
13

Surviving the Web: A Journey into Web Session Security

STEFANO CALZAVARA, RICCARDO FOCARDI, MARCO SQUARCINA,
and MAURO TEMPESTA, Università Ca’ Foscari, Venezia, Italy

In this article, we survey the most common attacks against web sessions, that is, attacks that target honest
web browser users establishing an authenticated session with a trusted web application. We then review
existing security solutions that prevent or mitigate the different attacks by evaluating them along four
different axes: protection, usability, compatibility, and ease of deployment. We also assess several defensive
solutions that aim at providing robust safeguards against multiple attacks. Based on this survey, we identify
five guidelines that, to different extents, have been taken into account by the designers of the different
proposals we reviewed. We believe that these guidelines can be helpful for the development of innovative
solutions approaching web security in a more systematic and comprehensive way.

CCS Concepts: � Security and privacy → Browser security; Web application security; Web protocol
security;

Additional Key Words and Phrases: Web sessions, HTTP cookies, web attacks, web defenses

ACM Reference Format:
Stefano Calzavara, Riccardo Focardi, Marco Squarcina, and Mauro Tempesta. 2017. Surviving the web: A
journey into web session security. ACM Comput. Surv. 50, 1, Article 13 (March 2017), 34 pages.
DOI: http://dx.doi.org/10.1145/3038923

1. INTRODUCTION

The Web is the primary access point to on-line data and applications. It is extremely
complex and variegate, as it integrates a multitude of dynamic content by different
parties to deliver the greatest possible user experience. This heterogeneity makes it
very hard to effectively enforce security, since putting in place novel security mecha-
nisms typically prevents existing websites from working correctly or negatively affects
the user experience, which is generally regarded as unacceptable, given the massive
user base of the Web. However, this continuous quest for usability and backward com-
patibility had a subtle effect on web security research: Designers of new defensive
mechanisms have been extremely cautious, and the large majority of their proposals
consists of very local patches against very specific attacks. This piecemeal evolution
hindered a deep understanding of many subtle vulnerabilities and problems, as noted
by the proliferation of different threat models against which different proposals have
been evaluated, occasionally with quite diverse underlying assumptions. It is easy to
get lost among the multitude of proposed solutions and almost impossible to under-
stand the relative benefits and drawbacks of each single proposal without a full picture
of the existing literature.

In this article, we take the delicate task of performing a systematic overview of
a large class of common attacks targeting the current Web and the corresponding

Authors’ addresses: S. Calzavara, R. Focardi, M. Squarcina, and M. Tempesta, Università Ca’ Foscari Venezia,
Dipartimento di Scienze Ambientali, Informatica e Statistica, Via Torino 155, 30170 Venezia Mestre (Italy);
emails: calzavara@dais.unive.it, {focardi, squarcina, tempesta}@unive.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 0360-0300/2017/03-ART13 $15.00
DOI: http://dx.doi.org/10.1145/3038923

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

http://dx.doi.org/10.1145/3038923
http://dx.doi.org/10.1145/3038923

13:2 S. Calzavara et al.

security solutions proposed so far. We focus on attacks against web sessions, that is,
attacks that target honest web browser users establishing an authenticated session
with a trusted web application. This kind of attack exploits the intrinsic complexity
of the Web by tampering, for example, with dynamic content, client-side storage, or
cross-domain links, to corrupt browser activity and/or network communication. Our
choice is motivated by the fact that attacks against web sessions cover a very relevant
subset of serious web security incidents [OWASP 2013], and many different defenses,
operating at different levels, have been proposed to prevent these attacks.

We consider typical attacks against web sessions, and we systematise them based
on (i) their attacker model and (ii) the security properties they break. This first classi-
fication is useful to understand precisely which intended security properties of a web
session can be violated by a certain attack and how. We then survey existing security
solutions and mechanisms that prevent or mitigate the different attacks, and we evalu-
ate each proposal with respect to the security guarantees it provides. When security is
guaranteed only under certain assumptions, we make these assumptions explicit. For
each security solution, we also evaluate its impact on both compatibility and usability,
as well as its ease of deployment. These are important criteria to judge the practicality
of a certain solution and they are useful to understand to which extent each solution,
in its current state, may be amenable for a large-scale adoption on the Web. Since there
are several proposals in the literature that aim at providing robust safeguards against
multiple attacks, we also provide an overview of them in a separate section. For each
of these proposals, we discuss which attacks it prevents with respect to the attacker
model considered in its original design, and we assess its adequacy according to the
criteria described above.

Finally, we synthesize from our survey a list of five guidelines that, to different
extents, have been taken into account by the designers of the different solutions. We
observe that none of the existing proposals follows all the guidelines, and we argue that
this is due to the high complexity of the Web and the intrinsic difficulty in securing
it. We believe that these guidelines can be helpful for the development of innovative
solutions approaching web security in a more systematic and comprehensive way.

1.1. Scope of the Survey

Web security is complex, and web sessions can be attacked at many different layers. To
clarify the scope of the present work, it is thus important to discuss some assumptions
we make and their import on security.

(1) Perfect cryptography: At the network layer, web sessions can be harmed by net-
work sniffing or man-in-the-middle attacks. Web traffic can be protected using the
HTTPS protocol, which wraps the traffic within an encrypted channel. We do not
consider attacks to cryptographic protocols. In particular, we assume that the at-
tacker cannot break cryptography to disclose, modify, or inject the content sent to
a trusted web application over an encrypted channel. However, we do not assume
that HTTPS is always configured correctly by web developers, since this is quite a
delicate task, which deserves to be discussed in the present survey.

(2) The web browser is not compromised by the attacker: Web applications often rely
on the available protection mechanisms offered by standard web browsers, like
the same-origin policy or the HttpOnly cookie attribute. We assume that all these
defenses behave as intended and the attacker does not make advantage of browser
exploits, otherwise even secure web applications would fail to be protected.

(3) Trusted web applications may be affected by content injection vulnerabilities: This
is a conservative assumption, since history teaches us that it is almost impossible
to guarantee that a web application does not suffer from this kind of threat. We
focus on content injection vulnerabilities that ultimately target the web browser,

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

Surviving the Web: A Journey into Web Session Security 13:3

like cross-site scripting attacks (XSS). Content injections affecting the backend of
the web application, like SQL injections, are not covered.

1.2. Structure of the Survey

Section 2 provides some background on the main building blocks of the Web. Section 3
presents the attacks. Section 4 classifies attack-specific solutions with respect to their
security guarantees and their level of usability, compatibility, and ease of deployment.
Section 5 carries out a similar analysis for defenses against multiple attacks. Section 6
presents five guidelines for future web security solutions. Section 7 concludes.

2. BACKGROUND

We provide a brief overview of the basic building blocks of the web ecosystem and their
corresponding security cornerstones.

2.1. Languages for the Web

Documents on the Web are provided as web pages, hypertext files connected to other
documents via hyperlinks. Web pages embody several languages affecting different
aspects of the documents. The Hyper Text Markup Language (HTML) [W3C 2014c] or
a comparable markup language (e.g., XHTML) defines the structure of the page and
the elements it includes, while Cascading Style Sheets (CSS) [W3C 2014a] are used to
add style information to web pages (e.g., fonts, colors, position of elements).

JavaScript [ECMA 2011] is a programming language that allows the development of
rich, interactive web applications. JavaScript programs are included either directly in
the web page (inline scripts) or as external resources and can dynamically update the
content in the user browser by altering the Document Object Model (DOM) [W3C 1998,
2000, 2004], a treelike representation of the web page. Page updates are typically
driven by user interaction or by asynchronous communications with a remote web
server based on Ajax requests (via the XMLHttpRequest API).

2.2. Locating Web Resources

Web pages and the content included therein are hosted on web servers and identified
by a Uniform Resource Locator (URL). A URL specifies both the location of a resource
and a mechanism for retrieving it. A typical URL includes the following: (1) a protocol,
defining how the resource should be accessed; (2) a host, identifying the web server
hosting the resource; and (3) a path, localizing the resource at the web server.

Hosts belong to domains, identifying an administrative realm on the Web, typically
controlled by a specific company or organization. Domain names are organised hier-
archically: Sub-domain names can be defined from a domain name by prepending it
a string, separated by a period. For example, the host www.google.com belongs to the
domain google.com, which is a sub-domain of the top-level domain com.

2.3. Hyper Text Transfer Protocol

Web content is requested and served using the HTTP, a text-based request-response
protocol based on the client-server paradigm. The client (browser) initiates the commu-
nication by sending an HTTP request for a resource hosted on the server; the server, in
turn, provides an HTTP response containing the completion status information of the
request and its result. HTTP defines methods to indicate the action to be performed on
the identified resource, the most important ones being GET and POST. GET requests
should only retrieve data and have no other import, while server-side side effects should
only be triggered by POST requests, though web developers do not always comply with
this convention. Both GET and POST requests may include custom parameters, which
can be processed by the web server.

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

file:www.google.com

13:4 S. Calzavara et al.

HTTP is a stateless protocol, that is, it treats each request as independent of all the
other ones. Some applications, however, need to remember information about previous
requests, for instance to track whether a user has already authenticated and grant
her access to her personal page. HTTP cookies are the most widespread mechanism
employed on the Web to maintain state information about the requesting clients [Barth
2011a]. Roughly, a cookie is a key-value pair, which is set by the server into the client
and automatically attached by it to all subsequent requests to the server. Cookies can
be set via the Set-Cookie header of HTTP or by using JavaScript. Cookies may also
have attributes that restrict the way the browser handles them (see Section 2.4.4).

2.4. Security Cornerstones and Subtleties

2.4.1. HTTPS. Since all the HTTP traffic flows in the clear, the HTTP protocol does
not guarantee several desirable security properties, such as the confidentiality and the
integrity of the communication, and the authenticity of the involved parties. To protect
the exchanged data, the HTTP Secure (HTTPS) protocol [Rescorla 2000] wraps plain
HTTP traffic within an encrypted channel built on top of SSL or TLS. A web server
may authenticate itself at the client by using public key certificates; when the client is
unable to verify the authenticity of a certificate, a warning message is displayed and
the user can decide whether to proceed with the communication or not.

2.4.2. Mixed Content Websites. A mixed content page is a web page that is received over
HTTPS but loads some of its content over HTTP. The browser distinguishes two types
of content depending on their capabilities on the including page: passive content like
images, audio tracks, or videos cannot modify other portions of the page, while active
content like scripts, frames, or stylesheets have access to (parts of) the DOM and may
be exploited to alter the page. While the inclusion of passive content delivered over
HTTP into HTTPS pages is allowed by the browser, active mixed content are blocked
by default [W3C 2015b].

2.4.3. Same-Origin Policy. The same-origin policy (SOP) [Mozilla 2015] is a standard
security policy implemented by all major web browsers: It enforces a strict separation
between content provided by unrelated sites, which is crucial to ensure their confiden-
tiality and integrity. SOP allows scripts running in a first web page to access data in
a second web page only if the two pages have the same origin. An origin is defined as
the combination of a protocol, a host, and a port number [Barth 2011b]. SOP applies
to many operations in the browser, most notably DOM manipulations and cookie ac-
cesses. However, some operations are not subject to same-origin checks, for example,
cross-site inclusion of scripts and submission of forms are allowed, thus leaving space
to potential attacks.

2.4.4. Cookies. Cookies use a separate definition of origin, since cookies set for a given
domain are normally shared across all the ports and protocols on that domain. By
default, cookies set by a page are only attached by the browser to requests sent to the
same domain of the page. However, a page may also set cookies for a parent domain by
specifying it using the Domain cookie attribute, as long as the parent domain does not
occur in a list of public suffixes1: these cookies are shared between the parent domain
and all its sub-domains, and we refer to them as domain cookies.

Cookies come with two security mechanisms: the Secure attribute identifies cook-
ies that must only be sent over HTTPS, while the HttpOnly attribute marks cookies
that cannot be accessed via non-HTTP APIs, for example, via JavaScript. Perhaps

1https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy.

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

Surviving the Web: A Journey into Web Session Security 13:5

Fig. 1. Cookie-based user authentication.

surprisingly, the Secure attribute does not provide integrity guarantees, since secure
cookies can be overwritten over HTTP [Barth 2011a].

3. ATTACKING WEB SESSIONS

A web session is a semi-permanent information exchange between a browser and a
web server involving multiple requests and responses. As anticipated, stateful ses-
sions on the Web are typically bound to a cookie stored in the user browser. When the
user authenticates to a website by providing some valid credentials, for example, a
username-password pair, a fresh cookie is generated by the server and sent back to
the browser. Further requests originating from the browser automatically include the
cookie as a proof of being part of the session established on password-based authenti-
cation. This common authentication scheme is depicted in Figure 1.

Since the cookie essentially plays the role of the password in all the subsequent
requests to the web server, it is enough to discover its value to hijack the session
and fully impersonate the user, with no need to compromise the low-level network
connection or the server. We call authentication cookie any cookie that identifies a web
session.

3.1. Security Properties

We consider two standard security properties formulated in the setting of web sessions.
They represent typical targets of web session attacks:

—Confidentiality: Data transmitted inside a session should not be disclosed to unau-
thorized users;

—Integrity: Data transmitted inside a session should not be modified or forged by
unauthorized users.

Interestingly, the above properties are not independent and a violation of one might lead
to the violation of the other. For example, compromising session confidentiality might
reveal authentication cookies, which would allow the attacker to perform arbitrary
actions on behalf of the user, thus breaking session integrity. Integrity violations,
instead, might cause the disclosure of confidential information, for example, when
sensitive data are leaked via a malicious script injected into a web page by an attacker.

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

13:6 S. Calzavara et al.

3.2. Threat Model

We focus on two main families of attackers: web attackers and network attackers. A web
attacker controls at least one web server that responds to any HTTP(S) requests sent
to it with arbitrary malicious content chosen by the attacker. We assume that a web
attacker can obtain trusted HTTPS certificates for all the web servers under his control
and is able to exploit content injection vulnerabilities on trusted websites. A slightly
more powerful variation of the web attacker, known as the related-domain attacker,
can also host malicious web pages on a domain sharing a “sufficiently long” suffix with
the domain of the target website [Bortz et al. 2011]. This means in particular that the
attacker can set (domain) cookies for the target website [Barth 2011a]. These cookies
are indistinguishable from other cookies set by the target website and are automatically
sent to the latter by the browser. Hereafter, we explicitly distinguish a related-domain
attacker from a standard web attacker only when the specific setting is relevant to
carry out an attack.

Network attackers extend the capabilities of traditional web attackers with the abil-
ity of inspecting, forging, and corrupting all the HTTP traffic sent on the network, as
well as the HTTPS traffic that does not make use of certificates signed by a trusted
certification authority. It is common practice in web security to distinguish between
passive and active network attackers, with the first ones lacking the ability of forging
or corrupting the unprotected network traffic. From now on, when generically speaking
about network attackers, we implicitly refer to active network attackers.

3.3. Web Attacks

3.3.1. Content Injection. This wide class of attacks allows a web attacker to inject harm-
ful content into trusted web applications. Content injections can be mounted in many
different ways, but they are always enabled by an improper or missing sanitization of
some attacker-controlled input in the web application, either at the client side or at
the server side. These attacks are traditionally assimilated to XSS, that is, injections
of malicious JavaScript code; however, the lack of a proper sanitization may also affect
HTML content (markup injection) or even CSS rules [Zalewski 2011; Heiderich et al.
2012].

To exemplify how an XSS works, consider a website vuln.com hosting a simple search
engine. Queries are performed via a GET request including a search parameter that
is displayed in the result page headline “Search results for foo:”, where foo is the
value of the search parameter. An attacker can then attempt to inject content into
vuln.com just by providing to the user a link including a script as the search term.
If the search page does not properly sanitize such an input, then the script will be
included in the headline of the results page and it will run on behalf of vuln.com, thus
allowing the attacker to sidestep SOP: For instance, the injected script will be entitled
to read the authentication cookies set by vuln.com.

XSS attacks are usually classified as either reflected or stored, depending on the
persistence of the threat. Reflected XSS attacks correspond to cases like the one above,
where part of the input supplied by the request is “reflected” into the response without
proper sanitization. Stored XSS attacks, instead, are those where the injected script
is permanently saved on the target server, for example, in a message appearing on a
discussion board. The malicious script is then automatically executed by any browser
which visits the attacked page.

Security properties: Since content injections allow an attacker to sidestep SOP, which
is the baseline security policy of standard web browsers, they can have catastrophic
consequences on both the confidentiality and the integrity of a web session. Specifically,
they can be used to steal sensitive data from trusted websites, such as authentication

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

Surviving the Web: A Journey into Web Session Security 13:7

cookies and user credentials, and to actively corrupt the page content to undermine
the integrity of a web session.

3.3.2. Cross-Site Request Forgery. A Cross-Site Request Forgery (CSRF) is an instance
of the “confused deputy” problem [Hardy 1988] in the context of web browsing. In a
CSRF, the attacker forces the user browser into sending HTTP(S) requests to a website
where the user has already established an authenticated session: It is enough for the
attacker to include HTML elements pointing to the vulnerable website in his or her
own web pages. When rendering or accessing these HTML elements, the browser will
send HTTP(S) requests to the target website, and these requests will automatically
include the authentication cookies of the user. From the target website perspective,
these forged requests are indistinguishable from legitimate ones and thus they can be
abused to trigger a dangerous side effect, for example, to force a bank transfer from the
user account to the attacker account. Notably, the attacker can forge these malicious
requests without any user intervention, for example, by including in a page under his
control some tags or a hidden HTML form submitted via JavaScript.

Security properties: A CSRF attack allows the attacker to inject an authenticated
message into a session with a trusted website, and hence it constitutes a threat to
session integrity. It is less known that CSRFs may also be employed to break confiden-
tiality by sending cross-site requests that return sensitive user data bound to the user
session. Normally, SOP (Section 2.4.3) prevents a website from reading responses re-
turned by a different site, but websites may explicitly allow cross-site accesses using the
Cross-Origin Request Sharing standard [W3C 2014b] or mechanisms like JavaScript
Object Notation (JSON) with Padding [Ippolito 2015], which can be abused to break
session confidentiality. For instance, a CSRF attack leaking the stored files has been
reported on the cloud service SpiderOak [Bansal et al. 2013].

3.3.3. Login CSRF. A peculiar instance of CSRF, known as login CSRF, is a subtle
attack first described by Barth et al., where the victim is forced to interact with the
target website within the attacker session [Barth et al. 2008]. Specifically, the attacker
uses his own credentials to silently log in the user browser at the target website, for
instance, by forcing it into submitting an invisible login form. The outcome of the attack
is that the user browser is forced into an attacker session: If the user is not careful, she
might be tricked into storing sensitive information, like her credit card number, into
the attacker account.

Security properties: Although this attack does not compromise existing sessions, it
fools the browser into establishing a new attacker-controlled (low integrity) session
with a trusted website. Login CSRFs may enable confidentiality violations in specific
application scenarios, like in the credit card example given above.

3.3.4. Cookie Forcing. A web attacker exploiting a code injection vulnerability may di-
rectly impose his own authentication cookies in the victim browser, thus forcing it
into the attacker session and achieving the same results of a successful login CSRF,
although exploiting a different attack vector. Related-domain attackers are in a privi-
leged position for these attacks, since they can set cookies for the target website from
a related-domain host.

Security properties: See login CSRF (Section 3.3.3).

3.3.5. Session Fixation. A session fixation attack allows an attacker to impersonate a
user by imposing in the user browser a known session identifier, which is not refreshed
on successful authentication with the vulnerable website. Typically, the attacker first
contacts the target site and gets a valid cookie that is then set (e.g., via an XSS attack

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

13:8 S. Calzavara et al.

on the site) into the user browser before the initial password-based authentication step
is performed. If the website does not generate a fresh cookie on authentication, then
the user session will be identified by a cookie known to the attacker. Related-domain
attackers have easy access to these attacks, since they can set cookies on behalf of the
victim website.

Security properties: By letting the attacker fully impersonate the user at the target
website, session fixation harms both the confidentiality and the integrity of the user
session, just as if the authentication cookies were disclosed to the attacker.

3.4. Network Attacks

Although network attacks are arguably more difficult to carry out on the Web than stan-
dard web attacks, they typically have a tremendous impact on both the confidentiality
and the integrity of the user session. Since the HTTP traffic is transmitted in clear,
a network attacker, either passive or active, can eavesdrop sensitive information and
compromise the confidentiality of HTTP sessions. Websites that are served on HTTP
or on a mixture of HTTPS and HTTP are prone to expose non-secure cookies or user
credentials to a network attacker: In these cases, the attacker will be able to fully im-
personate the victim at the target website. An active network attacker can also mount
man-in-the-middle attacks via, for example, ARP spoofing, DNS cache poisoning, or by
setting up a fake wi-fi access point. By interposing himself between the victim and the
server, this attacker can arbitrarily modify HTTP requests and responses exchanged by
the involved parties, thus breaking the confidentiality and the integrity of the session.
Also, active network attackers can compromise the integrity of cookies [Barth 2011a].

A notable example of network attack is SSL stripping [Marlinspike 2009], which
is aimed at preventing web applications from switching from HTTP to HTTPS. The
attack exploits the fact that the initial connection to a website is typically initiated
over HTTP, and the protocol upgrade is done through HTTP redirect messages, links,
or HTML forms targets. By corrupting the first server response, an active attacker can
force the session in clear by replacing all the HTTPS references with their HTTP version
and then forward the traffic received by the user to the real web server, possibly over
HTTPS. The same operation will then be performed for each request/response in the
session, and, hence, the web application will work seamlessly, but the communication
will be entirely under the control of the attacker. This attack is particularly subtle,
since the user might fail to notice the missing usage of HTTPS, which is only notified
by some components of the browser user interface (e.g., a padlock icon).

4. PROTECTING WEB SESSIONS

4.1. Evaluation Criteria

We evaluate existing defenses along four different axes:

(1) Protection: We assess the effectiveness of the proposed defense against the con-
ventional threat model of the attack, for example, the web attacker for CSRF. If
the proposal does not prevent the attack in the most general case, then we discuss
under which assumptions it may still be effective.

(2) Usability: We evaluate whether the proposed mechanism affects the end-user ex-
perience, for instance, by affecting the perceived performances of the browser or by
involving the user in security decisions.

(3) Compatibility: We discuss how well the defense integrates into the web ecosystem
with respect to the current standards, the expected functionalities of websites,
and the performances provided by modern network infrastructures. For example,
solutions that prevent some websites from working correctly are not compatible

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

Surviving the Web: A Journey into Web Session Security 13:9

Table I. Evaluation Criteria

Usability Compatibility Ease of Deployment
Low Users must take several

security decisions
The correct functioning of
some websites is precluded

Applications need to be
heavily rewritten, complex
security policies must be
deployed

Medium Perceivable slowdown of
performances that affects
the client

Moderate increase of the
server workload

Moderate server-side
modifications, small
declarative policies have to
be written

High The user experience is not
affected in any way

The defense fits the web
ecosystem, no impact on
server workload

The protection can be
enabled just by installing an
additional component or by
minimal server-side
modifications

with the existing Web. On the other hand, a minor extension to a standard protocol
that does not break backward compatibility, such as the addition of new HTTP
headers that can be ignored by recipients not supporting them, is acceptable.

(4) Ease of deployment: We consider the practicality of a large-scale deployment of the
defensive solution by evaluating the overall effort required by web developers and
system administrators for its adoption. If they have to pay an unacceptably high
cost, then the solution will likely never be deployed on a large scale.

We deem a negative impact on server-side performances as a compatibility problem
rather than a usability problem when the overall response time can be kept constant by
increasing the computational resources of the server, thus keeping the user experience
unaffected. To provide a concise yet meaningful evaluation of the different proposals,
usability, compatibility, and ease of deployment are assigned a score from a three-level
scale: Low, Medium, and High. Table I provides the rationale underlying these scores.

We exclude from our survey several solutions that would require major changes to
the current Web, such as new communication protocols or authentication mechanisms
replacing cookies and passwords [Johns et al. 2012; Hallgren et al. 2013; Singh et al.
2012; Dacosta et al. 2012].

4.2. Content Injection: Mitigation Techniques

Given the critical impact of content injection attacks, there exist many proposals that
focus on them. In this section, we discuss those solutions that do not necessarily prevent
a content injection but rather mitigate its malicious effects, for example, by thwarting
the leakage of sensitive data.

4.2.1. HttpOnly Cookies. HttpOnly cookies have been introduced in 2002 with the release
of Internet Explorer 6 SP1 to prevent the theft of authentication cookies via content
injection attacks. Available on all major browsers, this simple yet effective mechanism
limits the scope of cookies to HTTP(S) requests, making them unavailable to malicious
JavaScript injected in a trusted page.

The protection offered by the HttpOnly attribute is only limited to the theft of au-
thentication cookies. The presence of the attribute is transparent to users, and, hence,
it has no usability import. Also, the attribute perfectly fits the web ecosystem in terms
of compatibility with legacy web browsers, since unknown cookie attributes are ig-
nored. Finally, the solution is easy to deploy, assuming there is no need of accessing
authentication cookies via JavaScript for generic reasons [Zhou and Evans 2010].

4.2.2. SessionShield and Zan. SessionShield [Nikiforakis et al. 2011] is a client-side
proxy preventing the leakage of authentication cookies via XSS attacks. It operates by

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

13:10 S. Calzavara et al.

automatically identifying these cookies in incoming response headers, stripping them
from the responses, and storing them in a private database inaccessible to scripts.
SessionShield then reattaches the previously stripped cookies to outgoing requests
originating from the client to preserve the session. A similar idea is implemented in
Zan [Tang et al. 2011], a browser-based defense that (among other things) automati-
cally applies the HttpOnly attribute to the authentication cookies detected through the
usage of a heuristic. As previously discussed, HttpOnly cookies cannot be accessed by
JavaScript and will only be attached to outgoing HTTP(S) requests.

The protection offered by SessionShield and Zan is limited to the improper exfiltra-
tion of authentication cookies. These defenses do not prompt the user with security
decisions or slow down perceivably the processing of web pages, and, hence, they are
fine from a usability point of view. However, the underlying heuristic for detecting
authentication cookies poses some compatibility concerns, since it may break websites
when a cookie is incorrectly identified as an authentication cookie and made unavail-
able to legitimate scripts that need to access it. Both SessionShield and Zan are very
easy to deploy, given their purely client-side nature.

4.2.3. Request Filtering Approaches. Noxes is one of the first developed client-side de-
fenses against XSS attacks [Kirda et al. 2006]. It is implemented as a web proxy
installed on the user machine, aimed at preserving the confidentiality of sensitive data
in web pages, such as authentication cookies and session IDs. Instead of blocking ma-
licious script execution, Noxes analyzes the pages fetched by the user in order to allow
or deny outgoing connections on a whitelist basis: Only local references and static links
embedded into a page are automatically considered safe with respect to XSS attacks.
For all the other links, Noxes resorts to user interaction to take security decisions
that can be saved either temporarily or permanently. Inspired by Noxes, Vogt et al.
introduce a modified version of Firefox [Vogt et al. 2007] where they combine dynamic
taint-tracking and lightweight static analysis techniques to track the flow of a set of
sensitive data sources (e.g., cookies, document URLs) within the scripts included in a
page. When the value of a tainted variable is about to be sent to a third-party domain,
the user is required to authorize or deny the communication.

The protection offered by these approaches is not limited to authentication cookies,
but it prevents the exfiltration of arbitrary sensitive data manipulated by web pages.
According to the authors, the solutions are not affected by performance problems; how-
ever, Noxes still suffers from usability issues, as it requires too much user interaction
given the high number of dynamic links in modern web pages [Nikiforakis et al. 2011].
The modified Firefox in Vogt et al. [2007] attempts to lower the number of security
questions with respect to Noxes, but still many third-party domains such as .google-
analytics.com should be manually whitelisted to avoid recurring alert prompts. On the
other hand, due to the fine-grained control over the filtering rules, both mechanisms
are deemed compatible, assuming that the user takes the correct security decisions.
Both solutions are easy to deploy, since no server-side modification is required and
users simply need to install an application on their machines.

4.2.4. Critical Evaluation. The exfiltration of sensitive data is a typical goal of content
injection attacks. Preventing authentication cookie stealing is simple nowadays, given
that the HttpOnly attribute is well supported by all modern browsers, and several
languages and web frameworks allow the automatic enabling of the attribute for all
the authentication cookies [OWASP 2014]. Conversely, solutions aimed at providing
wider coverage against general data leakage attacks never gained popularity, mainly
due to their impact on the user experience.

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

Surviving the Web: A Journey into Web Session Security 13:11

4.3. Content Injection: Prevention Techniques

While the proposals discussed in the previous section are designed to block leakages of
sensitive data, the defenses presented in this section attempt to prevent the execution
of malicious content injected into web pages.

4.3.1. Client-Side Filtering. XSS filters like IE XSS Filter [Ross 2008] and WebKit XS-
SAuditor [Bates et al. 2010] are useful to prevent reflected XSS attacks. Before inter-
preting the JavaScript code in a received page, these client-side filters check whether
potentially dangerous payloads, like <script> tags, included in the HTTP request are
also found within the response body: If a match is detected, then the payload is typically
stripped from the rendered page without asking for user intervention. The NoScript
extension for Firefox [Maone 2004] applies an even stricter policy, since it directly pre-
vents script execution, thus blocking both stored and reflected XSS attacks. This policy
can be relaxed on selected domains, where only XSS filtering mechanisms are applied.

XSS filtering proved to be quite effective in practice, despite not being always able
to prevent all the attacks. A typical example is a web application that takes a base64
encoded string via a GET variable and includes the decoded result in the generated
page: An attacker may easily bypass the XSS filter by supplying the base64 encoding
of a malicious JavaScript, which will, in turn, be decoded by the server and included in
the response body. Additionally, XSS filters have also been exploited to introduce new
flaws in otherwise secure websites, for example, by disabling legitimate scripts found
in the original pages [Nava and Lindsay 2009; Johns et al. 2014].

The filtering approach against reflected XSS attacks showed no negative impact on
the user experience and a good compatibility with modern web applications. Indeed,
IE XSS Filter and WebKit XSSAuditor have been included in major browsers. The
additional security features offered by NoScript, however, come at a cost on usability,
since the user is involved in the process of dynamically populating the whitelist of
the extension whenever a blocked script is required to preserve the functionality of the
website. Nevertheless, it is possible to relax the behaviour of NoScript to improve the
user experience, by configuring the extension so it only applies filtering against
reflected XSS attacks.

4.3.2. Server-Side Filtering. An alternative to the in-browser filtering approach is to
perform attack detection on the server side. Xu et al. present a method based on
fine-grained taint-tracking analysis [Xu et al. 2006] that improves an earlier solution
named Context-Sensitive String Evaluation (CSSE) [Pietraszek and Berghe 2005].
This approach is designed to prevent a variety of attacks, including content injections.
The idea is to apply a source-to-source transformation of server-side C programs to
track the flow of potentially malicious input data and enforce taint-enhanced security
policies. By marking every byte of the user input as tainted, reflected XSS attacks
can be prevented by policies that forbid the presence of tainted dangerous HTML tag
patterns inside the web application output.

The protection offered by this approach and its ease of deployment crucially depend
on the enforced security policy. A simple policy preventing user-provided <script>
tags from appearing in the web page is trivial to write but ineffective against more
sophisticated attacks. However, writing a more comprehensive set of rules while main-
taining the full functionalities of websites is considered a challenging task [Louw and
Venkatakrishnan 2009]. The existence of ready-to-use policies would make it easier to
apply the security mechanism. Still, server modifications are required to enable support
for the protection mechanism on the script language engine, which brings a significant
performance overhead on CPU intensive applications, reported to be between 50% and
100%. This partially hinders both compatibility and ease of deployment.

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

13:12 S. Calzavara et al.

4.3.3. XSS-Guard. The idea of server-side source-to-source program transformation is
also employed in XSS-Guard [Bisht and Venkatakrishnan 2008], a solution for Java
applications aimed at distinguishing malicious scripts reflected into web pages from
legitimate ones. For each incoming request, the rewritten application generates two
pages: The first includes the original user input, while the second is produced using
input strings not including harmful characters (e.g., sequences of A’s). The application
checks the equivalence of the scripts contained in the two pages by string matching
or, in case of failure, by comparing their syntactic structure. Additional or modified
scripts found within the real page are considered malicious and stripped from the page
returned to the user.

The protection offered by XSS-Guard is good but limited to reflected XSS attacks.
Moreover, since the script detection procedure is borrowed from the Firefox browser,
some quirks specific to other browsers may escape the mechanism. However, XSS-
Guard is usable, since the browsing experience is not affected by its server-side adop-
tion. The performance overhead caused by the double page generation ranges from 5%
to 24%, thus increasing the server workload: This gives rise to some concerns about
compatibility. On the other hand, enabling the solution on existing Java programs is
simple, since no manual code changes are required and web developers only need to
automatically translate their applications.

4.3.4. BEEP. Browser-Enforced Embedded Policies (BEEP) [Jim et al. 2007] is a hy-
brid client-server approach that hinges on the assumption that web developers have a
precise understanding of which scripts should be trusted for execution. Websites pro-
vide a filtering policy to the browser in order to allow the execution of trusted scripts
only, thus blocking any malicious scripts injected into the page. The policy is embed-
ded in web pages through a specific JavaScript function that is invoked by a specially
modified browser every time a script is found during the parsing phase. This func-
tion accepts as parameters the code and the DOM element of the script and returns a
Boolean value that determines whether the execution is allowed.

The proposed mechanism exhibits some security defects, as shown in Athanasopoulos
et al. [2009]. For instance, an attacker may reuse whitelisted scripts in an unanticipated
way to alter the behaviour of the application. Regarding usability, the adoption of
this solution may cause some slowdowns at the client side when accessing websites
that heavily rely on inline JavaScript content. Compatibility, however, is preserved,
since browsers not compliant with BEEP will still render pages correctly without the
additional protection. The deployment of BEEP is not straightforward, since the effort
required to modify existing web applications to implement the security mechanism
depends on the complexity of the desired policy.

4.3.5. Blueprint. Blueprint [Louw and Venkatakrishnan 2009] tackles the problem of
denying malicious script execution by relieving the browser from parsing untrusted
content: Indeed, the authors argue that relying on the HTML parsers of different
browsers is inherently unsafe, due to the presence of numerous browser quirks. In this
approach, web developers annotate the parts of the web application code that include
a block of user-provided content in the page. For each block, the server builds a parse
tree of the user input, stripped of all the dynamic content (e.g., JavaScript, Flash).
This sanitized tree is encoded as a base64 string and included in the page within an
invisible <code> block. This base64 data is then processed by a client-side JavaScript
that is in charge of reconstructing the DOM of the corresponding portion of the page.

Despite providing strong protection against stored and reflected XSS attacks,
Blueprint suffers from performance issues that affect both usability and compatibility
[Weinberger et al. 2011]. Specifically, the server workload is increased by 35%–55% due
to the parse tree generation, while the page rendering time is significantly affected by

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

Surviving the Web: A Journey into Web Session Security 13:13

the amount of user content to be dynamically processed by the browser. Also, Blueprint
requires a considerable deployment effort, since the web developer must manually iden-
tify and update all the code portions of web applications that write out the user input.

4.3.6. Noncespaces. Along the same line of research, Noncespaces [Gundy and Chen
2012] is a hybrid approach that allows web clients to distinguish between trusted and
untrusted content to prevent content injection attacks. This solution provides a policy
mechanism that enables web developers to declare granular constraints on elements
and attributes according to their trust class. All the (X)HTML tags and attributes
are associated to a specific trust class by automatically enriching their names with a
random string, generated by the web application, that is unknown to the attacker. In
the case of XHTML documents, the random string is applied as a namespace prefix
(<r617:h1 r617:id=‘‘Title’’>Title</r617:h1>), while in the HTML counterpart
the prefix is simply concatenated (<r617h1 r617id=‘‘Title’’>Title</r617h1>).
The server sends the URL of the policy and the mapping between trust classes and
random strings via custom HTTP headers. A proxy installed on the user machine val-
idates the page according to the policy and returns an empty page to the browser in
case of violations, that is, if the page contains a tag or attribute with a random string
that is invalid or bound to an incorrect trust class.

The solution is an improvement over BEEP in preventing stored and reflected XSS.
Since random prefixes are not disclosed to the attacker, Noncespaces is not affected
by the exploits introduced in Athanasopoulos et al. [2009]. Additionally, the mecha-
nism allows web developers to permit the inclusion of user-provided HTML code in a
controlled way, thus offering protection also against markup injections. Although the
impact on server-side performance is negligible, the policy validation phase performed
by the proxy on the client side introduces a noticeable overhead that may range from
32% to 80%, thus potentially affecting usability. Furthermore, though Noncespaces
can be safely adopted on XHTML websites, it is affected by compatibility problems
on HTML pages, due to the labelling process that disrupts the names of tags and at-
tributes, and thus the page rendering, on unmodified browsers. Web developers are
required to write security policies and revise web applications to support Noncespace,
and, hence, the ease of deployment depends on the granularity of the enforced policy.

4.3.7. Document Structure Integrity. In parallel with the development of Noncespaces,
Nadji et al. proposed a similar solution based on the concept of document structure
integrity (DSI) [Nadji et al. 2009]. The approach relies on server-side taint tracking
to mark nodes generated by user-inserted data, so the client is able to recognize and
isolate them during the parsing phase to prevent unintended modifications to the doc-
ument structure. Untrusted data are delimited by special markers, that is, sequences
of randomly chosen Unicode whitespace characters. These markers are shipped to the
browser in the <head> section of the requested page along with a simple policy that
specifies the allowed HTML tags within untrusted blocks. The policy enforcement is
performed by a modified browser supporting the security mechanism that is also able
to track dynamic updates to the document structure.

This solution shares with Noncespaces a similar degree of protection. Nevertheless,
from a performance standpoint, the defense introduces only a limited overhead on
the client side, since the policies are simpler with respect to Noncespaces and the
enforcement mechanism is integrated in the browser instead of relying on an external
proxy. As a result, the user experience is not affected. Compatibility is preserved, given
that the labelling mechanism does not prevent unmodified browsers from rendering
correctly DSI-enabled web applications. Finally, even the deployment is simplified,
since no changes to the applications are required and the policy language is more
coarse grained than the one proposed in Noncespaces.

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

13:14 S. Calzavara et al.

4.3.8. Content Security Policy. The aforementioned proposals share the idea of defining
a client-side security policy [Weinberger et al. 2011]. The same principle is embraced
by the Content Security Policy (CSP) [W3C 2012], a web security policy standardized
by the W3C and adopted by all major browsers. CSP is deployed via an additional
HTTP response header and allows the specification of the trusted origins from which
the browser is permitted to fetch the resources included in the page. The control
mechanism is fairly granular, allowing one to distinguish among different types
of resources, such as JavaScript, CSS, and XMLHttpRequest targets. By default,
CSP does not allow inline scripts and CSS directives (which can be used for data
exfiltration) and the usage of particularly harmful JavaScript functions (e.g., eval).
However, these constraints can be disabled by using the ’unsafe-inline’ and the
’unsafe-eval’ rules. With the introduction of CSP Level 2 [W3C 2015a], it is now pos-
sible to selectively whitelist inline resources without allowing indiscriminate content
execution. Permitted resources can be identified in the policy either by their hashes or
by random nonces included in the web page as attributes of their enclosing tags.

When properly configured, CSP provides an effective defense against XSS attacks.
Still, general content injection attacks, such as markup code injections, are not pre-
vented. CSP policies are written by web developers and transparent to users, so their
design supports usability. Compatibility and deployment costs are better evaluated
together for CSP. On the one hand, it is easy to write a very lax policy that allows
the execution of inline scripts and preserves the functionality of web applications by
putting only mild restrictions on cross-origin communication: This ensures compati-
bility. On the other hand, an effective policy for legacy applications can be difficult to
deploy, since inline scripts and styles should be removed or manually whitelisted, and
trusted origins for content inclusion should be carefully identified [Weinberger et al.
2011]. As of now, the deployment of CSP is not particularly significant or effective
[Weissbacher et al. 2014; Calzavara et al. 2016]. That said, the standardization of CSP
by the W3C suggests that the defense mechanism is not too hard to deploy on many
websites, at least to get some limited protection.

4.3.9. Critical Evaluation. Content injection is one of the most widespread threats to
the security of web sessions [OWASP 2013]. Indeed, modern web applications include
content from a variety of sources, burdening the task of identifying malicious content.
Few proposals attempt to provide a comprehensive defense against content injection
and the majority of the most popular solutions are only effective against reflected
XSS or have very limited scope. Indeed, among the surveyed solutions, client-side XSS
filters and HttpOnly cookies are by far the most widespread protection mechanisms,
implemented by the majority of the web browsers. Under the current state of the
art, achieving protection against stored injections while preserving the application
functionality requires the intervention of web developers.

Although several of the discussed approaches were only proposed in research arti-
cles and never embraced by the industry, some of them contributed to the development
of existing web standards. For instance, the hash-based whitelisting approach of in-
line scripts supported by CSP has been originally proposed as an example policy in
the BEEP article [Jim et al. 2007]. More research is needed to provide more general
defenses against a complex problem like content injection.

4.4. Cross-Site Request Forgery and Login CSRF

We now discuss security solutions that are designed to protect against CSRF and login
CSRF. We treat these two attacks together, since security solutions that are designed
to protect against one of the attacks are typically also effective against the other. In

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

Surviving the Web: A Journey into Web Session Security 13:15

fact, both CSRF and login CSRF exploit cross-site requests that trigger dangerous side
effects on a trusted web application.

4.4.1. Purely Client-Side Solutions. Several browser extensions and client-side proxies
have been proposed to counter CSRF attacks, including RequestRodeo [Johns and
Winter 2006], CsFire [Ryck et al. 2010, 2011], and BEAP [Mao et al. 2009]. All of these
solutions share the same idea of stripping authentication cookies from potentially
malicious cross-site requests sent by the browser. The main difference between these
proposals concerns the way cross-site requests are deemed malicious: different, more
or less accurate, heuristics have been put forward for the task.

These solutions are designed to protect against web attackers who host on their
web servers pages that include links to a victim website, in the attempt of fooling the
browser into sending malicious authenticated requests towards the victim website.
Unfortunately, this protection becomes ineffective if a web attacker is able to exploit
a content injection vulnerability on the target website, since it may force the browser
into sending authenticated requests originating from a same-site position.

A very nice advantage of these client-side defenses is their usability and ease of de-
ployment: The user can just install the extension/proxy on her machine and she will be
automatically protected from CSRF attacks. On the other hand, compatibility may
be at harm, since any heuristic for determining whenever a cross-site request should
be considered malicious is bound to (at least occasionally) produce some false positives.
To the best of our knowledge, the most sophisticated heuristic is implemented in the
latest release of CsFire [Ryck et al. 2011], but a large-scale evaluation on the real Web
has unveiled that even this approach may sometimes break useful functionalities of
standard web browsing: For instance, it breaks legitimate accesses to Flickr or Yahoo
via the OpenID single sign-on protocol [Czeskis et al. 2013].

4.4.2. Allowed Referrer Lists. Allowed Referrer Lists (ARLs) have been proposed as a
client/server solution against CSRF attacks [Czeskis et al. 2013]. Roughly, an ARL is
just a whitelist that specifies which origins are entitled to send authenticated requests
to a given website. The whitelist is compiled by web developers willing to secure their
websites, while the policy enforcement is done by the browser. If no ARL is specified
for a website, then the browser behaviour is unchanged when accessing it, that is, any
origin is authorized to send authenticated requests to the website.

ARLs are effective against web attackers, provided that no content injection vulner-
ability affects any of the whitelisted pages. Their design supports usability, since their
enforcement is lightweight and transparent to browser users. Moreover, compatibility
is ensured by the enforcement of security restrictions only on websites that explicitly
opt in to the protection mechanism. The ease of deployment of ARLs is acceptable in
most cases. Users must adopt a security-enhanced web browser, but ARLs do not re-
quire major changes to the existing ones: The authors implemented ARLs in Firefox
with around 700 lines of C++ code. Web developers, instead, must write down their
own whitelists. We believe that for many websites this process requires only limited
efforts: For instance, e-commerce websites may include in their ARL only the desired
e-payment provider, for example, Paypal. However, notice that a correct ARL for Pay-
pal may be large and rather dynamic, since it should enlist all the websites relying on
Paypal for payment facilities.

4.4.3. Tokenization. Tokenization is a popular server-side countermeasure against
CSRF attacks [Barth et al. 2008]. The idea is that all the requests that might change
the state of the web application should include a secret token randomly generated by
the server for each session and, possibly, each request: Incoming requests that do not
include the correct token are rejected. The inclusion of the token is transparently done

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

13:16 S. Calzavara et al.

by the browser during the legitimate use of the website, for example, every security-
sensitive HTML form in the web application is extended to provide the token as a
hidden parameter. It is crucial that tokens are bound to a specific session. Otherwise,
an attacker could legitimately acquire a valid token for his own session and transplant
it into the user browser to fool the web application into accepting malicious authenti-
cated requests as part of the user session.

Tokenization is robust against web attackers only if we assume they cannot perform
content injection attacks. In fact, a content injection vulnerability might give access
to all the secret tokens, given that they are included in the DOM of the web page.
The usage of secret tokens is completely transparent to the end-user, so there are no
usability concerns. However, tokenization may be hard to deploy for web developers.
The manual insertion of secret tokens is tedious and typically hard to get right. Some
web development frameworks offer automatic support for tokenization, but this is
not always comprehensive and may leave room for attacks. These frameworks are
language dependent and may not be powerful enough for sophisticated web applications
developed using many different languages [Czeskis et al. 2013].

4.4.4. NoForge. NoForge [Jovanovic et al. 2006] is a server-side proxy sitting between
the web server and the web applications to protect. It implements the tokenization
approach against CSRF on all requests, without requiring any change to the web
application code. NoForge parses the HTTP(S) responses sent by the web server and
automatically extends each hyperlink and form contained in them with a secret token
bound to the user session; incoming requests are then delivered to the web server only
if they contain a valid token.

The protection and the usability offered by NoForge are equivalent to what can be
achieved by implementing tokenization at the server side. The adoption of a proxy for
the tokenization task significantly simplifies the deployment of the defensive solution,
but it has a negative impact on compatibility, since HTML links and forms that are
dynamically generated at the client side will not be rewritten to include the secret
token. As a result, any request sent by clicking on these links or by submitting these
forms will be rejected by NoForge, thus breaking the web application. The authors of
NoForge are aware of this problem and state that it can be solved by manually writing
scripts that extend links and forms generated at the client side with the appropriate
token [Jovanovic et al. 2006]. However, if this need is pervasive, the benefits on de-
ployment offered by NoForge can be easily voided. For this reason, we argue that the
design of NoForge is not compatible with the modern Web.

4.4.5. Origin Checking. Origin checking is a popular alternative to tokenization [Barth
et al. 2008]. Modern web browsers implement the Origin header, identifying the secu-
rity context (origin) that caused the browser to send an HTTP(S) request. For instance,
if a link to http://b.com is clicked on a page downloaded from http://a.com, the
corresponding HTTP request will include http://a.com in the Origin header. Web de-
velopers may inspect this header to detect whether a potentially dangerous cross-site
request has been generated by a trusted domain or not.

Origin checking is robust against web attackers without scripting capabilities in any
of the domains trusted by the target website. Server-side origin checking is entirely
transparent to the end-user and has no impact on the navigation experience, so it may
not hinder usability. This solution is simpler to deploy than tokenization, since it can
be implemented by using a web application firewall like ModSecurity.2 Unfortunately,
the Origin header is not attached to all the cross-origin requests: For instance, the
initial proposal of the header was limited to POST requests [Barth et al. 2008] and

2https://www.modsecurity.org/.

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

https://www.modsecurity.org/

Surviving the Web: A Journey into Web Session Security 13:17

current web browser implementations still do not ensure that the header is always
populated [Barth 2011b]. Web developers should be fully aware of this limitation and
ensure that all the state-changing operations in their applications are triggered by
requests bearing the Origin header. In practice, this may be hard to ensure for legacy
web applications [Czeskis et al. 2013].

4.4.6. Critical Evaluation. Effectively preventing CSRFs and login CSRFs is surprisingly
hard. Even though the root cause of the security problem is well understood for these
attacks, it is challenging to come up with a solution that is at the same time usable, com-
patible, and easy to deploy. At the time of writing, ARLs represent the most promising
defensive solution against CSRFs and login CSRFs. They are transparent to end-users,
respectful towards legacy technology, and do not require changes to web application
code. Unfortunately, ARLs are not implemented in major web browsers, so in practice
tokenization and origin checking are the most widespread solutions nowadays. These
approaches, however, may be hard to deploy on legacy web applications.

4.5. Cookie Forcing and Session Fixation

We collect together the defenses proposed against cookie forcing and session fixation.
In fact, both the attacks rely on the attacker capability to corrupt the integrity of the
authentication cookies set by a trusted website.

4.5.1. Serene. The Serene browser extension offers automatic protection against ses-
sion fixation attacks [Ryck et al. 2012]. It inspects each outgoing request sent by the
browser and applies a heuristic to identify cookies that are likely used for authentica-
tion purposes: If any of these cookies was not set via HTTP(S) headers, it is stripped
from the outgoing request, and, hence, cookies that have been fixated or forced by a
malicious script cannot be used to authenticate the client. The key observation behind
this design is that existing websites set their authentication cookies using HTTP(S)
headers in the very large majority of cases.

The solution is designed to be robust against web attackers, since they can only set a
cookie for the website by exploiting a markup/script injection vulnerability. Conversely,
Serene is not effective against related-domain attackers who might use their sites to le-
gitimately set cookies for the whole domain using HTTP headers. The main advantages
of Serene are its usability and ease of deployment: Users only need to install Serene
in their browser, and it will provide automatic protection against session fixation for
any website, although the false negatives produced by the heuristic for authentication
cookies detection may still leave room for attacks. The compatibility of Serene crucially
depends on its heuristic: False positives may negatively affect the functionality of web-
sites, since some cookies that should be accessed by the web server are never sent to it.
In practice, it is impossible to be fully accurate in the authentication cookie detection
process, even using sophisticated techniques [Calzavara et al. 2014].

4.5.2. Origin Cookies. Origin cookies have been proposed to fix some known integrity
issues affecting cookies [Bortz et al. 2011]. We have already discussed that standard
HTTP cookies do not provide strong integrity guarantees against related-domain at-
tackers and active network attackers. The observation here is that these attackers
exploit the relaxation of the same-origin policy applied to cookies (see Section 2.4.4).
Origin cookies, instead, are bound to an exact web origin. For instance, an origin cookie
set by https://example.com can only be overwritten by an HTTPS response from exam-
ple.com and will only be sent to example.com over HTTPS. Origin cookies can be set by
websites simply by adding the Origin attribute to standard cookies. Origin cookies are
sent by the browser inside a new custom header Origin-Cookie, thus letting websites
distinguish origin cookies from normal ones.

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

13:18 S. Calzavara et al.

Since origin cookies are isolated between origins, the additional powers of related-
domain attackers and active network attackers in setting or overwriting cookies are
no longer a problem. The use of origin cookies is transparent to users and their design
supports backward compatibility, since origin cookies are treated as standard cookies
by legacy browsers (unknown cookie attributes are ignored). Origin cookies are easy
to deploy on websites entirely hosted on a single domain and only served over a single
protocol: For such a website, it would be enough to add the Origin attribute to all
its cookies. On the other hand, if a web application needs to share cookies between
different protocols or related domains, then the web developer is forced to implement
a protocol to link together different sessions built on distinct origin cookies. This may
be a non-trivial task to carry out for existing websites.

4.5.3. Authentication Cookies Renewal. The simplest and most effective defense against
session fixation is implemented at the server side by ensuring that the authentication
cookies identifying the user session are refreshed when the level of privilege changes,
that is, when the user provides her password to the web server and performs a lo-
gin [Johns et al. 2011]. If this is done, then no cookie fixed by an attacker before the
first authentication step may be used to identify the user session. Notice that this coun-
termeasure does not prevent cookie forcing, since the attacker can first authenticate at
the website using a standard web browser and then directly force his own cookies into
the user browser.

Renewing authentication cookies on password-based authentication is a recom-
mended security practice and it is straightforward to implement for new web appli-
cations. However, retrofitting a legacy web application may require some effort, since
the authentication-related parts of session management must be clearly identified and
corrected. It may actually be more viable to keep the application code unchanged and
operate at the framework level or via a server-side proxy to enforce the renewal of
the authentication cookies whenever an incoming HTTP(S) request is identified as a
login attempt [Johns et al. 2011]. Clearly, these server-side solutions must ensure that
login attempts are accurately detected to preserve compatibility: This is the case, for
instance, when the name of the POST parameter bound to the user password is known.

4.5.4. Critical Evaluation. Session fixation is a dangerous attack, but it is relatively easy
to prevent. Renewing the authentication cookies on user authentication is the most
popular, effective, and widespread solution against these attacks. The only potential
issue with this approach is implementing a comprehensive protection for legacy web
applications [Johns et al. 2011]. Cookie forcing, instead, is much harder to defend
against. The integrity problems of cookies are well known to security experts, but no
real countermeasure against them has been implemented in major web browsers for
the sake of backward compatibility. A recent interesting article by Zheng et al. discusses
this problem in more detail [Zheng et al. 2015].

4.6. Network Attacks

4.6.1. HTTPS with Secure Cookies. Though it is obvious that websites concerned about
network attackers should make use of HTTPS, there are some points worth discussing.
For instance, while it is well understood that passwords should only be sent over
HTTPS, web developers often underestimate the risk of leaking authentication cookies
in clear, thus undermining session confidentiality and integrity. As a matter of fact,
many websites are still only partially deployed over HTTPS, either to increase perfor-
mances or because only a part of their content needs to be secured. However, cookies
set by a website are by default attached to all the requests sent to it, irrespective of the
communication protocol. If a web developer wants to deliver a non-sensitive portion
of her website over HTTP, then it is still possible to protect the confidentiality of the

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

Surviving the Web: A Journey into Web Session Security 13:19

authentication cookies by setting the Secure attribute, which instructs the browser to
send these cookies only over HTTPS connections. Even if a website is fully deployed
over HTTPS, the Secure attribute should be set on its authentication cookies, otherwise
a network attacker could still force his or her leakage in clear by injecting non-existing
HTTP links to the website in unrelated web pages [Jackson and Barth 2008].

Activating HTTPS support on a server requires little technical efforts but needs a
signed public key certificate: While the majority of HTTPS-enabled websites employ
certificates signed by recognized certification authorities, a non-negligible percentage
uses certificates that are self-signed or signed by CAs whose root certificate is not
included in major web browsers [Fahl et al. 2014]. Unless explicitly included in the
OS or in the browser keychain, these certificates trigger a warning when the browser
attempts to validate them, similarly to what happens when a network attacker acts as
a man-in-the-middle and provides a fake certificate: In such a case, a user that proceeds
ignoring the warning may be exposed to the active attacker, as if the communication was
performed over an insecure channel. The adoption of Secure cookies is straightforward
whenever the entire website is deployed over HTTPS, since it is enough to add the
Secure attribute to all the cookies set by the website. For mixed-content websites,
Secure cookies cannot be used to authenticate the user on the HTTP portion of the site,
hence they may be hard to deploy, requiring a change to the cookie scheme.

4.6.2. HProxy. HProxy is a client-side solution that protects against SSL stripping by
analyzing the browsing history in order to produce a profile for each website visited
by the user [Nikiforakis et al. 2010]. HProxy inspects all the responses received by the
user browser and compares them against the corresponding profiles: Divergences from
the expected behaviour are evaluated through a strict set of rules to decide whether
the response should be accepted or rejected.

HProxy is effective only on already-visited websites, and the offered protection cru-
cially depends on the completeness of the detection ruleset. From a usability perspec-
tive, the browsing experience may be affected by the adoption of the proposed defense
mechanism, as it introduces an average overhead of 50% on the overall page load time.
The main concern, however, is about compatibility, since it depends on the ability of
HProxy to tell apart legitimate modifications in the web page across consecutive loads
from malicious changes performed by the attacker. False positives in this process may
break the functionality of benign websites. HProxy is easy to deploy, since the user only
needs to install the software on her machine and configure the browser proxy settings
to use it.

4.6.3. HTTP Strict Transport Security. HTTP Strict Transport Security (HSTS) is a se-
curity policy implemented in all modern web browsers, which allows a web server to
force a client to subsequently communicate only over a secure channel [Hodges et al.
2012]. The policy can be delivered solely over HTTPS using a custom header, where
it is possible to specify whether the policy should be enforced also for requests sent
to sub-domains (e.g., to protect cookies shared with them) and its lifetime. When the
browser performs a request to a HSTS host, its behaviour is modified so every HTTP
reference is upgraded to the HTTPS protocol before being accessed; TLS errors (e.g.,
self-signed certificates) terminate the communication session and the embedding of
mixed content (see Section 2.4.2) is forbidden.

Similarly to the previous solution, HSTS is not able to provide any protection against
active network attackers whenever the initial request to a website is carried out over
an insecure channel: To address this issue, browsers vendors include a list of known
HSTS hosts, but clearly the approach cannot cover the entire Web. Additionally, a
recently introduced attack against HSTS [Selvi 2014] exploits a Network Time Protocol
weakness found on major operating systems that allows us to modify the current

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

13:20 S. Calzavara et al.

time via a man-in-the-middle attack, thus making HSTS policies expire. Usability and
compatibility are both high, since users are not involved in security decisions and
the HTTP(S) header for HSTS is ignored by browsers not supporting the mechanism.
The ease of deployment is high, given that web developers can enable the additional
HTTP(S) header with little effort by modifying the web server configuration.

4.6.4. HTTPS Everywhere. This extension for Firefox, Chrome, and Opera [EFF 2011]
performs URL rewriting to force access to the HTTPS version of a website whenever
available, according to a set of hard-coded rules supplied with the extension. Essen-
tially, HTTPS Everywhere applies the same idea of HSTS, with the difference that no
instruction from the website is needed: The hard-coded ruleset is populated by security
experts and volunteers.

HTTPS Everywhere is able to protect only sites included in the ruleset: Even if
the application allows the insertion of custom rules, this requires technical skills that
a typical user does not have. In case of partial lack of HTTPS support, the solution
may break websites, and user intervention is required to switch to the usual browser
behaviour; these problems can be rectified by refining the ruleset. The solution is very
easy to deploy: The user is only required to install the extension to enforce the usage
of HTTPS on supported websites.

4.6.5. Critical Evaluation. HTTPS is pivotal in defending against network attacks: All
the assessed solutions try to promote insecure connections to encrypted ones or force
web developers to deploy the whole application on HTTPS. Mechanisms exposing com-
patibility problems are unlikely to be widely adopted, as in the case of HProxy due to
its heuristic approach. All the other defenses, instead, are popular standards or enjoy
a large user base. Academic solutions proved to be crucial for the development of web
standards: HSTS is a revised version of ForceHTTPS [Jackson and Barth 2008] in
which a custom cookie was used in place of an HTTP header to enable the protection
mechanism.

4.7. Summary

We summarize in Table II all the defenses discussed so far. We denote with � those
solutions whose ease of deployment depends on the policy complexity. When the adop-
tion of a security mechanism is much harder on legacy web applications with respect
to newly developed or modern ones, we annotate the score with ✝.

5. DEFENSES AGAINST MULTIPLE ATTACKS

All the web security mechanisms described so far have been designed to prevent or
mitigate very specific attacks against web sessions. In the literature, we also find
proposals providing a more comprehensive solution to a range of different threats.
These proposals are significantly more complex than those in the previous section,
and, hence, it is much harder to provide a schematic overview of their merits and
current limitations.

5.1. Origin-Bound Certificates

Origin-Bound Certificates (OBC) [Dietz et al. 2012] have been proposed as an extension
to the TLS protocol that binds authentication tokens to trusted encrypted channels.
The idea is to generate, on the client side, a different certificate for every web origin
on connection. This certificate is sent to the server and used to cryptographically bind
authentication cookies to the channel established between the browser and that specific
origin. The browser relies on the same certificate when arranging a TLS connection with
a previously visited origin. The protection mechanism implemented by OBC is effective
at preventing the usage of authentication cookies outside the intended channel: For

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

Surviving the Web: A Journey into Web Session Security 13:21

Table II. Analysis of Proposed Defenses

Ease of
Defense Type Usability Compatibility Deployment

Content injection HttpOnly cookies hybrid H H H
mitigation SessionShield/Zan client H L H

Requests filtering client L H H
Client-side XSS filters client H H H
Server-side filtering server H M L/M�

XSS-Guard server H M H
Content injection BEEP hybrid M H L/M�

prevention Blueprint hybrid M M L
Noncespaces hybrid M L L/M�

DSI hybrid H H M
CSP hybrid H H L/M�

Client-side defenses client H L H
Allowed referrer lists hybrid H H L/M�

CSRF Tokenization server H H L/H†

Login CSRF NoForge server H L H
Origin checking server H H L/H†

Cookie forcing Serene client H L H
Session fixation Origin cookies hybrid H H M/H†

Session fixation Auth. cookies renewal server H H M/H†

HTTPS w. secure cookies hybrid H H M/H†

HProxy client M L H
Network attacks HSTS hybrid H H H

HTTPS Everywhere client M H H

instance, a cookie leaked via a content injection vulnerability cannot be reused by an
attacker to identify himself as the victim on the vulnerable website, since the victim
certificate is not disclosed. Similarly, session fixation attacks are defeated by OBC,
given that the cookie value associated to the attacker channel cannot be used within
the victim TLS connection.

The presence of OBC is completely transparent to the user, and the impact on perfor-
mances is negligible after certificate generation, so the usability of the solution is high.
Compatibility is not at harm, since the browser and the server must explicitly agree
on the use of OBC during the TLS handshake. One problem is represented by domain
cookies, that is, cookies accessed by multiple origins: To overcome this issue, the au-
thors suggested a legacy mode of OBC in which the client generates certificates bound
to the whole domain instead of a single origin. Being an extension to the TLS protocol,
OBC requires changes to both parties involved in the encrypted channel initiation.
The authors successfully implemented the described mechanism on the open-source
browser Chromium and on OpenSSL by altering approximately 1,900 and 320 lines of
code, respectively. However, web developers are not required to adapt their applications
to use OBC, which has a beneficial impact on ease of deployment.

5.2. Browser-Based Information Flow Control

Browser-based information flow control is a promising approach to uniformly prevent
a wide class of attacks against web sessions. FlowFox [Groef et al. 2012] was the first
web browser implementing a full-fledged information flow control framework for con-
fidentiality policies on JavaScript code. Later work on the same research line includes
JSFlow [Hedin et al. 2014], COWL [Stefan et al. 2014], and an extension of Chromium
with information flow control [Bauer et al. 2015], which we refer to as ChromiumIFC.
These solutions explore different points of the design space as follows:

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

13:22 S. Calzavara et al.

—FlowFox is based on secure multi-execution, a dynamic approach performing multiple
runs of a given program (script) under a special policy for input/output operations
ensuring non-interference [Devriese and Piessens 2010]. To exemplify, assume the
existence of two security levels Public and Secret, and then the program is executed
twice (once per level) under the following regime: (1) Outputs marked Public/Secret
are only done in the execution at level Public/Secret, and (2) inputs at level Public are
fed to both the executions, while inputs at level Secret are only fed to the execution
at level Secret (a default value for the input is provided to the Public execution). This
ensures by construction that Private inputs do not affect Public outputs.

—JSFlow is based on a dynamic type system for JavaScript. JavaScript values are
extended with a security label representing their confidentiality level, and labels are
updated to reflect the computational effects of the monitored scripts. Labels are then
dynamically checked to ensure that computations preserve non-interference.

—COWL performs a compartmentalization of scripts and assigns security labels at the
granularity of compartments encapsulating content from a single origin. It enforces
coarse-grained policies on communication across compartments and towards remote
origins via label checking.

—ChromiumIFC implements a lightweight dynamic taint-tracking technique to con-
strain information flows within the browser and prevent the leakage of secret infor-
mation. In contrast to previous proposals, this solution is not limited to JavaScript,
but it spans all the most relevant browser components.

The different design choices taken by the reviewed solutions have a clear import on
our evaluation factors. In terms of protection, enforcing information flow control on
scripts is already enough to prevent many web threats. For instance, assuming an
appropriate security policy, web attackers cannot leak authentication cookies using
XSS [Groef et al. 2012] or run CSRF attacks based on JavaScript [Khan et al. 2014].
This is true also in the presence of stored XSS attacks, provided that information flow
control is performed on the injected scripts. However, there are attack vectors that go
beyond scripts, for example, a web attacker can carry out a CSRF by injecting markup
elements. Preventing these attacks requires a more extensive monitoring of the web
browser, such as the one proposed by ChromiumIFC.

To the best of our knowledge, there has been no thorough usability study for any of
the cited solutions. It is thus unclear if and to what extent users need to be involved in
security decisions on normal browsing. However, degradation of performances caused
by information flow tracking may hinder the user experience and negatively affect
usability. For instance, the performances of FlowFox are estimated to be around 20%
worse than those of a standard web browser, even assuming only policies with two
security levels [Groef et al. 2012]. Better performances can be achieved by using simpler
enforcement mechanisms and by lowering the granularity of enforcement; for instance,
the authors of COWL performed a very promising performance evaluation of their
proposal [Stefan et al. 2014].

Compatibility and ease of deployment are better evaluated together, since there is
a delicate balance between the two in this area, due to the flexibility of information
flow policies. On the one hand, inaccurate information flow policies can break existing
websites on security enforcement, thus affecting compatibility. On the other hand,
accurate information flow policies may be large and hard to get right, thus hindering
deployment. We think that a set of default information flow policies may already be
enough to stop or mitigate a wide class of attacks against web sessions launched by
malicious scripts: For instance, cookies could be automatically marked as private for
the domain that set them. Indeed, a preliminary experiment with FlowFox on the top
500 sites of Alexa shows that compatibility is preserved for a very simple policy that

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

Surviving the Web: A Journey into Web Session Security 13:23

marks as sensitive any access to the cookie jar [Groef et al. 2012]. Reaping the biggest
benefits out of information flow control, however, necessarily requires some effort by
web developers.

5.3. Security Policies for JavaScript

Besides information flow control, in the literature there are several frameworks for en-
forcing general security policies on untrusted JavaScript code [Meyerovich and Livshits
2010; Yu et al. 2007; Louw et al. 2013; Phung et al. 2009; Van Acker et al. 2011]. We
just provide a brief overview on them here, and we refer the interested reader to a
recent survey by Bielova [2013] for additional details. The core idea behind all these
proposals is to implement a runtime monitor that intercepts the API calls made by
JavaScript programs and checks whether the sequence of such calls complies with an
underlying security policy. This kind of policy has proved helpful for protecting access
to authentication cookies, thus limiting the dangers posed by XSS, and for restricting
cross-domain communication attempts by untrusted code, which helps at preventing
CSRF attacks. We believe that other useful policies for protecting web sessions can be
encoded in these rather general frameworks, although the authors of the original arti-
cles do not discuss them in detail. Since all these proposals assume that JavaScript code
is untrusted, they are effective even in the presence of stored XSS attacks, provided
that the injected scripts are subject to policy enforcement.

As expected, security policies for JavaScript share many of the strengths and weak-
nesses of browser-based information flow control in terms of protection, usability, and
compatibility. Ease of deployment, instead, deserves a more careful discussion, since
it fundamentally depends on the complexity of the underlying policy language. For
instance, in Meyerovich and Livshits [2010], security policies are expressed in terms
of JavaScript code, while the framework in Yu et al. [2007] is based on edit automata,
a particular kind of state machine with a formal semantics. Choosing the right policy
language may significantly improve the ease of deployment, though we believe that
meaningful security policies require some efforts by web developers. There is some
preliminary evidence that useful policies can be automatically synthesized by static
analysis or runtime training: The idea is to monitor normal JavaScript behaviour and
to deem as suspicious all the unexpected script behaviours [Meyerovich and Livshits
2010]. However, we believe more research is needed to draw a fair conclusion on how
difficult it is to deploy these mechanisms in practice.

5.4. Ajax Intrusion Detection System

Guha et al. proposed an Ajax intrusion detection system based on the combination of
a static analysis for JavaScript and a server-side proxy [Guha et al. 2009]. The static
analysis is employed by web developers to construct the control flow graph of the Ajax
application to protect, while the proxy dynamically monitors browser requests to pre-
vent violations to the expected control flow of the web application. The solution also
implements defenses against mimicry attacks, in which the attacker complies with
legitimate access patterns in his or her malicious attempts. This is done by making
each session (and thus each graph) slightly differ from the other ones by placing un-
predictable, dummy requests in selected points of the control flow. The JavaScript code
of the web application is then automatically modified to trigger these requests, which
instead cannot be predicted by the attacker.

The approach is deemed useful to mitigate the threats posed by content injection and
to prevent CSRF, provided that these attacks are launched via Ajax. Since the syntax
of the control flow graph explicitly tracks session identifiers, session fixation attacks
can be prevented: Indeed, in these attacks there is a mismatch between the cookie
set in the first response sent by the web server and the cookie that is included by the

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

13:24 S. Calzavara et al.

browser in the login request, and, hence, a violation to the intended control flow will
be detected. The approach is effective even against stored XSS attacks exploiting Ajax
requests, whenever they are mounted after the construction of the control flow graph.

The solution offers high usability, since it is transparent to users and the runtime
overhead introduced by the proxy is minimal. According to the authors, the adoption
of a context-sensitive static analysis for JavaScript makes the construction of the
control flow graph very precise, which is crucial to preserve the functionality of the
web application and ensure compatibility. The authors claim that the solution is easy
to deploy, since the construction of the control flow graph is totally automatic and the
adoption of a proxy does not require changes to the web application code.

5.5. Escudo

Escudo [Jayaraman et al. 2010] is an alternative protection model for web browsers,
extending the standard same-origin policy to rectify several of its known shortcomings.
By noticing a strong similarity between the browser and an operating system, the au-
thors of Escudo argue for the adoption of a protection mechanism based on hierarchical
rings, whereby different elements of the DOM are placed in rings with decreasing
privileges; the definition of the number of rings and the ring assignment for the DOM
elements is done by web developers. Developers can also assign protection rings to
their cookies, while the internal browser state containing, for example, the history, is
set by default in ring 0. Access to objects in a given ring is only allowed to subjects
being in the same or lower rings.

Escudo is designed to prevent XSS and CSRF attacks. Untrusted web content should
be assigned to the least privileged ring, so scripts crafted by exploiting a reflected
XSS vulnerability would do no harm. Similarly, requests from untrusted web pages
should be put in a low privilege ring without access to authentication credentials, thus
preventing CSRF attacks. Notice, however, that stored XSS vulnerabilities may be
exploited to inject code running with high privileges in trusted web applications and
attack them. The authors of Escudo do not discuss network attacks.

Escudo does not require user interventions for security enforcement and it only
leads to a slight overhead on page rendering (around 5%). This makes the solution
potentially usable. However, deploying ring assignments for Escudo looks challenging.
The authors evaluated this aspect by retrofitting two existing opensource applications:
Both experiments required around one day of work, which looks reasonable. On the
other hand, many web developers are not security experts, and the fine-grained policies
advocated by Escudo may be too much of a burden for them: Without tool support
for annotating the DOM elements, the deployment of Escudo may be complicated,
especially if a comprehensive protection is desired. Escudo is designed to be backward
compatible: Escudo-based web browsers are compatible with non-Escudo applications
and vice-versa; if an appropriate policy is put in place, no compatibility issue will arise.

5.6. CookiExt

CookiExt [Bugliesi et al. 2015] is a Google Chrome extension protecting the confiden-
tiality of authentication cookies against both web and network attacks. The extension
adopts a heuristic to detect authentication cookies in incoming responses: If a response
is sent over HTTP, all the identified authentication cookies are marked as HttpOnly; if
a response is sent over HTTPS, these cookies are also marked as Secure. In the latter
case, to preserve the session, CookiExt forces an automatic redirection over HTTPS
for all the subsequent HTTP requests to the website, since these requests would not
include the cookies that have been extended with the Secure attribute. In order to pre-
serve compatibility, the extension implements a fallback mechanism that removes the
Secure attribute automatically assigned to authentication cookies in case the server

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

Surviving the Web: A Journey into Web Session Security 13:25

does not support HTTPS for some of the web pages. The design of CookiExt has been
formally validated by proving that a browser with CookiExt satisfies non-interference
with respect to the value of the authentication cookies. In particular, it is shown that
what an attacker can observe of the CookiExt browser behaviour is unaffected by the
value of authentication cookies. CookiExt does not protect against CSRF and session
fixation: It just ensures the confidentiality of the authentication cookies.

CookiExt does not require any user interaction and features a lightweight implemen-
tation, which guarantees a high level of usability. Preliminary experiments performed
by the authors show good compatibility results on existing websites from Alexa, since
only minor annoyances due to the security enforcement have been found; however, a
large-scale evaluation of the extension is still missing. Being implemented as a browser
extension, CookiExt is very easy to deploy.

5.7. SessInt

SessInt [Bugliesi et al. 2014] is an extension for Google Chrome providing a purely
client-side countermeasure against the most common attacks targeting web sessions.
The extension prevents the abuse of authenticated requests and protects authenti-
cation credentials. It enforces web session integrity by combining access control and
taint-tracking mechanisms in the browser. The security policy applied by SessInt has
been verified against a formal threat model including both web and network attack-
ers. As a distinguishing feature with respect to other client-side solutions, SessInt is
able to stop CSRF attacks even when they are launched by exploiting reflected XSS
vulnerabilities. On the other hand, no protection is given against stored XSS.

The protection provided by SessInt is fully automatic: Its security policy is uniformly
applied to every website, and no interaction with the web server or the end-user is
required. Also, the performance overhead introduced by the security checks of SessInt
is negligible, and no user interaction is needed. However, the protection offered by
SessInt comes at a cost on compatibility: The current prototype of the extension breaks
several useful web scenarios, including single sign-on protocols and e-payment systems.
The implementation as a browser extension makes SessInt very easy to deploy.

5.8. Same Origin Mutual Approval

Same Origin Mutual Approval (SOMA) [Oda et al. 2008] is a research proposal describ-
ing a simple yet powerful policy for content inclusion and remote communication on
the Web. SOMA enforces that a web page from a domain d1 can include content from an
origin o hosted on domain d2 only if both the following checks succeed: (1) d1 has listed
o as an allowed source of remote content, and (2) d2 has listed d1 as an allowed destina-
tion for content inclusion. SOMA is designed to offer protection against web attackers:
Web developers can effectively prevent CSRF attacks and mitigate the threats posed
by content injection vulnerabilities, including stored XSS, by preventing the injected
content from communicating with attacker-controlled web pages.

The protection offered by SOMA does not involve user intervention and the perfor-
mances of the solution look satisfactory, especially on cached page loads, where only an
extra 5% of network latency is introduced. This ensures that SOMA can be a usable so-
lution. Moreover, if a SOMA policy correctly includes all the references to the necessary
web resources, then no compatibility issues will occur. Writing correct policies looks
feasible in practice, since similar specifications are also used by popular web standards
like CSP. The deployment of SOMA would not be trivial but acceptable: Browsers must
be patched to support the mutual approval policy described above, while web developers
should identify appropriate policies for their websites. These policies are declarative
in nature and expected be relatively small in practice; most importantly, no change to
the web application code is required.

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

13:26 S. Calzavara et al.

Table III. Defenses Against Multiple Attacks

D
ef

en
se

Ty
pe

C
on

te
nt

in
je

ct
io

n

C
S

R
F

L
og

in
C

S
R

F

S
es

si
on

fix
at

io
n

C
oo

ki
e

fo
rc

in
g

N
et

w
or

k
at

ta
ck

s

U
sa

bi
li

ty

C
om

pa
ti

bi
li

ty

E
as

e
of

D
ep

lo
ym

en
t

OBC hybrid � ✗ � � H H M
Browser IFC hybrid � � � ✗ — — L/M�

JS Policies hybrid � � � ✗ — — L/M�

Ajax IDS server � � � ✗ H H H
Escudo hybrid � � - ✗ H H L/M�

CookiExt client � ✗ ✗ � H M H
SessInt client � � � � H L H
SOMA hybrid � � ✗ ✗ H H M
App Isolation hybrid � � � ✗ H H L/M�

5.9. App Isolation

App Isolation [Chen et al. 2011] is a defense mechanism aimed at offering, within a
single browser, the protection granted by the usage of different browsers for navigating
websites at separate levels of trust. If one “sensitive” browser is only used to navigate
trusted websites, while another “non-sensitive” browser is only used to access poten-
tially malicious web pages, then many of the threats posed by the latter are voided
by the absence of shared state between the two browsers. For instance, CSRF attacks
would fail, since they would be launched from an attacker-controlled web page in the
non-sensitive browser, but the authentication cookies for all trusted web applications
would only be available in the sensitive browser. Enforcing these kinds of guarantees
within a single browser requires two ingredients: (1) a strong state isolation among web
applications and (2) an entry point restriction, preventing the access to sensitive web
applications from maliciously crafted URLs. Indeed, in the example above, protection
would be voided if the link mounting the CSRF attack was opened in the sensitive
browser. This design is effective at preventing reflected XSS attacks, session fixation,
and CSRF. However, stored XSS attacks against trusted websites will bypass the pro-
tection offered by App Isolation, since the injected code would be directly delivered
from a trusted position.

The usability of App Isolation looks promising, since the protection is applied auto-
matically and the only downside is a slight increase in the loading time of the websites,
due to the additional round-trip needed to fetch the list of allowed entry points. The
compatibility of the solution is ensured by the fact that supporting browsers only en-
force protection when explicitly requested by the web application. Web developers,
however, should compile a list of entry points defining the allowed landing pages of
their web applications. This is feasible and easy to do only for non-social websites, for
example, online banks, which are typically accessed only from their homepage, but it is
prohibitively hard for social networks or content-oriented sites, for example, newspa-
per websites, where users may want to jump directly to any URL featuring an article.
The ease of deployment thus crucially depends on the nature of the web application to
protect.

5.10. Summary

We summarize our observations about the described solutions in Table III. Again, we
denote with � the solutions where the ease of deployment is affected by the policy
complexity. Additionally, we use a dash symbol whenever we do not have any definite
evidence about a specific aspect of our investigation based on the existing literature.

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

Surviving the Web: A Journey into Web Session Security 13:27

Most notably, we leave empty the Usability and Compatibility entries for browser-
based information flow control and JavaScript security policies, since they depend too
much on the specific implementation choices and the policies to enforce. More research
is needed to understand these important aspects.

6. PERSPECTIVE

Having examined different proposals, we now identify five guidelines for the designers
of novel web security mechanisms. This is a synthesis of sound principles and insights
that have, to different extents, been taken into account by all the designers of the
proposals we surveyed.

6.1. Transparency

We call transparency the combination of high usability and full compatibility: We think
this is the most important ingredient to ensure a large-scale deployment of any de-
fensive solution for the Web, given its massive user base and its heterogeneity. It is
well known that security often comes at the cost of usability and that usability defects
ultimately weaken security, since users resort to deactivating or otherwise sidestep-
ping the available protection mechanisms [Theofanos and Pfleeger 2011]. The Web is
extremely variegate and surprisingly fragile even to small changes: Web developers
who do not desire to adopt new defensive technologies should be able to do so, without
any observable change to the semantics of their web applications when these are ac-
cessed by security-enhanced web browsers; dually, users who are not willing to update
their web browsers should be able to seamlessly navigate websites that implement
cutting-edge security mechanisms not supported by their browsers.

All the security decisions must be ultimately taken by web developers. On the one
hand, users are not willing or do not have the expertise to be involved in security
decisions. On the other hand, it is extremely difficult for browser vendors to come
up with “one-size-fits-all” solutions that do not break any website. Motivated web
developers, instead, can be fully aware of their web application semantics, thoroughly
test new proposals, and configure them to support compatibility.

Examples: Hybrid client/server solutions like ARLs (Section 4.4.2), CSP (Sec-
tion 4.3.8), and SOMA (Section 5.8) are prime examples of proposals that ensure
transparency, since they do not change the semantics of web applications not adopting
them. Conversely, purely client-side defenses like Serene (Section 4.5.1) and SessInt
(Section 5.7) typically present some compatibility issues, since they lack enough con-
textual information to be always precise in their security decisions: This makes them
less amenable for a large-scale deployment.

6.2. Security by Design

Supporting the current Web and legacy web applications is essential, but developers
of new websites should be provided with tools that allow them to realize applications
that are secure by design. Our feeling is that striving for backward compatibility often
hinders the creation of tools that could actually improve the development process of
new web applications. Indeed, backward compatibility is often identified with problem-
specific patches to known issues, which developers of existing websites can easily plug
into their implementation to retrofit. The result is that developing secure web appli-
cations using the current technologies is a painstaking task that involves actions at
too many different levels. Developers should be provided with tools and methodologies
that allow them to take security into account from the first phases of the development
process. This necessarily means deviating from the low-level solutions advocated by
many current technologies to instead focus on more high-level security aspects of the

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

13:28 S. Calzavara et al.

web application, including the definition of principals and their trust relations, the
identification of sensitive information, and so on.

Examples: Proposals that are secure by design include the non-interference policies
advocated by FlowFox (Section 5.2) and several frameworks for enforcing arbitrary
security policies on untrusted JavaScript code (Section 5.3). Popular examples of solu-
tions that are not secure by design include the usage of secret tokens against CSRF
attacks (Section 4.4.3): Indeed, not every token generation scheme is robust [Barth
et al. 2008], and ensuring the confidentiality of the tokens may be hard, even though
this is crucial for the effectiveness of the solution.

6.3. Ease of Adoption

Server-side solutions should require a limited effort to be understood and adopted by
web developers. For instance, the usage of frameworks that automatically implement
recommended security practices, often neglected by web developers, can significantly
simplify the development of new secure applications. For client-side solutions, it is
important that they work out of the box when they are installed in the user browser:
Proposals that are not fully automatic are going to be ignored or misused. Any de-
fensive solution that involves both the client and the server is subject to both of the
previous observations. Since it is unrealistic that a single protection mechanism is able
to accommodate all the security needs, it is crucial to design the defensive solution so
it gracefully interacts with existing proposals that address orthogonal issues and that
may already be adopted by web developers.

Examples: Many client-side defenses are easy to adopt, since they are deployed
as browser extensions that automatically provide additional protection: This is the
case of tools like CsFire (Section 4.4.1) and CookiExt (Section 5.6). Server-side or
hybrid client/server solutions are often harder to adopt, for different reasons: Some
proposals, like Escudo (Section 5.5), are too fine grained and thus require a huge
configuration effort, while others, like FlowFox (Section 5.2), may be hard for web
developers to understand. Good examples of hybrid client/server solutions that promise
an easy adoption, since they speak the same language of web developers, include SOMA
(Section 5.8) and HSTS (Section 4.6.3). Origin checking is often straightforward to
implement as a server-side defense against CSRF attacks (Section 4.4.5).

6.4. Declarative Nature

To support a large-scale deployment, new defensive solutions should be declarative in
nature: Web developers should be given access to an appropriate policy specification
language, but the enforcement of the policy should not be their concern. Security
checks should not be intermingled with the web application logic: Ideally, no code
change should be implemented in the web application to make it more secure and a
thorough understanding of the web application code should not be necessary to come
up with reasonable security policies. This is dictated by very practical needs: Existing
web applications are huge and complex and are often written in different programming
languages, and web developers may not have full control over them.

Examples: Whitelist-based defenses like ARLs (Section 4.4.2) and SOMA (Section 5.8)
are declarative in nature, while the tokenization (Section 4.4.3) is not declarative at all,
since it is a low-level solution and it may be hard to adopt on legacy web applications.

6.5. Formal Specification and Verification

Formal models and tools have been recently applied to the specification and the verifi-
cation of new proposals for web session security [Bohannon and Pierce 2010; Akhawe

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

Surviving the Web: A Journey into Web Session Security 13:29

et al. 2010; Fett et al. 2014; Bugliesi et al. 2014]. While a formal specification may be of
no use for web developers, it assists security researchers in understanding the details
of the proposed solution. Starting from a formal specification, web security designers
can be driven by the enforcement of a clear semantic security property, for example,
non-interference [Groef et al. 2012] or session integrity [Bugliesi et al. 2014], rather
than by the desire of providing ad hoc solutions to the plethora of low-level attacks that
currently target the Web.

This is not merely a theoretical exercise, but it has clear practical benefits. First,
it allows a comprehensive identification of all the attack vectors that may be used
to violate the intended security property, thus making it harder that subtle attacks
are left undetected during the design process. Second, it forces security experts to
focus on a rigorous threat model and to precisely state all the assumptions underlying
their proposals: This helps in making a critical comparison of different solutions and
simplifies their possible integration. Third, and more speculatively, targeting a property
rather than a mechanism allows us to get a much better understanding of the security
problem, thus fostering the deployment of security mechanisms that are both more
complete and easier to use for web developers.

Examples: To the best of our knowledge, only a very few of the proposals we surveyed
are backed up by a solid formal verification. Some notable examples include CookiExt
(Section 5.6), SessInt (Section 5.7), FlowFox (Section 5.2), and CsFire (Section 4.4.1).

6.6. Discussion

Retrospectively looking at the solutions we reviewed, we identify a number of carefully
crafted proposals that comply with several of the guidelines we presented. Perhaps
surprisingly, however, we also observe that none of the proposals comply with all the
guidelines. We argue that this is not inherent to the nature of the guidelines but rather
the simple consequence of web security being hard: Indeed, many different problems at
very different levels must be taken into account when targeting the largest distributed
system in the world.

The Challenges of the Web Platform. Nowadays, there is a huge number of different web
standards and technologies, and most of them are scattered across different Request
for Comments (RFCs). This makes it hard to get a comprehensive picture of the web
platform and, conversely, makes it extremely easy to underestimate the impact of
novel defense mechanisms on the web ecosystem. Moreover, the sheer size of the Web
makes it difficult to assume typical use case scenarios, since large-scale evaluations
often reveal surprises and contest largely accepted assumptions [Richards et al. 2011;
Nikiforakis et al. 2012; Calzavara et al. 2014].

Particular care is needed when designing web security solutions, given the massive
user base of the Web, whose popularity heavily affects what security researchers and
engineers may actually propose to improve its security. Indeed, one may argue that
the compatibility and the usability of a web defense mechanism may even be more
important than the protection it offers. This may be hard to accept, since it partially
limits the design space for well-thought solutions tackling the root cause of a security
issue. However, the quest for usability and compatibility is inherently part of the web
security problem and it should never be underestimated.

The Architecture of an Effective Solution. Purely client-side solutions are likely to break
compatibility, since the security policy they apply should be acceptable for every web-
site, but “one-size-fits-all” solutions do not work in a heterogeneous environment like
the Web. The best way to ensure that a client-side defense preserves compatibility is
to adopt a whitelist-based approach to avoid that the defensive mechanism is forced

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

13:30 S. Calzavara et al.

to guess the right security decision. However, the protection offered by a whitelist is
inherently limited to a known set of websites.

Similarly, purely server-side approaches have their limitations. Most of the server-
side solutions we surveyed are hard to adopt and not declarative at all. When this
is not the case, like in NoForge (Section 4.4.4), compatibility is at risk. Indeed, just
as client-side solutions are not aware of the web application semantics, server-side
approaches have very little knowledge of the client-side code running in the browser.

Based on our survey and analysis, we confirm that hybrid client/server designs hold
great promise in being the most effective solution for future proposals [Weinberger
et al. 2011]. We observe that it is relatively easy to come up with hybrid solutions that
are compliant with the first four guidelines: SOMA (Section 5.8), HSTS (Section 4.6.3),
and ARLs (Section 4.4.2) are good examples.

A Note on Formal Verification. It may be tempting to think that proposals that comply
with the first four guidelines are already good enough, since their formal verification
can be performed a posteriori. However, this is not entirely true: Solutions that are not
designed with formal verification in mind are often over-engineered and very difficult
to prove correct, since it is not obvious what they are actually trying to enforce. For
many solutions, we just know that they prevent some attacks, but it is unclear whether
other attacks are feasible under the same threat model and there is no assurance that
a sufficiently strong security property can be actually proved for them.

We thus recommend taking formal verification into account from the first phases of
the design process. A very recent survey discusses why and how formal methods can
be fruitfully applied to web security and highlights open research directions [Bugliesi
et al. 2017].

Open Problems and New Research Directions. We have observed that, at the moment,
there exists no solution complying with the five guidelines above and that solutions
complying with the first four guidelines still miss a formal treatment. One interesting
line of research would be to try to formally state the security properties provided by
those solutions under various threat models. As we discussed, proving formal prop-
erties of existing mechanisms is not trivial (and sometimes not even feasible) and
requires, in the first place, to come up with a precise statement of the security goals.
SOMA (Section 5.8), HSTS (Section 4.6.3), and ARLs (Section 4.4.2) are certainly good
candidates for this formal analysis.

However, having a single solution covering the five guidelines would be far from
providing a universal solution for web session security. We have seen that most of the
proposals target specific problems and attacks. The definition of a general framework
for studying, comparing, and composing web security mechanisms might help in under-
standing in which extent different solutions compose and what would be the resulting
security guarantee. Modular reasoning looks particularly important in this respect,
since the web platform includes many different components, and end-to-end security
guarantees require all of them to behave correctly. This would go in the direction of
securing web sessions in general instead of just preventing classes of attacks.

For what concerns new solutions, we believe that they should be supported by a for-
mal specification and a clear statement of the security goals and of the threat model.
The development of new, well-founded solutions would certainly benefit from the in-
vestigation and formal analysis of existing, practical solutions. However, new solutions
should try to tackle web session security at a higher level of abstraction, independently
of the specific attacks. They should be designed with all of the above guidelines in mind,
which, in turn, suggests a hybrid approach. The formal model would clarify what are
the critical components to control and what (declarative) server-side information is
necessary to implement a transparent, secure-by-design, and easy-to-adopt solution.

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

Surviving the Web: A Journey into Web Session Security 13:31

7. CONCLUSION

We took a retrospective look at different attacks against web sessions and we surveyed
the most popular solutions against them. For each solution, we discussed its security
guarantees against different attacker models, its impact on usability and compatibility,
and its ease of deployment. We then synthesized five guidelines for the development of
new web security solutions based on the lesson learned from previous experiences. We
believe that these guidelines can help web security experts in proposing novel solutions
that are both more effective and amenable for a large-scale adoption.

REFERENCES

Devdatta Akhawe, Adam Barth, Peifung E. Lam, John C. Mitchell, and Dawn Song. 2010. Towards a formal
foundation of web security. In Proceedings of the 23rd IEEE Computer Security Foundations Symposium
(CSF’10). 290–304.

Elias Athanasopoulos, Vasilis Pappas, and Evangelos P. Markatos. 2009. Code-injection attacks in browsers
supporting policies. In Proceedings of the 2009 IEEE Web 2.0 Security and Privacy Workshop.

Chetan Bansal, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Sergio Maffeis. 2013. Keys to the
cloud: Formal analysis and concrete attacks on encrypted web storage. In Proceedings of the 2nd Inter-
national Conference on Principles of Security and Trust, POST 2013. 126–146.

Adam Barth. 2011a. HTTP State Management Mechanism. Retrieved from http://tools.ietf.org/html/rfc6265.
Adam Barth. 2011b. The Web Origin Concept. Retrieved from http://tools.ietf.org/html/rfc6454.
Adam Barth, Collin Jackson, and John C. Mitchell. 2008. Robust defenses for cross-site request forgery. In

Proceedings of the 15th ACM Conference on Computer and Communications Security (CCS’08). 75–88.
Daniel Bates, Adam Barth, and Collin Jackson. 2010. Regular expressions considered harmful in client-side

XSS filters. In Proceedings of the 19th International Conference on World Wide Web (WWW’10). 91–100.
Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, Michael Stroucken, and Yuan Tian. 2015. Run-time

monitoring and formal analysis of information flows in chromium. In Proceedings of the 22nd Annual
Network and Distributed System Security Symposium (NDSS’15).

Nataliia Bielova. 2013. Survey on javascript security policies and their enforcement mechanisms in a web
browser. J. Logic Algebr. Program. 82, 8 (2013), 243–262.

Prithvi Bisht and V. N. Venkatakrishnan. 2008. XSS-GUARD: Precise dynamic prevention of cross-site
scripting attacks. In Proceedings of the 5th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA’08). 23–43.

Aaron Bohannon and Benjamin C. Pierce. 2010. Featherweight firefox: Formalizing the core of a web browser.
In USENIX Conference on Web Application Development (WebApps’10).

Andrew Bortz, Adam Barth, and Alexei Czeskis. 2011. Origin cookies: Session integrity for web applications.
In Web 2.0 Security & Privacy Workshop (W2SP’11).

Michele Bugliesi, Stefano Calzavara, and Riccardo Focardi. 2017. Formal methods for web security. Journal
of Logical and Algebraic Methods in Programming (2017). To appear.

Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, and Wilayat Khan. 2015. CookiExt: Patching the
browser against session hijacking attacks. J. Comput. Secur. 23, 4 (2015), 509–537.

Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, Wilayat Khan, and Mauro Tempesta. 2014. Provably
sound browser-based enforcement of web session integrity. In Proceedings of the IEEE 27th Computer
Security Foundations Symposium (CSF’14). 366–380.

Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. 2016. Content security problems? Evaluating the
effectiveness of content security policy in the wild. In Proceedings of the 23rd ACM Conference on
Computer and Communications Security (CCS’16). 1365–1375.

Stefano Calzavara, Gabriele Tolomei, Michele Bugliesi, and Salvatore Orlando. 2014. Quite a mess in my
cookie jar!: Leveraging machine learning to protect web authentication. In Proceedings of the 23rd
International World Wide Web Conference (WWW’14). 189–200.

Eric Yawei Chen, Jason Bau, Charles Reis, Adam Barth, and Collin Jackson. 2011. App isolation: Get the
security of multiple browsers with just one. In Proceedings of the 18th ACM Conference on Computer
and Communications Security (CCS’11). 227–238.

Alexei Czeskis, Alexander Moshchuk, Tadayoshi Kohno, and Helen J. Wang. 2013. Lightweight server sup-
port for browser-based CSRF protection. In Proceedings of the 22nd International World Wide Web
Conference (WWW’13). 273–284.

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

http://tools.ietf.org/html/rfc6265
http://tools.ietf.org/html/rfc6454

13:32 S. Calzavara et al.

Italo Dacosta, Saurabh Chakradeo, Mustaque Ahamad, and Patrick Traynor. 2012. One-time cookies: Pre-
venting session hijacking attacks with stateless authentication tokens. ACM Trans. Internet Technol.
12, 1 (2012), 1–24.

Dominique Devriese and Frank Piessens. 2010. Noninterference through secure multi-execution. In Proceed-
ings of the 31st IEEE Symposium on Security and Privacy (S&P’10). 109–124.

Michael Dietz, Alexei Czeskis, Dirk Balfanz, and Dan S. Wallach. 2012. Origin-bound certificates: A fresh
approach to strong client authentication for the web. In Proceedings of the 21th USENIX Security
Symposium (USENIX’12). 317–331.

ECMA. 2011. ECMAScript Language Specification. Retrieved from http://www.ecma-international.org/ecma-
262/5.1/.

EFF. 2011. HTTPS Everywhere. Retrieved from https://www.eff.org/https-everywhere.
Sascha Fahl, Yasemin Acar, Henning Perl, and Matthew Smith. 2014. Why eve and mallory (also) love

webmasters: A study on the root causes of SSL misconfigurations. In Proceedings of the 9th ACM
Symposium on Information, Computer and Communications Security (ASIA CCS’14). 507–512.

Daniel Fett, Ralf Küsters, and Guido Schmitz. 2014. An expressive model for the web infrastructure: Defi-
nition and application to the browser ID SSO system. In Proceedings of the 35th IEEE Symposium on
Security and Privacy (S&P’14). 673–688.

Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens. 2012. FlowFox: A web browser
with flexible and precise information flow control. In Proceedings of the 19th ACM Conference on Com-
puter and Communications Security (CCS’12). 748–759.

Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. 2009. Using static analysis for ajax intrusion detec-
tion. In Proceedings of the 18th International Conference on World Wide Web (WWW’09). 561–570.

Matthew Van Gundy and Hao Chen. 2012. Noncespaces: Using randomization to defeat cross-site scripting
attacks. Comput. Secur. 31, 4 (2012), 612–628.

Per A. Hallgren, Daniel T. Mauritzson, and Andrei Sabelfeld. 2013. GlassTube: A lightweight approach
to web application integrity. In Proceedings of the 2013 ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security (PLAS’13). 71–82.

Norman Hardy. 1988. The confused deputy (or why capabilities might have been invented). Operat. Syst.
Rev. 22, 4 (1988), 36–38.

Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. 2014. JSFlow: Tracking information
flow in javascript and its APIs. In Proceedings of the 29th Symposium on Applied Computing (SAC’14).
1663–1671.

Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg Schwenk. 2012. Scriptless
attacks: Stealing the pie without touching the sill. In Proceedings of the 19th ACM Conference on
Computer and Communications Security (CCS’12). 760–771.

Jeff Hodges, Collin Jackson, and Adam Barth. 2012. HTTP Strict Transport Security (HSTS). Retrieved from
http://tools.ietf.org/html/rfc6797.

Bob Ippolito. 2015. JSONP. Retrieved from http://json-p.org/.
Collin Jackson and Adam Barth. 2008. ForceHTTPS: Protecting high-security web sites from network attacks.

In Proceedings of the 17th International Conference on World Wide Web (WWW’08). 525–534.
Karthick Jayaraman, Wenliang Du, Balamurugan Rajagopalan, and Steve J. Chapin. 2010. ESCUDO: A

fine-grained protection model for web browsers. In Proceedings of the 2010 International Conference on
Distributed Computing Systems (ICDCS’10). 231–240.

Trevor Jim, Nikhil Swamy, and Michael Hicks. 2007. Defeating script injection attacks with browser-enforced
embedded policies. In Proceedings of the 16th International Conference on World Wide Web (WWW’07).
601–610.

Martin Johns, Bastian Braun, Michael Schrank, and Joachim Posegga. 2011. Reliable protection against
session fixation attacks. In Proceedings of the 26th ACM Symposium on Applied Computing (SAC 2’11).
1531–1537.

Martin Johns, Sebastian Lekies, Bastian Braun, and Benjamin Flesch. 2012. BetterAuth: Web authentication
revisited. In Proceedings of the 28th Annual Computer Security Applications Conference (ACSAC’12).
169–178.

Martin Johns, Ben Stock, and Sebastian Lekies. 2014. A tale of the weaknesses of current client-side XSS
filtering. In Blackhat USA 2014.

Martin Johns and Justus Winter. 2006. RequestRodeo: Client side protection against session riding. In
Proceedings of the OWASP Europe 2006 Conference. 5–17.

Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. 2006. Preventing cross site request forgery attacks.
In Proceedings of the 2nd International Conference on Security and Privacy in Communication Networks
(SecureComm’06). 1–10.

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

http://www.ecma-international.org/ecma-262/5.1/
http://www.ecma-international.org/ecma-262/5.1/
https://www.eff.org/https-everywhere
http://tools.ietf.org/html/rfc6797
http://json-p.org/

Surviving the Web: A Journey into Web Session Security 13:33

Wilayat Khan, Stefano Calzavara, Michele Bugliesi, Willem De Groef, and Frank Piessens. 2014. Client side
web session integrity as a non-interference property. In Proceedings of the 10th International Conference
on Information Systems Security (ICISS’14). 89–108.

Engin Kirda, Christopher Krügel, Giovanni Vigna, and Nenad Jovanovic. 2006. Noxes: A client-side solution
for mitigating cross-site scripting attacks. In Proceedings of the 2006 ACM Symposium on Applied
Computing (SAC’06). 330–337.

Mike Ter Louw, Phu H. Phung, Rohini Krishnamurti, and Venkat N. Venkatakrishnan. 2013. SafeScript:
Javascript transformation for policy enforcement. In Proceedings of the 18th Nordic Conference on Secure
IT Systems (NordSec’13). 67–83.

Mike Ter Louw and V. N. Venkatakrishnan. 2009. Blueprint: Robust prevention of cross-site scripting attacks
for existing browsers. In Proceedings of the 30th IEEE Symposium on Security and Privacy (S&P’09).
331–346.

Ziqing Mao, Ninghui Li, and Ian Molloy. 2009. Defeating cross-site request forgery attacks with browser-
enforced authenticity protection. In Proceedings of the 13th International Conference on Financial Cryp-
tography and Data Security (FC’09). 238–255.

Giorgio Maone. 2004. The NoScript Firefox Extension. Retrieved from http://noscript.net/.
Moxie Marlinspike. 2009. New tricks for defeating SSL in practice. In BlackHat DC 2009.
Leo A. Meyerovich and V. Benjamin Livshits. 2010. ConScript: Specifying and enforcing fine-grained security

policies for javascript in the browser. In Proceedings of the 31st IEEE Symposium on Security and Privacy
(S&P’10). 481–496.

Mozilla. 2015. Same-Origin Policy. Retrieved from http://developer.mozilla.org/en-US/docs/Web/Security/
Same-origin_policy.

Yacin Nadji, Prateek Saxena, and Dawn Song. 2009. Document structure integrity: A robust basis for
cross-site scripting defense. In Proceedings of the Network and Distributed System Security Symposium
(NDSS’09).

Eduardo Vela Nava and David Lindsay. 2009. Our favorite XSS filters and how to attack them. In Blackhat
USA 2009.

Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. 2012. You are what you include: Large-scale evaluation
of remote javascript inclusions. In Proceedings of the 19th ACM Conference on Computer and Commu-
nications Security (CCS’12). 736–747.

Nick Nikiforakis, Wannes Meert, Yves Younan, Martin Johns, and Wouter Joosen. 2011. SessionShield:
Lightweight protection against session hijacking. In Proceedings of the 3rd International Symposium on
Engineering Secure Software and Systems (ESSoS’11). 87–100.

Nick Nikiforakis, Yves Younan, and Wouter Joosen. 2010. HProxy: Client-side detection of SSL stripping
attacks. In Proceedings of the 7th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA’10). 200–218.

Terri Oda, Glenn Wurster, Paul C. van Oorschot, and Anil Somayaji. 2008. SOMA: Mutual approval for
included content in web pages. In Proceedings of the 15th ACM Conference on Computer and Communi-
cations Security (CCS’08). 89–98.

OWASP. 2013. Top 10 Security Threats. Retrieved from https://www.owasp.org/index.php/Top_10_2013-
Top_10.

OWASP. 2014. HttpOnly. Retrieved from https://www.owasp.org/index.php/HttpOnly.
Phu H. Phung, David Sands, and Andrey Chudnov. 2009. Lightweight self-protecting javascript. In Pro-

ceedings of the 2009 ACM Symposium on Information, Computer and Communications Security (ASIA
CCS’09). 47–60.

Tadeusz Pietraszek and Chris Vanden Berghe. 2005. Defending against injection attacks through context-
sensitive string evaluation. In Proceedings of the 8th International Symposium on Recent Advances in
Intrusion Detection (RAID’05). 124–145.

Eric Rescorla. 2000. HTTP Over TLS. Retrieved from https://tools.ietf.org/html/rfc2818.
Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. 2011. The eval that men do - A large-scale

study of the use of eval in javascript applications. In Proceedings of the 25th European Conference on
Object-Oriented Programming (ECOOP 2’11). 52–78.

David Ross. 2008. IE 8 XSS Filter Architecture/Implementation. Retrieved from http://blogs.technet.com/b/
srd/archive/2008/08/19/ie-8-xss-filter-archi tecture-implementation.aspx.

Philippe De Ryck, Lieven Desmet, Thomas Heyman, Frank Piessens, and Wouter Joosen. 2010. CsFire:
Transparent client-side mitigation of malicious cross-domain requests. In Proceedings of Engineering
Secure Software and Systems, Second International Symposium (ESSoS’10). 18–34.

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

http://noscript.net/
http://developer.mozilla.org/en-US/docs/Web/Security/Same-originpolicy
http://developer.mozilla.org/en-US/docs/Web/Security/Same-originpolicy
https://www.owasp.org/index.php/Top102013-Top10
https://www.owasp.org/index.php/Top102013-Top10
https://www.owasp.org/index.php/HttpOnly
https://tools.ietf.org/html/rfc2818
http://blogs.technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-archi tecture-implementation.aspx
http://blogs.technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-archi tecture-implementation.aspx

13:34 S. Calzavara et al.

Philippe De Ryck, Lieven Desmet, Wouter Joosen, and Frank Piessens. 2011. Automatic and precise client-
side protection against CSRF attacks. In Proceedings of the 16th European Symposium on Research in
Computer Security (ESORICS’11). 100–116.

Philippe De Ryck, Nick Nikiforakis, Lieven Desmet, Frank Piessens, and Wouter Joosen. 2012. Serene: Self-
reliant client-side protection against session fixation. In Proceedings of the 2012 Distributed Applications
and Interoperable Systems - 12th IFIP WG 6.1 International Conference (DAIS’12). 59–72.

Jose Selvi. 2014. Bypassing HTTP strict transport security. In BlackHat DC 2014.
Kapil Singh, Helen J. Wang, Alexander Moshchuk, Collin Jackson, and Wenke Lee. 2012. Practical end-

to-end web content integrity. In Proceedings of the 21st World Wide Web Conference 2012 (WWW’12).
659–668.

Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo, David Herman, Brad Karp, and David
Mazières. 2014. Protecting users by confining javascript with COWL. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI’14). 131–146.

Shuo Tang, Nathan Dautenhahn, and Samuel T. King. 2011. Fortifying web-based applications automatically.
In Proceedings of the 18th ACM Conference on Computer and Communications Security (CCS’11). 615–
626.

Mary Frances Theofanos and Shari Lawrence Pfleeger. 2011. Guest editors’ introduction: Shouldn’t all
security be usable? IEEE Secur. Priv. 9, 2 (2011), 12–17.

Steven Van Acker, Philippe De Ryck, Lieven Desmet, Frank Piessens, and Wouter Joosen. 2011. WebJail:
Least-privilege integration of third-party components in web mashups. In Proceedings of the 27th Annual
Computer Security Applications Conference (ACSAC’11). 307–316.

Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher Krügel, and Giovanni Vigna.
2007. Cross site scripting prevention with dynamic data tainting and static analysis. In Proceedings of
the 14th Network and Distributed System Security Symposium (NDSS’07).

W3C. 1998. Document Object Model (DOM) Level 1 Specification. Retrieved from http://www.w3.org/TR/
REC-DOM-Level-1.

W3C. 2000. Document Object Model (DOM) Level 2 Core Specification. Retrieved from http://www.w3.org/TR/
DOM-Level-2-Core.

W3C. 2004. Document Object Model (DOM) Level 3 Core Specification. Retrieved from http://www.w3.org/TR/
DOM-Level-3-Core.

W3C. 2012. Content Security Policy. Retrieved from http://www.w3.org/TR/CSP/.
W3C. 2014a. Cascading Style Sheets. Retrieved from http://www.w3.org/Style/CSS/.
W3C. 2014b. Cross-Origin Resource Sharing. Retrieved from http://www.w3.org/TR/cors.
W3C. 2014c. HTML5: A Vocabulary and Associated APIs for HTML and XHTML. Retrieved from http://

www.w3.org/TR/html5/.
W3C. 2015a. Content Security Policy Level 2. Retrieved from https://www.w3.org/TR/CSP2/.
W3C. 2015b. Mixed Content. Retrieved from http://www.w3.org/TR/2015/CR-mixed-content-20151008/.
Joel Weinberger, Adam Barth, and Dawn Song. 2011. Towards client-side HTML security policies. In 6th

USENIX Workshop on Hot Topics in Security (HotSec’11).
Michael Weissbacher, Tobias Lauinger, and William K. Robertson. 2014. Why is CSP failing? Trends and

challenges in CSP adoption. In Proceedings of the 17th International Symposium on Research in Attacks,
Intrusions and Defenses (RAID’14). 212–233.

Wei Xu, Sandeep Bhatkar, and R. Sekar. 2006. Taint-enhanced policy enforcement: A practical approach to
defeat a wide range of attacks. In Proceedings of the 15th USENIX Security Symposium (USENIX’06).
121–136.

Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. 2007. JavaScript instrumentation for browser
security. In Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’07). 237–249.

Michal Zalewski. 2011. Postcards From the Post-XSS World. Retrieved from http://lcamtuf.
coredump.cx/postxss/.

Xiaofeng Zheng, Jian Jiang, Jinjin Liang, Hai-Xin Duan, Shuo Chen, Tao Wan, and Nicholas Weaver. 2015.
Cookies lack integrity: Real-world implications. In Proceedings of the 24th USENIX Security Symposium
(USENIX’15). 707–721.

Yuchen Zhou and David Evans. 2010. Why aren’t HTTP-only cookies more widely deployed? In Proceedings
of the Web 2.0 Security and Privacy Workshop (W2SP’10).

Received December 2015; revised December 2016; accepted January 2017

ACM Computing Surveys, Vol. 50, No. 1, Article 13, Publication date: March 2017.

http://www.w3.org/TR/REC-DOM-Level-1
http://www.w3.org/TR/REC-DOM-Level-1
http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/CSP/
http://www.w3.org/Style/CSS/
http://www.w3.org/TR/cors
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
https://www.w3.org/TR/CSP2/
http://www.w3.org/TR/2015/CR-mixed-content-20151008/
http://lcamtuf.coredump.cx/postxss/
http://lcamtuf.coredump.cx/postxss/

