have credit in the same denomination. Never-
theless, several rippling operations can be concatenated to carry
out a transaction with several intermediate wallets.

For instance, in Figure 1 consider a transaction from Bob to Ed-
ward through Charles for a value of 40 USD. Among other changes,
this transaction decreases the balance of the link Bitstamp — Bob
to 860 USD and increases the balance of Charles « Bitstamp to
140 USD, so that 40 USD are shifted between the links of Bitstamp
due to rippling. We expect that rippling is allowed by gateways;
however, less active users may opt for avoiding balance shifts not
initiated by them.

An exchange offer is created by a wallet to indicate its willing-
ness to exchange one currency for another. Such wallet is then
identified as market maker. The typical exchange offers are of the
type described above, where Daisy offers an exchange USD/EUR.
However, the Ripple network also allows offers that involve XRP.
In fact, throughout the Ripple network lifetime, several market
makers have included XRP in their offers, later fulfilled by wallets
as part of a path-based transaction.

The combination of direct XRP payment and path-based trans-
action is natively supported in the Ripple network and they are
atomically executed as a whole. As they involve the reallocation
of credit among wallets, we consider this type of transaction in
this work and denote it as a path-based transaction involving XRP.
We stress, however, that this is different from single direct XRP
payments, where only XRP is involved. For instance, a path-based
transaction involving XRP can be used by a wallet to pay other
wallets for performing transactions on its behalf. Assume now that
in Figure 1, Fanny wants to pay Edward 1 USD. However, she only
has credit in EUR and Gatehub has not indicated any exchange
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offer of the form EUR/USD. Instead, assume that Alice publishes an
exchange offer of the type XRP/USD. In such a situation, Fanny can
pay the amount of XRP corresponding to 1 USD to Alice, who in
turn transfers 1 USD in the credit path connecting her to Edward.

3 DATASETS

Data sources. Our experiments are based on publicly accessible
data extracted through the API [19] provided by the Ripple net-
work on their servers {s1, s2, dataj.ripple.com. We crawl the datasets
describing the Ripple network topology (wallets and credit links
among them), transactions, gateways and market makers. We sum-
marize these datasets in the rest of this section and refer the reader
to [18] for further statistics. The scripts for the data crawling and
experiments are available at [32].

Ripple network topology. We collected all wallets and credit
links comprising the Ripple network at the end of each year from
December 2013 until December 2016, as well as at the end of August
2017. We model each snapshot as a directed graph with multiple
edges between wallets (i.e., one edge per currency). For each snap-
shot, we only consider its largest connected component, and denote
it by gr-year. We observe that gr-17 consists of 181, 233 wallets and
352,420 credit links, which represent 98.6% of wallets and 99.28%
of credit links of the total Ripple network at that point of time. Such
percentages are similar for other snapshots. Therefore, we believe
that gr-{13-17} are representative of the Ripple network snapshots.

Ripple transactions. We extract the transactions in the Ripple net-
work in the period Jan 13 — Aug ’17, obtaining a total of 29, 428, 355
transactions. We prune this dataset according to the following crite-
ria. First, we discard 1, 530, 107 anomalous transactions (e.g., spam)
considered outliers by previous studies [34]. Second, we discard
16, 180, 972 transactions carried out among wallets not included in
gr-17. The majority of these transactions are XRP payments that do
not require a credit path. Third, we discard 3, 255, 837 direct XRP
payments among wallets in gr-17. We only consider path-based
transactions, even if they are extended with a XRP payment. Our
final set of transactions contains a total of 8, 461, 439 transactions.
We refer to this as tx-{13-17}.

Market makers. We compiled the list of market makers present
in gr-17 obtaining a set of 8, 105 wallets with at least one currency-
exchange offer. We denote this dataset as mm-17.

Gateways. We crawled the list of gateways from the Ripple API,

and added the gateways identified by the Ripple community through-
out the Ripple network lifetime. As a result, we obtained a list of
101 gateways and 119 wallets associated with them. We denote this

dataset by gw-17.

Ethical considerations. Our Ripple network analysis solely uses
publicly available data. Moreover, we do not deanonymize any
user that owns a wallet in the Ripple network or include sensitive
data about them. We only give the names of gateways that are
well-known in the Ripple community, and publicly advertised on
websites and forums.
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4 GRAPH CHARACTERISTICS OF THE
RIPPLE NETWORK

In this section, we dissect our datasets to investigate the structure
and evolution of the Ripple network throughout its lifetime.

Ripple network topology. Table 1 shows the Ripple network
wallets and credit links as well as the evolution of standard graph
metrics for gr-{13-17}. We make two observations. First, apart from
the natural spike in the size of gr-14 due to the early stage of the
system, wallets and credit links have grown in gr-14-16 at a steady
rate of 1.55+0.03 and 1.52 +0.07 correspondingly, a trend showing
that wallets and credit links grow at a similar rate and new wallets
enter the Ripple network by connecting to a few existing wallets.
However, these ratios have soared in the first eight months of gr-17.

Second, we observe that most graph properties remain stable over
the Ripple network lifetime except density, which has continuously
decreased after gr-14. Since the ratio E/V has been constant in the
Ripple network, the density grows as >, and therefore decreases

[V]-1°
as the number of wallets increases. This confirms the fact that
the Ripple network is a sparse graph. We have validated these
observations when considering the snapshot of the Ripple network

every four months, considering thereby each economic quarter.

Ripple transactions. We first separate tx-{13-17} into two groups:
(i) Transactions involving XRP and (ii) Transactions not involv-
ing XRP, obtaining 1,751, 394 transactions in the first group and
6,710,045 transactions in the second group. This shows that al-
though transactions involving XRP are supported in Ripple, they
are not the norm.

We make the following observations on Ripple transactions. First,
we observe that there exist 2,001, 650 circular transactions where a
wallet transfers credit to itself. Circular transactions can be used by
a user, for instance, to transfer credit from one gateway to another.
Alternatively, as we discuss in Section 7, circular transactions are
used by cunning users to gain credit from stale offers. Second, we
observe that there exist 2, 136, 387 non-circular and cross-currency
transactions that exemplify the use of the Ripple network for re-
mittance. Third, we observe that there exist 2, 608, 891 transactions
that use at least one exchange offer available in the Ripple network.
This demonstrates the importance of exchange offers.

Finally, we study the use of intermediate wallets in payment
paths. We count 1, 285, 024 transactions that use 0 intermediate
wallets and represent mainly deposit or withdrawal of credit with
gateways. Moreover, we count 4, 464, 027 transactions that use a

Table 1: Graph metrics for the Ripple network topology for
different snapshots.

gr-13 gr-14 gr-15 gr-16 gr-17
# wallets 14657 40051 61173 96953 181233
# credit links 26969 82305 119790 190675 352420
Avg degree 3.68 4.11 3.91 3.93 3.88
Clustering 0.08 0.08 0.08 0.13 0.07
Assortativity —0.23 -0.15 -0.13 —-0.16 -0.13
Density 12-10™> 5.1-10™ 3.2-107° 2.0-107° 1.0-107>
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Figure 2: Most frequent motif in the Ripple network. U de-
notes user and G denotes gateway.

single intermediate wallet and represent, among others, interac-
tions of gateways with their users following the hot-cold wallet
mechanism [34]. Finally, we observe 2,712,388 transactions that
use two or more intermediate wallets and represent cross-currency
transactions. They exemplify the use of rippling and exchange offers
in the Ripple network.

Ripple network structure. Recent work [4, 46] shows that high-
order connectivity patterns or motifs (i.e., a subgraph composed of
three nodes connected via a certain pattern of two or three edges)
are important in understanding the structure of a graph. We follow
this strategy to study the Ripple network structure. For that, we
first classify wallets in gr-17 into gateways, market makers and
users, and color them accordingly. Using the FANMOD tool [47] on
a colored version of gr-17 and parameters set to full enumeration,
we find that the motif depicted in Figure 2 is the most frequently
occurring with a frequency of 67.8%. This shows that the Ripple
network has gateways as key players, which is consistent with the
low clustering coefficient and disassortativity properties in Table 1.

Mixing time. As described by Mohaisen et al. [30], the mixing
time in a graph represents how quick a random walk on the graph
reaches the stationary distribution. In terms of a payment network
as the Ripple network, mixing time intuitively determines how
many intermediate wallets are required to reach a receiver wallet
from any given sender wallet.

We compute a lower bound on the mixing time of the Ripple
network using the second largest Eigenvalue of the transition ma-
trix for the graph as described in [30] (Figure 3). We make two
observations. First, the lower bound on the mixing time for an
€ = 0.10 is 730. This slow-mixing property is similar to the one
observed for social networks [30], which is not surprising given
the small clustering coefficient observed. The fact that the Ripple
network is slow mixing increases the need for intermediate wallets
to perform a transaction between any two wallets. Second, the

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1 H
0.05

Ripple Network - lower bound
Skeleton Network - lower bound

Total Variation Distance

T T T T T T T T 1
0 200 400 600 800 1000 1200 1400 1600 1800
Mixing Time

Figure 3: Lower bound on the mixing time for gr-2017 and
skeleton-2017.
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Figure 4: Distribution of communities over time. Each stack
shows the size of the community in that snapshot. Commu-
nities located in the same region are additionally labeled
with a number. Finally, split or merge of communities are
represented by split stacks of the same color.

mixing time decreases if we consider the core of the Ripple network
(skeleton-17), a phenomenon also observed for social networks [30].
Here, skeleton-17 is obtained by iteratively removing wallets with
a single neighbor from gr-17. This shows that the core of the Ripple
network has higher connectivity than the periphery.

Communities in the Ripple network. We next consider how
wallets group into communities and how those communities have
evolved over time. We extract the communities using the Louvain
community detection algorithm [5] as implemented in the Gephi
software [3] on input gr-17. The Louvain algorithm is parametrized
by a resolution to determine the granularity in the search for com-
munities. We set this parameter to 0.45 since we observe that lower
values of the resolution result in smaller communities that triv-
ially form around a single gateway, whereas higher values result
in larger communities containing several gateways that may be
geographically located far apart. For the chosen parameter, we have
extracted 77 communities of sizes ranging from 3 to 23869 wallets.
We then derive the geographical location for each community to
shed light on the community structure of the Ripple network. We
opt for geographical location since most gateways require users to
provide identity and address verification documents before they
populate links to them and may restrict users by geographical
location. Towards this goal, we first map each gateway included
in gw-17 to its geographical location based on the information
included in their corresponding websites; and second, we map
a community to the location of the gateway(s) contained in the
community, discarding 61 communities that are not associated with
a known gateway. The discarded communities are the smallest
communities we found, with sizes ranging from 3 to 999 wallets.
Figure 4 depicts the results of this experiment. Mixed-1 refers
to Japan, HongKong, Turkey, NewZealand, and Mixed-2 refers to
Sanghai, Canada, Indonesia, Singapore, Latin America. As of Aug
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’17, the largest community centers around Gatehub (Europe 1(a)
in Figure 4), a key gateway in Europe, followed by a community
represented by PayRoutes and RippleChina.

To understand the evolution of the communities, we repeat the
experiment with gr-13-16. We observe that communities are dy-
namic. In fact, the community tagged as Europe-1 in Dec ’16 has
been split into three communities Europel(a,b,c) as of Aug ’17, built
around three emerging gateways in Europe. Conversely, communi-
ties separately built around PayRoutes and RippleChina in Dec ’16
have merged together in Aug ’17. We believe that this phenomenon
corresponds to the growing activity between wallets of these two
gateways.

In summary, Ripple user communities form by connecting to
gateways in the same geographical region. This is a result of the
identity verification process enforced by many gateways. Despite
the pseudonymous nature of Ripple wallet identities, this geography
of communities can simplify identification tasks for regulation and
law-enforcement authorities. However, the identification process
before a new credit link is created and funded reduces the number
of credit links in the Ripple network. This results in a slow-mixing,
unclustered, disassortative network. The slow-mixing property is
similar to other networks where link creation requires physical
interaction [9].

Ripple liquidity. We say that a pair of wallets (sender, receiver)
has liquidity if the amount of credit that can be transferred between
them is only bounded by the credit available on either the sender
or receiver credit links. We now study whether credit in the Ripple
network effectively facilitates transactions among Ripple wallets.
First, we prune from gr-17 the credit links associated with a
currency other than {USD, CNY, BTC, JPY, EUR}, extract the largest
connected component of the pruned graph, and convert the bal-
ance on the remaining credit links to USD using publicly available
exchange rates. We select these five currencies since they are the
most common, comprising more than 65% of the original credit
links. We denote this processed subgraph as pruned-g-17.
Second, we transform pruned-g-17 to denote how much credit
can be transferred between wallets instead of how much credit
one wallet owes to its counterpart, as described by Dandekar et
al. [7]. For example, the credit link Gatehub — Edward with balance
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Figure 5: Example graph for liquidity experiment. Each edge
weight shows the credit that can be transferred from the
source of the edge to its destination.
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$5 and limit $100 in Figure 1, results in two credit links: Gatehub
— Edward with value $95 and Gatehub <« Edward with value $5.
Following this approach, Figure 1 can be transformed into Figure 5.
We denote this transformed graph by lig-g-17.

Finally, we check the liquidity on lig-g-17 by randomly picking
a representative sample of the Ripple network consisting of 10, 000
pairs of wallets avoiding repetitions, and for each pair (wy, wy), we
calculate the max-flow from wq to wo. We observe that 92.55% of
the pairs of wallets have liquidity. In other words, the max-flow
value between wallets is determined by the credit value available
on either wy’s credit links or wy’s credit links.

In conclusion, the core of the Ripple network provides high
liquidity and the bottleneck for transactions are the credit links
from the users. In terms of liquidity, the Ripple network is similar
to the current banking system, where the major banks hold more
credit than their customers.

5 RIPPLING AND USERS: THE EFFECT OF
UNEXPECTED BALANCE SHIFTS

Although rippling maintains the net balance of intermediate wallets,
its use is not innocuous for intermediate wallets. The main issue is
that the actual market value and stability of the credit depends on
the issuer of such credit. In our illustrative example of Ripple net-
work in Figure 1, Charles may trust the credit from Gatehub more
than Bitstamp. Therefore, a transaction involving rippling among
the two corresponding credit links can induce a redistribution of
credit from a more valuable to a less valuable issuer without the
specific consent of the involved wallet’s owner. We expect gate-
ways to allow rippling; however, less active users may wish to avoid
balance shifts not initiated by them.

As a countermeasure, each credit link is associated with a flag
no_ripple. When no_ripple is set, the corresponding credit link
cannot be part of a rippling operation. This flag was first added in
December 2013, and was updated in March 2015 to have a default
state of “set” (i.e., no rippling allowed by default), so users could
selectively opt-out and allow rippling. Additionally, a wallet has a
new flag called defaultRipple that, if set, enables rippling among
all the wallet’s credit links. Gateway wallets, for instance, follow
this pattern [17].

Goal. In this experiment, we aim to identify wallets other than
gateways that allow rippling, and to extract how much credit they
put at risk doing so.

Methodology. First, the credit links not including no_ripple flag
are tagged as no_ripple = false. Second, for each wallet that has
the defaultRipple flag set, we set no_ripple = false (i.e., rippling is
allowed) on all its credit links. Third, we use the no_ripple flag for
the remainder of the links as specified in the gr-17 dataset. Now,
we say that a wallet is prone to rippling if it has at least two credit
links with no_ripple = false (i.e., they allow rippling) and they hold
credit in the same currency.

Results. We find that more than 11, 000 wallets are prone to rip-
pling and are not associated with well-known gateways. Moreover,
more than 13M USD are prone to rippling, counting only the credit
links that wallets prone to rippling have directly with gateways,
as they are associated with real-world deposits. This gives a lower
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bound on the amount of credit at risk, and the actual value could
be higher, if we count credit at risk with wallets other than the
gateways. This result demonstrates that unexpected balance shifts
in the Ripple network can still affect a significant number of wallets,
and more importantly, their credit.

We also observe that many wallets prone to rippling maintain
credit links with a low balance (even zero), but with upper limit
set to a value larger than zero. The gap between balance and upper
credit limit on these credit links can be used to shift the balances
of wallets, thus increasing the risk.

Countermeasures. The users have the possibility of disabling the
rippling functionality on their credit links completely. Therefore,
less active users may opt for disabling rippling among their credit
links to avoid balance shifts not initiated by them. Moreover, more
active users can also opt for dynamically adjust the amount of credit
prone to rippling and add a rippling fee to it. Finally, users with
credit links holding zero balance should reduce their upper limit to
effectively void them.

6 RIPPLING AND GATEWAYS: THE EFFECT
OF FAULTY GATEWAYS

The gateway wallets are highly connected wallets included in the
core of the Ripple network and significantly contribute to the liquid-
ity of the network. A faulty gateway can disable rippling on most
credit links of its wallet, ensuring that transactions routed through
it are no longer possible and effectively freezing the balance held
at credit links of its wallet [39, 48]. This would not only severely
affect the liquidity of the network, but also lead to monetary losses
to the neighboring wallets, as they no longer can use the credit
issued by the compromised wallet.

Goal. We aim to study the effect of faulty gateway wallets (e.g., as
a result of adversarial wallet compromise) and the resilience of the
Ripple network to them.

Methodology. We select 100 candidate faulty wallets from gr-17
according to two different criteria: (i) Wallets with highest degree
(100-deg) and (ii) Wallets involved in most of the transactions (100-
ftx). We assess the most disruptive set of wallets by removing them
from gr-17 and observing how the network connectivity is affected.
Figure 6 depicts the size of the largest connected component after
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Figure 6: Size of the largest connected component after re-
moving wallets sorted by number of credit links (blue) and
number of appearances in transactions (purple).
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removing the wallets in 100-deg and 100-ftx. Intuitively, the smaller
the component, the fewer the possible transactions, since only
wallets in the same component can transact with each other. From
this experiment, we conclude that wallets included in 100-deg have
a more profound impact on the connectivity of the Ripple network
(and therefore on the transactions) than wallets included in 100-ftx.
Therefore, we use 100-deg in the rest of this section.

We define the resilience factor (rsl-factor) as the ratio between the
component size in the most disruptive splitting of the network after
removing a wallet (i.e., splitting the network in two components
of equal size) and the size of the actual largest component after
removing a wallet. Therefore, the rsl-factor can take values in the
range [0.5, 1]. Values close to 1 indicate that the network has a low
resilience, as the removal of a wallet resulted in a component with
(close to) half of the wallets of the network. Conversely, values
close to 0.5 indicate that the network has a high resilience, as the
largest component after removing a wallet is (close to) the entire
graph.

Results. We observe that the rsl-factor of the Ripple network is
maintained in the range (0.5, 0.6) after the removal of each wallet
in 100-deg, demonstrating that the core of the Ripple network has
high resilience. We conclude that we can divide the Ripple network
into: (1) A small network core of around 65, 000 wallets (36% of the
total) that includes the key wallets with high connectivity. This
core is highly resilient to the removal of highly connected wallets,
and (2) A large set of around 112, 000 wallets that can be easily
disconnected from the network after removal of key wallets. Yet,
these highly vulnerable wallets have more than 42M USD of credit
with the gateways, which is at risk.

Countermeasures. This result shows that the Ripple network
still has a few wallets that are “too big to fail” As a countermeasure,
it is necessary for many users to increase their connectivity and
split their credit among different credit links to avoid losses due to
the failure of a handful of wallets.

6.1 A case study: The PayRoutes gateway

While studying the Ripple network communities (see Section 4),
we observed that the size of the community created around the
PayRoutes gateway suddenly increased in Dec ’16. Surprisingly,
users in the Ripple community had reported the unresponsiveness
of the company running the gateway when contacted regarding the
credit issued by it [38]. We also emailed them, but got no answer at
the time of this writing. In this state of affairs, we study PayRoutes
as an example of a faulty gateway.

Goals. We consider two questions. First, we aim to find the amount
of credit in the Ripple network that can only be withdrawn with
the cooperation of PayRoutes and, given the unresponsiveness of
the gateway, this credit is “stuck” in the Ripple network. Second,
we study why wallets with stuck credit obtained it in the first
place, even though PayRoutes was already reported as faulty. We
describe our methodology and results for each goal separately in
the following two sections.

6.1.1 Credit with PayRoutes. We are interested in credit links of
the form PayRoutes — w; where PayRoutes has disabled rippling.
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This implies that the credit on these links can only be used in a
withdrawal operation jointly with PayRoutes: w; sets the credit on
the link to 0 to obtain the corresponding amount in the real world
from PayRoutes. However, as PayRoutes is a faulty gateway, this
operation is no longer available and the credit is stuck. Given that,
we first address the question: how much credit is stuck on credit links
with PayRoutes?

Methodology. From gr-17, we first pick the credit links with Pay-
Routes as counterparty and positive balance, and derive the status
of their rippling flag (as described in Section 5). Then, we classify
the neighbor wallets of PayRoutes into two groups as follows. First,
we identify those wallets that have a credit link with PayRoutes
for which rippling is not allowed, i.e., no_ripple is set to true. We
denote this set of wallets by wallets-no-rippling. Second, we con-
sider the set of wallets that are not in wallets-no-rippling but yet
cannot perform a transaction for an amount equal to the balance
on their credit link with PayRoutes. We denote this second set as
wallets-rippling-no-tx. As the wallets in either wallets-no-rippling or
wallets-rippling-no-tx cannot transfer the (entire) credit they have
on a credit link with PayRoutes to another wallet in the Ripple
network, the only way for them to get their credit back is to contact
PayRoutes in the real world and withdraw the corresponding funds.
However, as PayRoutes is unresponsive, such credit is “stuck”

Results. We observe that, out of the 2,958 wallets that have at
least one credit link with PayRoutes, there exist 621 wallets in
either wallets-no-rippling or wallets-rippling-no-tx, and therefore
with stuck credit. We observe that the stuck credit on these credit
links is around 4.9M USD.

Discussion. The PayRoutes case is not typical in the Ripple net-
work. There have been other gateways that have ceased operation
during the Ripple network lifetime, but have not caused such an
effect. We consider DividendRippler as an example of such a gate-
way. The difference from PayRoutes is that before shutting down,
DividendRippler publicly announced it and mandated its clients to
proceed to withdraw the credit available in their credit links with
DividendRippler.

We conduct the same above experiment for DividendRippler, and
observe that, although 665 wallets have credit stuck with Dividen-
dRippler, such credit accounts for around 1,000 USD only. This is
how much DividendRippler currently owes to the rest of wallets.
This demonstrates that wallets followed the announcement of the
gateway and successfully managed to withdraw most of their credit
before the gateway ceased operation.

6.1.2  Obtaining credit from PayRoutes. In this section, we focus
on answering the question: How did wallets with stuck credit obtain
such credit in the first place?

Methodology. We first investigate how new credit links were
created with PayRoutes over the lifetime of the Ripple network.
We observe a spike of 2,527 credit links created in Oct *16 from a
total of 1, 805 wallets. Out of these, 186 credit links were created
by 133 wallets and have balance stuck in PayRoutes. This implies
that 21% of the wallets with stuck balance created credit links with
PayRoutes during that month. We denote these by stuck-wallets-
Oct-16.
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Table 2: Summary of the exchange offers between XRP and
USD created in the Ripple network during October 2016.

Pay Val ~ Pay Cur | GetVal Get Curr Ratio
1062738.51 XRP 17009.50 USD 62.48to 1
59678.62 USD 33194.62 XRP 1.78to 1

Given this unusual behavior, we study how those 133 wallets
obtained credit. We identify two possibilities: (i) A path-based trans-
action from another wallet in the Ripple network; (ii) A circular
transaction (i.e., sender and receiver of the transaction are the same
wallet), where a wallet pays a certain amount of XRP (or any cur-
rency issued by a gateway other than PayRoutes) in exchange for
credit issued by PayRoutes on a credit link with it.

Results. We observe that wallets in stuck-wallets-Oct-16 do not
receive significant credit from other wallets in the Ripple network
during October 2016. In particular, we find only three transactions
with credit values of 10 USD, 100 ILS and 5 ILS. Instead, wallets in
stuck-wallets-Oct-16 get their credit through circular transactions.
We find that 51 wallets perform a total of 286 circular transactions,
where these wallets received around 12, 000 USD in exchange for
approximately 300 CNY and 12,000 XRP.

In essence, wallets in stuck-wallets-Oct-16 invested mostly XRP
to obtain USD from PayRoutes. We find that the exchange rate
XRP/USD in the Ripple network was considerably “better” than in
the real world at that time: In the Ripple network at that time, a
wallet could get 0.73 USD for 1 XRP on average, with a minimum
of 0.14 and a maximum of 2.87 USD using stale offers available in
the network. However, in the real world, one could get less than
0.01 USD for 1 XRP at the average exchange rate at that time and
up to 0.28 USD for 1 XRP, even considering the best exchange rate
over the entire Ripple network lifetime.

The results presented above describe the origin of a small fraction
of the credit stuck on credit links with PayRoutes. We repeated the
same experiment over the complete Ripple network lifetime and
observed similar patterns. First, the credit links with stuck credit
are involved in a total of 278 transactions where other wallets
in the Ripple network are sending credit to victim wallets at a
favorable rate: The receiver gets more credit than actually sent by
the sender. Those transactions account for around 158, 000 USD.
Second, the highest amount of credit is received as a result of
circular transactions that use advantageous offers. In particular, we
find that credit links with stuck credit are involved in a total of
16, 469 transactions where they gained more than 63M USD over
the complete Ripple network lifetime.

Countermeasures. Although wallets with stuck credit at Pay-
Routes obtained considerable revenue, a broader perspective reveals
that it was a risky operation. For instance, it is possible to check the
exchange rates available in the Ripple network at October 2016 to
determine how likely it is to get the USD credit back. In particular,
we observe that although wallets in stuck-wallets-Oct-16 managed
to get “cheap” USDs, the market values were not favorable to get
them back: New exchange offers created in the Ripple network in
October 2016 (as shown in Table 2) demonstrate this.
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7 STALE OFFERS IN THE RIPPLE NETWORK

Exchange offers and rippling are the key operations that enable
path-based transactions. The previous two sections investigated the
security of rippling, so we now investigate the safety of exchange
offers, which are set by the owners of wallets at their own discretion.
Naturally, proposed offers should match those of the corresponding
currencies in the real world or even be in favor of market makers so
that they get credit for their exchange services. Otherwise, cunning
users can leverage stale offers to gain credit, while market makers
may go bankrupt. This would adversely impact the liquidity and
availability of the Ripple network.

Goal. In this experiment, we aim to determine whether there are
stale offers in the Ripple network and, if so, study to what extent
devilry users have taken advantage of them.

Methodology. We search for sudden changes in a currency’s
market capitalization. We observed several such changes. We first
examine a spike in the price of XRP in late 2013: during a period
of ten days (Nov 20th-30th, 2013), the price of 1 XRP with respect
to BTC increased by 380%, i.e., 1 XRP was exchanged at 0.00001
BTC at the beginning of the period but within a week, 1 XRP was
exchanged at 0.000038 BTC. Given that, we extract from tx-{13-17}
the transactions that occurred during this ten-day period, obtaining
a total of 1,932 transactions. We prune this dataset by considering
only cross-currency transactions that transfer XRP for BTC or vice
versa. We obtain a total of 112 transactions.

We compare the exchange rate between XRP and BTC used in
each transaction to the exchange rate in the real world at the same
time, as shown in Figure 7. In both (top and bottom) figures, a
purple point represents the exchange rate in a Ripple transaction
while the corresponding green point denotes the exchange rate in
the real world at the same time. For both graphs, if the purple point
is higher than the green point (Ripple’s offer is more expensive than
the real world offer), the market maker made money. In contrast, if
the purple point is below the green point, the user who conducted
the transaction gained credit.

Results. We analyzed the transactions in which a sender gained
credit by exploiting stale offers. We make two observations. First,
users could have gained up to around 250,000 USD by fully ex-
ploiting XRP/BTC stale offers during the specified period. In other
words, market makers put at risk around 250, 000 USD due to stale
offers. Second, 24 different wallets made a monetary benefit of
at least 7,500 USD by exploiting XRP/BTC stale offers (and other
offers available in the network at that time). Here, we calculate
the USD value by converting the BTC and XRP to their real world
exchange rates at the corresponding times. In summary, even in the
nascent stages of the Ripple network, when the transaction volume
was considerably low, stale offers risked significant loss of credit
by market makers.

To confirm these results, we explored another, more recent, sub-
stantial change in a currency exchange rate. We found a sudden
increase in the price of BTC compared to XRP in 2017, concretely
during the period July 16th — August 16th: The value of 1 BTC went
from 11,713 XRP to 25,735 XRP, that is, an increase of 120%. As
before, we extracted the transactions during that period of time
and compared the exchange rates of XRP from/to BTC in the Ripple
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Figure 7: Market maker accepts XRP and pays BTC (top);
market maker accepts BTC and pays XRP (bottom). If the
purple point (offer in Ripple) is below the green point (of-
fer in real world), the transacting user gained credit. Oth-
erwise, the market maker gained credit. These transactions
took place between November 20th and 30th, 2013.

network and in the real world. We observe that market makers put
at risk around 500, 000 USD due to stale offers exchanging XRP to
BTC and vice versa. Moreover, we observe that 84 wallets exploited
these stale offers (and possibly other offers) to gain more than 4.5M
USD. These results confirm that stale offers continue to be a risk
for market makers. In fact, the effect of stale offers is now amplified
given the growth of the Ripple network and transactions.

Countermeasures. A market maker can update a previously of-
fered exchange rate at any time. Therefore, a market maker should
continuously monitor the price for the currencies involved in its
offers and promptly update its Ripple offers when a sudden change
occurs in the real world. The gaps between exchange rates in the
Ripple network and real world are thereby reduced, and with them,
the windows for cunning users to gain credit.

8 RELATED WORK

Some research work [2, 6, 10, 27, 44] has studied Bitcoin and other
cryptocurrencies. Although it is possible to extract lessons from
that work, the conceptual differences between cryptocurrencies
such as Bitcoin and the Ripple network mandate a dedicated look.

There is limited work studying path-based settlement networks.
Moreno-Sanchez et al. [34] present the first detailed study of the
Ripple network. In particular, they identify the privacy breaches of
the publicly available ledger. Their study links wallets that belong
to the same user and deanonymizes the transactions associated
with the main gateways. Their follow-up work [33] presents a path-
mixing protocol to allow anonymous transactions in the Ripple
network, thereby mitigating privacy breaches.
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Di Luzio et al. [25] consider two aspects of the Ripple network.
They study the evolution of the amount and behavior of participants
in the consensus protocol used to add transactions to the ledger
during the first three years of the Ripple network. They also propose
a novel technique to deanonymize the transactions of a given user,
leveraging side-channel information (e.g., the amount of a recent
transaction performed by the victim).

Armknecht et al. [1] present an overview of the Ripple network
and give statistics about the number of transactions, and types of
transactions and exchanges. The work is limited to the first two
years of operation of the Ripple network. The work also demon-
strates the conditions under which the Ripple consensus protocol
fails, leading to a situation where the Ripple ledger might be forked.

In summary, related work studies two dimensions of the Ripple
network: privacy and consensus. Some work such as [1, 25] also
computes statistics about the network structure during the first
few years of the network lifetime. In this work, we consider the
consensus protocol and privacy as interesting but orthogonal di-
mensions to be studied, and instead focus on the evolution of the
Ripple network and its vulnerabilities during the complete network
lifetime through August 2017. We thoroughly study several security
vulnerabilities and their implications on the Ripple network.

9 CONCLUDING REMARKS

The Ripple network has been gaining momentum, with substantial
growth in the number of wallets and credit links in 2017. Yet, new
wallets create credit links with only few other key wallets, primarily
gateways. This makes the Ripple network slow-mixing, with wallets
grouped in demarcated communities. The users tend to stay bound
to the same geographical community, elevating the importance of
gateways in shaping the Ripple network. The core of the network
composed of around 65, 000 wallets provides sufficient liquidity for
the remaining wallets.

The key operations in the Ripple network such as rippling and
exchange offers pose important security challenges. Although the
core of the Ripple network is resilient, a large number of users may
be vulnerable to undesirable shift of credit among their credit links.
Thanks to the locality of communities, there is hope to tackle these
vulnerabilities through geo-political forces. Further, users can be
affected by the disruption of a handful of nodes, as demonstrated
in the case of PayRoutes, and hence are advised to add credit links.
Last but not least, due to the importance of exchange offers in the
current Ripple network, market makers are advised to periodically
update their offers according to the real-world exchange rates, as
they otherwise risk several hundreds of thousands of dollars.

Although this work focuses on the Ripple network, we believe
that our findings are relevant to other emerging credit networks
(e.g., Stellar [11]) and credit network-based systems [22, 26, 29,
31, 36] that leverage similar design principles and may therefore
present similar structural patterns and vulnerabilities.
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