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Abstract
Relational properties describe multiple runs of one or more

programs. They characterize many useful notions of secu-

rity, program refinement, and equivalence for programs with

diverse computational effects, and they have received much

attention in the recent literature. Rather than developing

separate tools for special classes of effects and relational

properties, we advocate using a general purpose proof assis-

tant as a unifying framework for the relational verification of

effectful programs. The essence of our approach is to model

effectful computations using monads and to prove relational

properties on their monadic representations, making the

most of existing support for reasoning about pure programs.

We apply this method in F
⋆
and evaluate it by encoding a

variety of relational program analyses, including information

flow control, semantic declassification, program equivalence

and refinement at higher order, correctness of program opti-

mizations and game-based cryptographic security. By rely-

ing on SMT-based automation, unary weakest preconditions,

user-defined effects, and monadic reification, we show that,

compared to unary properties, verifying relational properties

requires little additional effort from the F
⋆
programmer.

Keywords Relational Verification, Monadic Effects, Proof

Assistants, Program Verification, SMT-based Automation,

Weakest Preconditions, Information-Flow Control, Program

Equivalence and Refinement, Certified Optimizations

1 Introduction
Generalizing unary properties (which describe single runs

of programs), relational properties describe multiple runs of

one or more programs. Relational properties are useful when

reasoning about program refinement, approximation, equiv-

alence, provenance, as well as many notions of security. A

great many relational program analyses have been proposed

in the recent literature, including works by Antonopoulos

et al. (2017); Asada et al. (2016); Banerjee et al. (2016); Barthe

et al. (2012, 2013b, 2014, 2015); Beckert et al. (2015, 2017);

Benton et al. (2009); Ştefan Ciobâcă et al. (2016); Godlin and

Strichman (2010); Hedin and Sabelfeld (2012); Kundu et al.
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(2009); Küsters et al. (2015); Yang (2007); Zaks and Pnueli

(2008); Murray et al. (2013); Fehrenbach and Cheney (2016);

Bauereiß et al. (2016, 2017); and Çiçek et al. (2017). While

some systems have been designed for the efficient verifica-

tion of specialized relational properties of programs (notably

information-flow type systems, e.g., Sabelfeld and Myers

(2003a)), others support larger classes of properties. These

include tools based on product program constructions for

automatically proving relations between first-order impera-

tive programs (e.g., SymDiff (Lahiri et al. 2012) and Descartes

(Sousa and Dillig 2016)), as well as relational program logics

(Benton 2004) that support interactive verification of rela-

tional properties within proof assistants (e.g., EasyCrypt

(Barthe et al. 2012) and RHTT (Nanevski et al. 2013)).

We provide a framework in which relational logics and

other special-purpose tools can be recast on top of a general

method for relational reasoning. The method is simple: we

use monads to model and program effectful computations;

and we reveal the pure monadic representation of an effect

in support of specification and proof. Hence, we reduce the

problem of relating effectful computations to relating their

pure representations, and then apply the tools available for

reasoning about pure programs. While this method should

be usable for a variety of proof assistants, we choose to work

in F
⋆
(Swamy et al. 2016), a dependently typed programming

language and proof assistant. By relying on its support for

SMT-based automation, unary weakest preconditions, and

user-defined effects (Ahman et al. 2017), we demonstrate,

through a diverse set of examples, that our approach enables

the effective verification of relational properties with an

effort comparable to proofs of unary properties in F
⋆
and to

proofs in relational logics with SMT-based automation.

Being based on an expressive semantic foundation, our

approach can be directly used to verify relational properties

of programs. Additionally, we can still benefit from more

specialized automated proof procedures, such as syntax-

directed relational type systems, by encoding them within

our framework. Hence, our approach facilitates compar-

ing and composing special-purpose relational analyses with

more general-purpose semi-interactive proofs; and it encour-

ages prototyping and experimenting with special-purpose

analyses with a path towards their certified implementations.
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2 Grimm et al.

1.1 Relational reasoning via monadic reification: A
first example

We sketch the main elements of our method on a proof of

equivalence for the two stateful, recursive functions below,

a task not easily accomplished using specialized relational

program logics:

let rec sum_up r lo hi =
if lo,hi then (r := !r+lo; sum_up r (lo+1) hi)

let rec sum_dn r lo hi =
if lo,hi then (r := !r+hi−1; sum_dn r lo (hi−1))

Both functions sum all numbers between lo and hi into some

accumulator reference r, the former function by counting up

and the latter function by counting down.

Unary reasoning about monadic computations As a

first step, we embed these computations within a depen-

dently typed language. There are many proposals for how

to do this—one straightforward approach is to encapsulate

effectful computations within a parameterized monad (Atkey

2009). In F
⋆
, as in the original Hoare Type Theory (Nanevski

et al. 2008), these monads are indexed by a computation’s

pre- and postconditions and proofs are conducted using a

unary program logic (i.e., not relational), adapted for use with

higher-order, dependently typed programs. Beyond state, F
⋆

supports reasoning about unary properties of a wide class

of user-defined monadic effects, where the monad can be

chosen to best suit the intended style of unary proof.

Relating reified effectful terms Our goal is to conve-

niently state and prove properties that relate effectful terms,

e.g., prove sum_up and sum_dn equivalent. We do so by

revealing the monadic representation of these two computa-

tions as pure state-passing functions. However, since doing

this naïvely would preclude the efficient implementation of

primitive effects, such as state in terms of a primitive heap,

our general method relies on an explicit monadic reification
coercion for exposing the pure monadic representation of

an effectful computation in support of relational reasoning.
1

Thus, in order to relate effectful terms, one simply reasons

about their pure reifications. Turning to our example, we

prove the following lemma, stating that running sum_up
and sum_dn in the same initial states produces equivalent

final states. (A proof is given in §2.4.)

r:ref int→ lo:int→ hi:int{hi ≥ lo}→ h:heap{r ∈ h}→
reify (sum_up r lo hi) h ∼ reify (sum_dn r lo hi) h

Flexible specification and proving style with SMT-
backed automation Although seemingly simple, proving

sum_up and sum_dn equivalent is cumbersome, if at all pos-

sible, in most prior relational program logics. Prior relational

logics rely on common syntactic structure and control flow

1
While this coercion is inspired by Filinski’s 1994 reify operator, we only use
it to reveal the pure representation of an effectful computation in support

of specification and proof, whereas Filinski’s main use of reification was to

uniformly implement monads using continuations.

between multiple programs to facilitate the analysis. To rea-

son about transformations like loop reversal, rules exploiting

syntactic similarity are not very useful and instead a typical

proof in prior systems may involve several indirections, e.g.,

first proving the full functional correctness of each loop with

respect to a purely functional specification and then showing

that the two specifications are equivalent. Through monadic

reification, effectful terms are self-specifying, removing the

need to rewrite the same code in purely-functional style just

to enable specification and reasoning.

Further, whereas many prior systems are specialized to

proving binary relations, it can be convenient to structure

proofs using relations of a higher arity, a style naturally

supported by our method. For example, a key lemma in

the proof of the equivalence above is an inductive proof of

a ternary relation, which states that sum_up is related to

sum_up on a prefix combined with sum_dn on a suffix of

the interval [lo, hi).
Last but not least, using the combination of typechecking,

weakest precondition calculation, and SMT solving provided

by F
⋆
, many relational proofs go through with a degree of au-

tomation comparable to existing proofs of unary properties,

as highlighted by the examples in this paper.

1.2 Contributions and outline
We propose a methodology for relational verification (§2),

covering both broadly applicable ingredients such as repre-

senting effects using monads and exposing their representa-

tion using monadic reification, as well as our use of specific

F
⋆
features that enable proof flexibility and automation. All

these ingredients are generic, i.e., none of them is specific to

the verification of relational properties.

The rest of the paper is structured as a series of case stud-

ies illustrating our methodology at work. Through these

examples we aim to show that our methodology enables

comparing and composing various styles of relational pro-

gram verification in the same system, thus taking a step

towards unifying many prior strands of research. Also these

examples cover a wide range of applications that, when taken

together, exceed the ability of all previous tools for relational

verification of which we are aware. Our examples are divided

into three sections that can be read in any order, each being

an independent case study:

Transformations of effectful programs (§3) We

develop an extensional, semantic characterization of a state-

ful program’s read and write effects, based on the relational

approach of Benton et al. (2006). Based on these semantic

read and write effects, we derive lemmas that we use to prove

the correctness of common program transformations, such

as swapping the order of two commands and eliminating re-

dundant writes. Going further, we encode Benton’s 2004 rela-

tional Hoare logic in our system, providing a syntax-directed
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proof system for relational properties as a special-purpose

complement to directly reasoning about a program’s effects.

Cryptographic security proofs (§4) We show how to

model basic game steps of code-based cryptographic proofs

of security (Bellare and Rogaway 2006) by proving equiv-

alences between probabilistic programs. We prove perfect

secrecy of one-time pad encryption , and a crucial lemma

in the proof of semantic security of ElGamal encryption, an

elementary use of Barthe et al.’s 2009 probabilistic relational

Hoare logic.

Information-flow control (§5) We encode several styles

of static information-flow control analyses , while account-

ing for declassification. Highlighting the ability to compose

various proof styles in a single framework, we combine au-

tomated, type-based security analysis with SMT-backed, se-

mantic proofs of noninterference.

Proofs of algorithmic optimizations (§6) With a few

exceptions, prior relational program logics apply to first-

order programs and provide incomplete proof rules that

exploit syntactic similarities between the related programs.

Not being bound by syntax, we prove relations of higher

arities (e.g., 4-ary and 6-ary relations) between higher-order,

effectful programs with differing control flow by reasoning

directly about their reifications. We present two larger ex-

amples: First, we show how to memoize a recursive function

using McBride’s 2015 partiality monad and we prove it equiv-

alent to the original non-memoized version. Second, we im-

plement an imperative union-find data structure, adding the

classic union-by-rank and path compression optimizations

in several steps and proving stepwise refinement.

From these case studies, we conclude that our method for

relational reasoning about reified monadic computations is

both effective and versatile. We are encouraged to continue

research in this direction, aiming to place proofs of rela-

tional properties of effectful programs on an equal footing

with proofs of pure programs in F
⋆
as well as other proof

assistants and verification tools.

The code for the examples in this paper is available at

https://github.com/FStarLang/FStar/tree/master/examples/rel

Compared to this code, the listings in the paper are edited

for clarity and sometimes omit uninteresting details.

2 Methodology for relational verification
In this section we review in more detail the key F

⋆
features

we use and how each of them contributes to our verification

method for relational properties. Two of these features are

general and broadly applicable: (§2.1) modeling effects us-

ing monads and keeping the effect representation abstract

to support efficient implementation of primitive effects and

(§2.3) using monadic reification to expose the effect represen-

tation. The remaining features are more specific to F
⋆
and

enable proof flexibility and automation: (§2.2) using a unary

weakest precondition calculus to produce verification condi-

tions in an expressive dependently typed logic; (§2.4) using

dependent types together with pre- and postconditions to ex-

press arbitrary relational properties of reified computations;

(§2.4) embedding the dependently typed logic into SMT logic

to enable the SMT solver to reason by computation.

None of these generic ingredients is tailored to the verifi-

cation of relational properties, and while F
⋆
is currently the

only verification system to provide all these ingredients in

a unified package, each of them also appears in other sys-

tems. This makes us hopeful that this relational verification

method can also be applied with other proof assistants (e.g.,

Coq, Lean, Agda, Idris, etc.), for which the automation would

likely come in quite different styles.

2.1 Modeling effects using monads
At the core of F

⋆
is a language of dependently typed, total

functions. Function types are written x:t→ Tot t' where the
co-domain t' may depend on the argument x:t. Since it is

the default in F
⋆
, we often drop the Tot annotation (except

where needed for emphasis) and also the name of the formal

argument when it is unnecessary, e.g., we write int→ bool
for _:int→ Tot bool. We also write #x:t→ t' to indicate that

the argument x is implicitly instantiated.

Our first step is to describe effects using monads built

from total functions (Moggi 1989). For instance, here is the

standard monadic representation of state in F
⋆
syntax.

type st (mem:Type) (a:Type) = mem→ Tot (a ∗ mem)

This defines a type st parameterized by types for the mem-

ory (mem) and the result (a). We use st as the representation
type of a new STATE_m effect we add to F

⋆
, with the total

qualifier enabling the termination checker for STATE_m com-

putations.

total new_effect {
STATE_m (mem:Type) : a:Type→ Effect
with repr = st mem;

return = λ(a:Type) (x:a) (m:mem)→ x, m;

bind = λ(a b:Type) (f:st mem a) (g:a→ st mem b) (m:mem)→
let z, m' = f m in g z m';

get = λ() (m:mem)→m, m; put = λ(m:mem) _→ (), m }

This defines the return and bind of this monad, and two

actions: get for obtaining the current memory, and put for
updating it. The new effect STATE_m is still parameterized by

the type of memories, which allows us to choose a memory

model best suited to the programming and verification task

at hand. We often instantiate mem to heap (a map from ref-

erences to their values, as in ML), obtaining the STATE effect

shown below—we use other memory types in §5 and §6.

total new_effect STATE = STATE_m heap

While such monad definitions could in principle be used

to directly extend the implementation of any functional lan-

guage with the state effect, a practical language needs to

https://github.com/FStarLang/FStar/tree/master/examples/rel
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allow keeping the representation of some effects abstract

so that they are efficiently implemented primitively (Peyton

Jones 2010). F
⋆
uses its simple module system to keep the

monadic representation of the STATE effect abstract and im-

plements it under the hood using the ML heap, rather than

state passing (and similarly for other primitive ML effects

such as exceptions). Whether implemented primitively or

not, the monadic definition of each effect is always themodel
used by F

⋆
to reason about effectful code, both intrinsically

using a (non-relational) weakest precondition calculus (§2.2)

and extrinsically using monadic reification (§2.3).

For the purpose of verification, monads provide great flex-

ibility in the modeling of effects, which enables us to express

relational properties and to conduct proofs at the right level

of abstraction. For instance, in §5.3 we extend a state monad

with extra ghost state to track declassification, in §4 we de-

fine a monad for random sampling from a uniform distribu-

tion, and in §6.1 we define a partiality monad for memoizing

recursive functions. Moreover, since the difficulty of reason-

ing about effectful code is proportional to the complexity of

the effect, we do not use a single full-featured monad for all

code; instead we define custom monads for sub-effects and

relate them using monadic lifts. For instance, we define a

READER monad for computations that only read the store,

lifting READER to STATE only where necessary (§5.1 pro-

vides a detailed example). While F
⋆
code is always written

in an ML-like direct style, the F
⋆
typechecker automatically

inserts binds, returns and lifts under the hood (Swamy et al.

2011).

2.2 Unary weakest preconditions for user-defined
effects and intrinsic proof

For each user-defined effect, F
⋆
derives a weakest precondi-

tion calculus for specifying unary properties and computing

verification conditions for programs using that effect (Ah-

man et al. 2017). Each effect definition induces a computation

type indexed by a predicate transformer describing that com-

putation’s effectful semantics.

For state, we obtain a computation type ‘STATE a wp’ in-
dexed by a result type a and by wp, a predicate transformer

of type (a→ heap→ Type)→ heap→ Type, mapping post-

conditions (relating the result and final state of the compu-

tation) to preconditions (predicates on the initial state). For

example, the types of the get and put actions of STATE are

specified as:

val get : unit→ STATE heap (λ post (h:heap)→ post h h)
val put : h':heap→ STATE unit (λ post (h:heap)→ post () h')

The type of get states that, in order to prove any postcondi-

tion post of ‘get ()’ evaluated in state h, it suffices to prove

post h h, whereas for put h' it suffices to prove post () h'. F⋆

users find it more convenient to index computations with

pre- and postconditions as in HTT (Nanevski et al. 2008), or

sometimes not at all, using the following abbreviations:

ST a (requires p) (ensures q) = STATE a (λ post h0→
p h0 ∧ (∀ (x:a) (h1:heap). q h0 x h1 =⇒ post x h1))

St a = ST a (requires (λ _→⊤)) (ensures (λ _ _ _→⊤))

F
⋆
computes weakest preconditions generically for any

effect. Intuitively, this works by putting the code into an ex-

plicit monadic form and then translating the binds, returns,

actions, and lifts from the expression level to the weakest pre-

condition level. This enables a convenient form of intrinsic
proof in F

⋆
, i.e., one annotates a term with a type capturing

properties of interest; F
⋆
computes a weakest precondition

for the term and compares it to the annotated type using a

built-in subsumption rule, checked by an SMT solver.

For example, in the code below, F
⋆
checks that the inferred

computation type is sufficient to prove that a noop function

leaves the memory unchanged.

For a more interesting example,the sum_up function from

§1.1 can be given the following type:

r:ref int→ lo:nat→ hi:nat{hi ≥ lo}→
ST unit (requires λh→ r ∈ h) (ensures λ_ _ h→ r ∈ h)

This is a dependent function type, for a functionwith three

arguments r, lo, and hi returning a terminating, stateful com-

putation. The refinement type hi:nat{hi ≥ lo} restricts hi to
only those natural numbers greater than or equal to lo. The
computation type of ‘sum_up r lo hi’ simply requires and en-

sures that its reference argument r is present in the memory.

F
⋆
computes a weakest precondition from the implementa-

tion of sum_up (using the types of (!) and (:=) provided by

the heap memory model used by STATE) and proves that

its inferred specification is subsumed by the user-provided

annotation. The same type can also be given to sum_dn.

2.3 Exposing effect definitions via monadic
reification

Intrinsic proofs of effectful programs in F
⋆
are inherently

restricted to unary properties. Notably, pre- and postcondi-

tions are required to be pure terms, making it impossible for

specifications to refer directly to effectful code, e.g., sum_up
cannot directly use itself or sum_dn in its specification. To

overcome this restriction, we need a way to coerce a ter-

minating effectful computation to its underlying monadic

representation which is a pure term—Filinski’s 1994 monadic

reification provides just that facility.
2

Each new effect in F
⋆
induces a reify operator that exposes

the representation of an effectful computation in terms of its

underlying monadic representation (Ahman et al. 2017). For

the STATE effect, F
⋆
provides the following (derived) rule for

reify, to coerce a stateful computation to a total, explicitly

state-passing function of type heap→ t ∗ heap. The argu-

ment and result types of reify e are refined to capture the

2
Less frequently, we use reify’s dual, reflect, which packages a pure

function as an effectful computation.
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pre- and postconditions intrinsically proved for e .

S ; Γ ⊢ e : ST t (requires pre) (ensures post)

S ; Γ ⊢ reify e : h:heap{pre h}→ Tot (r:(t∗heap){post h (fst r) (snd r)})

The semantics of reify is to traverse the term and to grad-

ually expose the underlying monadic representation. We

illustrate this below for STATE, where the constructs on the

right-hand side of the rules are the pure implementations

of return, bind, put, and get as defined on page 3, but with

type arguments left implicit:

reify (return e) { STATE.return e
reify (bind x← e1 in e2) { STATE.bind (reify e1)(λx→ reify e2)

reify (get e) { STATE.get e
reify (put e) { STATE.put e

Armed with reify, we can write an extrinsic proof of a
lemma relating sum_up and sum_dn (discussed in detail

in §2.4), i.e., an “after the fact” proof that is separate from

the definition of sum_up and sum_dn and that relates their

reified executions. We further remark that in F
⋆
the standard

operational semantics of effectful computations is modeled

in terms of reification, so proving a property about a reified

computation is really the same as proving the property about

the evaluation of the computation itself.

The reify operator clearly breaks the abstraction of the

underlying monad and needs to be used with care. Ahman

et al. (2017) show that programs that do not use reify (or

its converse, reflect) can be compiled efficiently. Specifically,

if the computationally relevant part of a program is free of

reify then the STATE computations can be compiled using

primitive state with destructive updates.

To retain these benefits of abstraction, we rely on F
⋆
’s

module system to control how the abstraction-breaking reify
coercion can be used in client code. In particular, when ab-

straction violations cannot be tolerated, we use F
⋆
’s Ghost

effect (explained in §2.4) to mark reify as being usable only in
computationally irrelevant code, limiting the use of monadic

reification to specifications and proofs. This allows one to

use reification even though effects like state and exceptions

are implemented primitively in F
⋆
.

2.4 Extrinsic specification and proof, eased by
SMT-based automation

We now look at the proof relating sum_up and sum_dn in

detail, explaining along the way several F
⋆
-specific idioms

that we find essential to making our method work well.

Computational irrelevance (Ghost effect) The Ghost
effect is used to track a form of computational irrelevance.

Ghost t (requires pre) (ensures post) is the type of a pure

computation returning a value of type t satisfying post, pro-
vided pre is valid. However, this computation must be erased

before running the program, so it can only be used in speci-

fications and proofs.

Adding proof irrelevance (Lemma) F
⋆
provides two

closely related forms of proof irrelevance. First, a pure term

e:t can be given the refinement type x:t{ϕ} when it validates

the formula ϕ[e/x], although no proof of ϕ is materialized.

For example, borrowing the terminology of Nogin (2002), the

value () is a squashed proof of u:unit{0 ≤ 1}. Combining proof

and computation irrelevance, e : Ghost unit pre (λ()→ post)
is a squashed proof of pre→ post. This latter form is so com-

mon that we write it as Lemma (requires pre) (ensures post),
further abbreviated as Lemma post when pre is ⊤.
Proof relating sum_up and sum_dn Spelling out the

main lemma of §1.1, our goal is a value of the following type:

val eq_sum_up_dn (r:ref int)(lo:int)(hi:int{hi ≥ lo})(h:heap{r ∈ h})
: Lemma
(v r (reify (sum_up r lo hi) h) == v r (reify (sum_dn r lo hi) h))

where v r (_, h) = h.[r] and h.[r] selects the contents of the
reference r from the heap h.
An attempt to give a trivial definition for eqsum_up_dn

that simply returns a unit value () fails, because the SMT

solver cannot automatically prove the strong postcondition

above. Instead our proof involves calling an auxiliary lemma

sum_up_dn_aux, proving a ternary relation:

val sum_up_dn_aux (r:ref int) (lo:int) (mid:int{mid ≥ lo})
(hi:int{hi ≥ mid}) (h:heap{r ∈ h})

: Lemma (v r (reify (sum_up r lo hi) h)
== v r (reify (sum_dn r lo mid) h)
+ v r (reify (sum_up r mid hi) h) − h.[r])

(decreases (mid − lo))
let eq_sum_up_dn r lo hi h = sum_up_dn_aux r lo hi hi h

While the statement of eq_sum_up_dn is different from the

statement of sum_up_dn_aux, the SMT-based automation

fills in the gaps and accepts the proof sketch. In particular,

the SMT solver figures out that sum_up r hi hi is a no-op by

looking at its reified definition. In other cases, the user has

to provide more interesting proof sketches that include not

only calls to lemmas that the SMT solver cannot automati-

cally apply but also the cases of the proof and the recursive

structure. This is illustrated by the proofof sum_up_dn_aux:

let rec sum_up_dn_aux r lo mid hi h =

if lo , mid then (sum_up_dn_aux r lo (mid − 1) hi h;
sum_up_commute r mid hi (mid − 1) h;
sum_dn_commute r lo (mid − 1) (mid − 1) h)

This proof is by induction on the difference betweenmid and
lo (as illustrated by the decreases clause of the lemma, this

is needed because we are working with potentially-negative

integers). If this difference is zero, then the property is trivial

since the SMT solver can figure out that sum_dn r lo lo is a

no-op. Otherwise, we call sum_up_dn_aux recursively for

mid − 1 as well as two further commutation lemmas (not

shown) about sum_up and sum_dn and the SMT automation

can take care of the rest.
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Encoding computations to SMT So how did F
⋆
figure

out automatically that sum_up r hi hi and sum_dn r lo lo are
no-ops? For a start the F

⋆
normalizer applied the semantics of

reify sketched in §2.3 to partially evaluate the term and reveal

the monadic representation of the STATE effect by traversing

the term and unfolding the monadic definitions of return,

bind, actions and lifts. In the case of reify (sum_up r hi hi) h,
for instance, reduction intuitively proceeds as follows:

reify (sum_up r hi hi) h
{ reify (if hi , hi then (r := !r + lo; sum_up r (lo + 1) hi)) h
{∗ if hi , hi then (STATE.bind (reify (Ref.read r) h) (λ x→

STATE.bind (reify (Ref.upd r (x + lo)))
(λ _→ reified_sum_up r (hi + 1) hi))) h

else STATE.return () h
{∗ if hi , hi then let x, h' = reify (Ref.read r) h in

let _, h'' = reify (Ref.upd r (x + lo)) h' in
reified_sum_up r (hi + 1) hi h''

else ((), h)

What is left is pure monadic code that F
⋆
then encodes to

the SMT solver in a way that allows it to reason by compu-

tation (Aguirre et al. 2016). For reify (sum_up r hi hi) h the

SMT solver can trivially show that hi , hi is false and thus

the computation returns the pair ((), h).
While our work did not require any extension to F

⋆
’s

theory (Ahman et al. 2017), we significantly improved F
⋆
’s

logical encoding to perform normalization of open terms

based on the semantics of reify (a kind of symbolic execution)

before calling the SMT solver. This allowed us to scale and

validate the theory of Ahman et al. (2017) from a single 2-

line example to the ≈4,300 lines of relationally verified code

presented in this paper.

2.5 Empirical evaluation of our methodology
For this first example, we reasoned directly about the se-

mantics of two effectful terms to prove their equivalence.

However, we often prefer more structured reasoning princi-

ples to prove or enforce relational properties, e.g., by using

program logics, syntax-directed type systems, or even dy-

namic analyses. In the rest of this paper, we show through

several case studies, that these approaches can be accommo-

dated, and even composed, within our framework.

Table 1 summarizes the empirical evaluation from these

case studies. Each row describes a specific case study, its size

in lines of source code, and the verification time using F
⋆
and

the Z3-4.5.1 SMT solver. The verification timeswere collected

on an Intel Xeon E5-2620 at 2.10 GHz and 32GB of RAM. The

“1st run” column indicates the time it takes F
⋆
and Z3 to find a

proof. This proof is then used to generate hints (unsat cores)

that can be used as a starting point to verify subsequent

versions of the program. The “replay” column indicates the

time it takes to verify the program given the hints recorded

in the first run. Proof replay is usually significantly faster,

indicating that although finding a proof may initially be quite

Subject Section 1st run (ms) Replay (ms) Loc

Loops 1.1 218192 8943 127

Reorderings 3.1 9239 4749 158

Benton (2004) 3.3 832706 22920 1352

Cryptography 4 17307 10015 530

Static IFC 5.1 68525 15909 730

Hybrid IFC 5.2 55472 1038 34

Declassification 5.3 63763 9811 208

IFC Monitor 5.4 44589 11480 502

Memoization 6.1 12198 12294 427

Union-find 6.2 89838 33455 295

Total 1411829 130614 4363

Table 1. Code size (lines of code without comments) and

proof-checking time (ms) for our examples.

expensive, revising a proof with hints is fast, which greatly

aids interactive proof development.

3 Correctness of program transformations
Several researchers have devised custom program logics for

verifying transformations of imperative programs (Barthe

et al. 2009; Benton 2004; Carbin et al. 2012). We show how

to derive similar rules justifying the correctness of generic

program transformations within our monadic framework.

We focus on stateful programs with a fixed-domain, finite

memory. We leave proving transformations of commands

that dynamically allocate memory to future work.

3.1 Generic transformations based on read- and
write-footprints

Here and in the next subsection, we represent a command c
as a function of type unit→ St unit that may read or write

arbitrary references in memory.

type command = unit→ St unit

In trying to validate transformations of commands, it is tra-

ditional to employ an effect system to delimit the parts of

memory that a command may read or write. Most effect

systems are unary, syntactic analyses. For example, consider

the classic frame rule from separation logic:

{P}c{Q} ⇒ {P ∗ R}c{Q ∗ R}
The command c requires ownership of a subset of the heap

P in order to execute, then returns ownership of Q to its

caller. Any distinct heap fragment R remains unaffected by

the function. Reading this rule as an effect analysis, one

may conclude that c may read or write the P-fragment of

memory—however, this is just an approximation of c’s ex-
tensional behavior. Benton et al. (2006) observe that a more

precise, semantic characterization of effects arises from a

relational perspective. Adopting this perspective, one can

define the footprint of a command extensionally, using two

unary properties and one binary property.

Capturing a command’s write effect is easy with a unary

property, ‘writes c ws’ stating that the initial and final heaps
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agree on the contents of their references, except for those in

the setws.

type addrs = S.set addr
let writes (c:command) (ws:addrs) = ∀(h:heap).
let h' = snd (reify (c ()) h) in
(∀ r. r ∈ h⇐⇒ r ∈ h') ∧ (∗ no allocation ∗)
(∀ r. addr_of r < ws =⇒ h.[r] == h'.[r]) (∗ no changes except ws∗)

Stating that a command only reads references rs is similar

in spirit to the statement of noninterference (to which we re-

turn in §5.1). Interestingly, it is impossible to describe the set

of locations that a command may read without also speaking

about the locations it may write. The relation ‘reads c rs ws’
states that if c writes at most the references in ws, then exe-

cuting c in heaps that agree on the references in rs produces
heaps that agree on ws, i.e., c does not depend on references

outside rs.

let equiv_on (rs:addr_set) (h0:heap) (h1:heap) =
∀a (r:ref a). addr_of r ∈ rs ∧ r ∈ h0 ∧ r ∈ h1 =⇒ h0.[r] == h1.[r]
let reads (c:command) (rs ws:addrs) = ∀(h0 h1: heap).
let h'0, h'1 = snd (reify (c ()) h0), snd (reify (c ()) h1) in
(equiv_on rs h0 h1 ∧ writes c ws) =⇒ equiv_on ws h'0 h'1

Putting the pieces together, we define a read- and write-

footprint-indexed type for commands:

type cmd (rs ws:addrs) = c:command{writes c ws ∧ reads c rs ws}

One can also define combinators to manipulate footprint-

indexed commands. For example, here is a ‘>>’ combinator

for sequential composition. Its type proves that read and

write-footprints compose by a pointwise union, a higher-

order relational property; the proof requires an (omitted)

auxiliary lemma seq_lem (recall that variables preceded by

a # are implicit arguments):

let seq (#r1 #w1 #r2 #w2 : addrs) (c1:cmd r1 w1) (c2:cmd r2 w2) :
command = c1(); c2()

let (>>) #r1 #w1 #r2 #w2 (c1:cmd r1 w1) (c2:cmd r2 w2) :
cmd (r1 ∪ r2) (w1 ∪ w2) = seq_lem c1 c2; seq c1 c2

3.2 Several transformations on commands
Making use of relational footprints, we can prove other rela-

tions between commands, e.g., equivalences that justify pro-

gram transformations. Command equivalence c0 ∼ c1 states
that running c0 and c1 in identical initial heaps produces

(extensionally) equal final heaps.

let (∼) (c0:command) (c1:command) = ∀h.
let h0, h1 = snd (reify (c0 ()) h), snd (reify (c1 ()) h) in
∀(r:ref α ). (r ∈ h0⇐⇒ r ∈ h1) ∧ (r ∈ h0 =⇒ h0.[r] == h1.[r])

Our first equivalence, listed below, shows that if a com-

mand’s read and write footprints are disjoint, then it is idem-

potent. The proofs of idem and the other lemmas below are

perhaps peculiar to SMT-based proofs. In all cases, the proofs

involve simply mentioning the terms reify (c ()) h, which suf-
fice to direct the SMT solver’s quantifier instantiation engine

towards finding a proof. While more explicit proofs are cer-

tainly possible, with experience, concise SMT-based proofs

can be easier to write.

let idem #rs #ws (c:cmd rs ws):
Lemma (requires (disjoint rs ws)) (ensures ((c >> c) ∼ c))
= ∀_intro (λ h→ let (), h1 = reify (c ()) h in

let _ = reify (c ()) h1 in ()

<: Lemma (equiv_on_h (c >> c) c h))

Our next equivalence shows that two commands can be

swapped if theywrite to disjoint sets, and if the read footprint

of one does not overlap with the write footprint of the other—

this lemma is identical to a rule for swapping commands in

a logic presented by Barthe et al. (2009).

let swap #rs1 #rs2 #ws1 #ws2 (c1:cmd rs1 ws1) (c2:cmd rs2 ws2)
:Lemma (requires (disjoint ws1 ws2 ∧ disjoint rs1 ws2 ∧

disjoint rs2 ws1))
(ensures ((c1 >> c2) ∼ (c2 >> c1)))

= ∀_intro (λ h→ let _ = reify (c1 ()) h, reify (c2 ()) h in
() <: Lemma (equiv_on_h (c1 >> c2) (c2 >> c1) h))

Next, we show elimination of redundant writes by proving

that c1 >> c2 is equivalent to c2 if c1’s write footprint is (a)
a subset of c2’s write footprint, and (b) disjoint from c2’s
readfootprint.

let redundant_writes #rs1 #rs2 #ws1 #ws2
(c1:cmd rs1 ws1) (c2:cmd rs2 ws2)
: Lemma (requires (disjoint ws1 rs2 ∧ ws1 ⊆ ws2))

(ensures ((c1 >> c2) ∼ c2))
= ∀_intro (λ h→ let _ = reify (c1 ()) h, reify (c2 ()) h in

() <: Lemma (equiv_on_h (c1 >> c2) c2 h))

3.3 Relational Hoare Logic
Beyond generic footprint-based transformations, one may

also prove program-specific equivalences. Several logics have

been devised for this, including, e.g., Benton’s 2004 Relational

Hoare logic (RHL). We show how to derive RHL within our

framework by proving the soundness of each of its rules as

lemmas about a program’s reification.

Model To support potentially diverging computations, we

instrument shallowly-embedded effectful computations with

a fuel argument, where the value of the fuel is irrelevant for

the behavior of a terminating computation.

type comp = f: (fuel:nat→ St bool)
{ ∀h fuel fuel' . fst (reify (f fuel) h) == true ∧ fuel' > fuel
=⇒ reify (f fuel') h == reify (f fuel) h }

let terminates_on c h = ∃fuel . fst (reify (c fuel) h) == true

We model effectful expressions whose evaluation always

terminates and does not change the memory state, and as-

signments, conditionals, sequences of computations, and

potentially diverging while loops.
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Deriving RHL An RHL judgement ‘related c1 c2 pre post’
(where c1, c2 are effectful computations, and pre, post are
relations over memory states) means that the executions

of c1, c2 starting (respectively)in memories h1, h2 related by

pre, both diverge or both terminate with memories h1', h2'
related by post.

let related (c1 c2 : comp) (pre post: (heap→ heap→ prop)) =
(∗ if precondition holds on initial memory states, then ∗)
∀h1 h2 . pre h1 h2 =⇒
(∗ c1 and c2 both terminate or both diverge, and ∗)
((c1 `terminates_on` h1⇐⇒ c2 `terminates_on` h2) ∧
(∀ fuel h1' h2' . (reify (c1 fuel) h1 == (true, h1') ∧
reify (c2 fuel) h2 == (true, h2')) =⇒ (∗ if both terminate, ∗)
post h1' h2')) (∗ postcondition holds on final memory states ∗)

From these reification-based definitions, we prove every

rule of RHL. Of the 20 rules and equations of RHL presented

by Benton (2004), 16 need at most 5 lines of proof annotation

each, among which 10 need none and are proven automati-

cally. Rules related to while loops often require some manual

induction on the fuel. Thus, modeling computations, pro-

gram logic rules, and their soundness proofs amount about

1500 lines of F* code overall.

(∗ Example of fully automatic soundness proof: dead while ∗)
let r_dwhll (b: exp bool) (c: computation)
(Φ: (heap→ heap→ prop)) : Lemma
(ensures (related (while b c) skip (Φ ∧ ¬b

left
) (Φ ∧ ¬b

left
))) = ()

With RHL in hand, we can prove program equivalences ap-

plying syntax-directed rules, focusing the intellectual effort

on finding and proving inductive invariants to relate loop

bodies. When RHL is not powerful enough, we can escape

back to the reification of commands to complete a direct

proof in terms of the operational semantics.

Example Following Benton (2004), we prove an example

hoisting an assignment out of a loop:

⊢

while (I < N )
X := Y + 1;
I := I + X

L

⇝

X := Y + 1;
while (I < N )

I := I + X

R

:

Ileft = Iright∧
Nleft = Nright∧
Yleft = Yright

Φ

⇛
Ileft = Iright∧
Nleft = Nright∧
Yleft = Yright

In other words, the judgement above preserves the invariant

Φ stating that the two programs L and R compute the same

values for I ,N ,Y , with X being neglected (which is already

useful enough ifX is known to be dead in the code following

the while loops).

let proof () : Lemma (ensures (related L R Φ Φ)) =

(∗ intermediate invariants for the loop bodies ∗)
let Φ1 = Φ ∧ (X

right
= Y

right
+ 1) in

let Φ2 = Φ1 ∧ (Xleft
= X

right
) in

assert (related skip (assign X (Y + 1)) Φ Φ1); (∗ dead assign ∗)
assert (related (assign X (Y + 1)) skip Φ1 Φ2); (∗ dead assign ∗)
assert (related (assign I (I + X )) (assign I (I + X )) Φ2 Φ2); (∗ assign ∗)
assert (related (seq (assign X (Y + 1)) (assign I (I + X )))

(assign i (I + X )) Φ1 Φ2); (∗ seq, elim. skip ∗)
r_while (I < N ) (I < N ) (seq (assign X (Y + 1)) (assign I (I + X )))

(assign I (I + X )) Φ1;

(∗ seq, elim. skip ∗)
assert (related L (while (I < N ) (assign I (Y + 1))) Φ1 Φ)

r_while B B′ C C ′ Φ :

⊢ C ⇝ C ′ : Φ ∧ Bleft ∧ B′right ⇛ Φ ∧ (Bleft = B′
right
)

⊢ while B do C ⇝ while B′ do C ′ : Φ ∧ (Bleft = B′
right
)⇛

Φ ∧ ¬(Bleft ∨ B′right)

The proof shows that applications of RHL rules (including

dead assignment rules) are actually syntax-directed, so that

the only nontrivial effort needed is to provide the intermedi-

ate verification condition relating the bodies of the loops.

In more detail, for a given proposition ϕ, assert ϕ tries to

prove ϕ and, if successful, adds ϕ to the proof context as a

fact that can be automatically reused by the later parts of

the proof. To prove ϕ, proof search relies not only on the

current proof context, but also on those lemmas in the global

context that are associated with triggering patterns: if the
shape of ϕ matches the triggering pattern of some lemma f
in the global context, then f is applied (triggered) and the

proof search recursively goes on with the preconditions of

f . This proof search is actually performed by the Z3 SMT

solver through e-matching (Moura and Bjørner 2007).

In our example proof, assert (related skip (assign X (Y + 1)) Φ Φ1)

tries to prove that an assignment can be erased; based on

the syntax of both commands of the relation, e-matching

successfully selects the corresponding dead assignment rule

of RHL. In fact, this assert also allows specifying the inter-
mediate condition Φ1 that is to be used to verify the rest of

the bodies of L and R, which cannot always be guessed by

proof search. Alternatively, the user can also explicitly apply

an RHL rule by directly calling the corresponding lemma,

which is illustrated by the call to r_while to prove that the

two while loops are related. In that case, the postcondition of

the lemma is added to the proof context for the remainder of

the proof. This way, the user can avoid explicitly spelling out

the fact proven by the lemma; moreover, since the lemma to

apply is explicitly given, the SMT solver only has to prove

the preconditions of the lemma, if any.

This example is 33 lines of F* code and takes 25 seconds to

check. This time could be improved substantially. However,

perhaps more interesting, this experiment suggests devel-

oping tactics to automatically use Benton’s RHL whenever

possible, while still keeping the possibility to escape back to

semantic approaches wherever RHL is not powerful enough.

We leave this as future work.
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4 Cryptographic security proofs
We show how to construct a simple model for reasoning

about probabilistic programs that sample values from dis-

crete distributions. In this model, we prove the soundness of

rules of probabilistic Relational Hoare Logic (pRHL) (Barthe

et al. 2009) allowing one to derive (in-)equalities on prob-

ability quantities from pRHL judgments. We illustrate our

approach by formalizing two simple cryptographic proofs:

the perfect secrecy of one-time pad encryption and a crucial

lemma used by Barthe et al. (2009) in the proof of semantic

security of ElGamal encryption .

The simplicity of our examples pales in comparison with

complex proofs formalized in specialized tools based on

pRHL like EasyCrypt (Barthe et al. 2012) or FCF (Petcher and

Morrisett 2015), yet our examples hint at a way to prototype

and explore proofs in pRHL with a low entry cost.

4.1 A monad for random sampling
We begin by defining a monad for sampling from the uniform

distribution over bitvectors of a fixed length q. We implement

the monad as the composition of the state and exception

monads where the state is a finite tape of bitvector values

together with a pointer to a position in the tape. The RAND
effect provides a single action, sample, which reads from

the tape the value at the current position and advances the

pointer to the next position, or raises an exception if the

pointer is past the end of the tape.

type value = bv q
type tape = seq value
type id = i:N{i < size}
type store = id ∗ tape
type rand a = store→M (option a ∗ id)
total new_effect {
RAND: a:Type→ Effect
with repr = rand a;

bind = λ(a b:Type) (c:rand a) (f:a→ rand b) s→
let r, next = c s in
match r with
| None→None, next
| Some x→ f x (next, snd s);

return = λ(a:Type) (x:a) (next,_)→ (Some x, next);
sample = λ() s→ let next, t = s in

if next + 1 < size then (Some (t n), n + 1)

else (None, n) }
effect Rand a = RAND a (λ initial_tape post→∀x. post x)
Assuming a uniform distribution over initial tapes, we

define the unnormalized measure of a function p:a→N
with respect to the denotation of a reified computation in

f :Rand a as let mass f p = sum (λt→ let r,_ = f (0, t) in p r)
where sum: (tape→N)→N is the summation operator over

finite tapes. When p only takes values in {0, 1}, it can be re-

garded as an event whose probability with respect to the

distribution generated by f is

Pr[f : p] = 1

|tape| ×
∑

t ∈ tape

p (fst (f t)) = mass f p
|tape|

Weuse the shorthand Pr[f = v] = |tape|−1×mass f (pointv)
for the probability of a successful computation returning a

valuev , where let point x = λy→ if y = Some x then 1 else 0.

4.2 Perfect secrecy of one-time pad encryption
The following effectful program uses a one-time key k sam-

pled uniformly at random to encrypt a bitvectorm:

let otp (m:value) : Rand value = let k = sample () in m ⊕ k

We show that this construction, known as one-time pad, pro-
vides perfect secrecy. That is, a ciphertext does not give away
any information about the encrypted plaintext, provided

the encryption key is used just once. Or equivalently, the

distribution of the one-time pad encryption of a message is

independent of the message itself, ∀m0, m1, c . Pr[otpm0 =

c] = Pr[otpm1 = c]. We prove this by applying two rules of

pRHL, namely [R-Rand] and [PrLe]. The former allows us to

relate the results of two probabilistic programs by showing

a bijection over initial random tapes that would make the

relation hold (intuitively, permuting equally probable initial

tapes does not change the resulting distribution over final

tapes). The latter allows us to infer a probability inequality

from a proven relation between probabilistic programs. To-

gether, the two rules allow us to prove the following lemma:

val mass_leq: #a:Type→ #b:Type→
c1:(store→M (a ∗ id))→ c2:(store→M (b ∗ id))→
p1:(a→ nat)→ p2:(b→ nat)→ bij:bijection→ Lemma
(requires (∀ t. let r1,_ = c1 (to_id 0,t) in

let r2,_ = c2 (to_id 0,bij.f t) in p1 r1 ≤ p2 r2))
(ensures (mass c1 p1 ≤ mass c2 p2))

The proof is elementary from rearranging terms in summa-

tions according to the given bijection. The following secrecy

proof of one-time pad is immediate from this lemma using as

bijection on initial tapes the function λt→ upd t 0 (t 0 ⊕ m0 ⊕ m1):

val otp_secure: m0:value→m1:value→ c:value→ Lemma
(let f0, f1 = reify (otp m0), reify (otp m1) in
mass f0 (point c) == mass f1 (point c))

4.3 A step in the proof of semantic security of
ElGamal encryption

Another example following a similar principle is a proba-

bilistic equivalence used in the proof of semantic security of

ElGamal encryption by Barthe et al.’s 2009. This equivalence,

named mult_pad in that paper, proves the independence of

the adversary’s view from the hidden bit b that the adver-

sary has to guess in the semantic security indistinguishability

game, and thus shows that the adversary cannot do better

than a random guess.
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ElGamal encryption is parametric on a cyclic group of

order q, and a generator д. Roughly stated, the equivalence

says that if one applies the group operation to a uniformly

distributed element of the group and some other element, the

result is uniformly distributed, that is z $← Zq ; ζ ← дz ×mb
and z $← Zq ; ζ ← дz induce the same distribution on ζ
(which is thus independent of b). To prove this, we modify

theRAND effect to use random tapes of elements ofZq rather
than bitvectors, an define

let elgamal0 (m:group) : Rand group = let z = sample () in g^z
let elgamal1 (m:group) : Rand group = let z = sample () in (g^z) ∗ m

and prove, again using mass_leq, the following lemma

val elgamal_equiv: m:group→ c:group→ Lemma
(let f1, f2 = reify (elgamal0 m), reify (elgamal1 m) in
mass f1 (point c) == mass f2 (point c))

5 Information-flow control
In this section, we present a case study examining various

styles of information-flow control (IFC), a security paradigm

based on noninterference (Goguen and Meseguer 1982), a

property that compares two runs of a program differing

only in the program’s secret inputs and requires the non-

secret outputs to be equal. Many special-purpose systems,

including syntax-directed type systems, have been devised

to enforce noninterference-like security properties (see, e.g.,

Hedin and Sabelfeld 2012; Sabelfeld and Myers 2006).

We start our IFC case study by encoding a classic IFC type

system (Volpano et al. 1996) for a small deeply-embedded im-

perative language and proving its correctness (§5.1). In order

to augment the permissiveness of our analysis we then show

how to compose our IFC type system with precise semantic

proofs (§5.2). As IFC is often too strong for practical use, the

final step in our IFC case study is a semantic treatment of

declassification based on delimited release (Sabelfeld and

Myers 2003b) (§5.3). An additional case study on a runtime

monitor for IFC is presented in §5.4. We conclude that our

method for relational verification is flexible enough to ac-

commodate various IFC disciplines, allowing comparisons

and compositions within the same framework.

5.1 Deriving an IFC type system
Consider the following small while language consisting of
expressions, which may only read from the heap, but not

modify it, and commands, which may write to the heap

and branch, depending on its contents. The definition of the

language should be unsurprising, the only subtlety worth

noting is the decr expression in the while command, a metric

used to ensure loop termination.

e ::= i | r | e1 ⊕ e2
c ::= skip | r := e | c1; c2 | if e = 0 then c1 else c2

| while e , 0 do c (decr e ′)

ESub

Γ ⊢ e : l1 l1 ≤ l2

Γ ⊢ e : l2

EVar

Γ ⊢ r : Γ (r )

EInt

i : int

Γ ⊢ i : L
EBinOp

Γ ⊢ e1 : l Γ ⊢ e2 : l
Γ ⊢ e1 ⊕ e2 : l

CSub

Γ, pc : l1 ⊢ c l2 ≤ l1

Γ, pc : l2 ⊢ c
CAssign

Γ ⊢ e : Γ (r )
Γ, pc : Γ (r ) ⊢ r := e

CSeq

Γ, pc : l ⊢ c1 Γ, pc : l ⊢ c2
Γ, pc : l ⊢ c1; c2

CCond

Γ ⊢ e : l Γ, pc : l ⊢ c1 Γ, pc : l ⊢ c2
Γ, pc : l ⊢ if e = 0 then c1 else c2

CWhile

Γ ⊢ e : l Γ, pc : l ⊢ c Γ ⊢ e ′ : l ′

Γ, pc : l ⊢ while e , 0 do c (decr e ′)
CSkip Γ, pc : H ⊢ skip

Figure 1. A classic IFC type system

A classic IFC type system Volpano et al. (1996) devise

an IFC type system for a similar language to check that

programs executing over a memory containing both secrets

(stored in memory locations labeled High) and non-secrets

(in locations labeled Low) never leak secrets into non-secret

locations. The type system includes two judgments Γ ⊢ e : l ,
which states that the expression e (with free variables in Γ)
depends only on locations labeled l or lower; and Γ, pc : l ⊢ c ,
which states that a command c in a context that is control-
dependent on the contents of memory locations labeled l ,
does not leak secrets. The main of their system, as adapted

to our example language, are shown in Figure 1.

Our goal in this section is to embed this while language in
F
⋆
, to define an interpreter for it, and to derive Volpano et

al.’s type system by relating multiple runs of the interpreter.

In doing so, we highlight several distinctive features of our

approach, including the use of multiple monads to structure

our interpreter and simplify our proofs.

Multiple effects to structure the while interpreter We

deeply embed the syntax of while in F
⋆
using data types

exp and com, for expressions and commands, respectively.

The expression interpreter interp_exp only requires reading

the value of the variables from the store, whereas the com-

mand interpreter, interp_com, also requires writes to the

store, where store is an integer store mapping a fixed set of

integer references ‘ref int’ to int. Additionally, interp_com
may also raise anOut_of_fuel exception when it detects that

a loop may not terminate (e.g., because the claimed metric is

not actually decreasing). We could define both interpreters

using a single effect, but this would require us to prove that

interp_exp does not change the store and does not raise ex-

ceptions. Avoiding the needless proof overhead, we use a

Reader monad for interp_exp and StExn, a combined state

and exceptions monad, for interp_com. By defining Reader
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as a sub_effect of StExn, expression interpretation is trans-

parently lifted by F
⋆
to the larger effect when interpreting

commands.

type reader (a:Type) = store→ Tot a
total new_effect { READER : a:Type→ Effect
with repr = reader;
return = λ(a:Type) (x:a) (s:store)→ x;
bind = λ(a b : Type) (f:reader a) (g: a→ reader b) (s:store)→

let z = f s in g z s; get = λ() (s:store)→ s }
type stexn (a:Type) = store→ Tot (either a exn ∗ store)
total new_effect { STEXN . . . }
sub_effect READER{STEXN
{ lift = λ(a:Type) (f:reader a) (s:store)→ let x = f s in (Inl x, s) }

Using these effects, interp_exp and interp_com form a stan-

dard, recursive, definitional interpreter for while, with the

following trivial signatures. Just as we sometimes use St, the
unindexed version of STATE, here we use Reader and StExn,
unindexed versions of READER and STEXN with simple pre-

and postconditions.

val interp_exp: exp→Reader int
val interp_com: com→ StExn unit

Similarly, the memoization example from §6.1 uses an

effect that is specialized to the target application: a state

monad where the state is a partial finite map storing all

arguments on which a particular function was called and

what answers it returned.

Deriving IFC typing for expressions For starters, we use

a store_labeling = ref int→ label, where label ∈ {High, Low},
to partition the store between secrets (High) and non-secrets
(Low). An expression is noninterferent at level l when its

interpretation does not depend on locations labeled greater

than l in the store. To formalize this, we define a notion of

low-equivalence on stores, relating stores that agree on the

contents of all Low-labeled references, and noninterferent

expressions (at level Low, i.e., ni_exp env e Low) as those
whose interpretation is identical in low-equivalent stores.

type low_equiv (env:store_labeling) (s0 s1:store) =
∀(r:ref int). env x=Low =⇒ s0.[r] == s1.[r]

let ni_exp (env:store_labeling) (e:exp) (l:label) =
∀(s0 s1:store). (low_equiv env s0 s1 ∧ l == Low) =⇒
reify (interp_exp e) s0 == reify (interp_exp e) s1

With this definition of noninterference for expressions we

capture the semantic interpretation of the typing judgment

Γ ⊢ e : l : if the expression e can be assigned the label Low,
then the computation of e is only influenced by Low values.

Using this definition, we can derive the expression rules of

Figure 1; for instance here is a lemma for the EBinOp rule:

let binop_exp (env:store_labeling) (op:binop) (e1 e2:exp) (l:label)
: Lemma (requires (ni_exp env e1 l ∧ ni_exp env e2 l))

(ensures (ni_exp env (AOp op e1 e2) l)) = ()

We construct a lemma from the inference rule in a straight-

forward manner: the premise of the inference rule forms the

requires clause, while the conclusion of the rule forms the

ensures clause. The proof for this lemma is simple and can be

discharged purely by SMT, without the need of any further

annotations. The other rules for expressions can be shown

in the same way and all of them can be discharged by SMT.

Deriving IFC typing for commands As explained previ-

ously, the judgment Γ, pc : l ⊢ c deems c noninterferent when
run in context control-dependent only on locations whose

label is at most l . More explicitly, the judgment establishes

the following two properties: (1) locations labeled below l
are not modified by c—this is captured by no_write_down,
a unary property; (2) the command c does not leak the con-

tents of a High location to Low location—this is captured by

ni_com', a binary property.

let run c s = match reify (interp_com c) s with
| Inr Out_of_fuel, _→ Loops | _, s'→Returns s'

let no_write_down env c l s = match run c s with
| Loops→⊤| Returns s'→∀(i:id). env i < l =⇒ s'.[i] == s.[i]

let ni_com' env c l s0 s1 = match run c s0, run c s1 with
| Returns s0', Returns s1'→ low_equiv env s0 s1 =⇒

low_equiv env s0' s1'
| Loops, _ | _, Loops→⊤

The type system is termination-insensitive, meaning that

a program may diverge depending on the value of a secret.

Consider, for instance, two runs of the program while hi
<> 0 do {skip}; lo := 0, one with hi = 0 and another

with hi = 1. The first run terminates and writes to lo; the
second run loops forever. As such, we do not expect to prove

noninterference in case the program loops.

Putting the pieces together, we define Γ, pc : l ⊢ c to be

ni_com Γ c l .

let ni_com (env:store_labeling) (c:com) (l:label) =
(∀ s0 s1. ni_com' env c l s0 s1) ∧ (∀ s. no_write_down env c l s)

As in the case of expression typing, we derive each rule

of the command-typing judgment as a lemma about ni_com.

For example, here is the statement for the CCond rule:

val cond_com (env:store_labeling)(e:exp)(ct:com)(cf:com)(l:label)
: Lemma (requires (ni_exp env e l ∧ ni_com env ct l

∧ ni_com env cf l))
(ensures (ni_com env (If e ct cf) l))

The proofs of many of these rules are partially automated

by SMT—they take about 250 lines of specification and proof

in F
⋆
. Once proven, we use these rules to build a certified,

syntax-directed typechecker for while programs that repeat-

edly applies these lemmas to prove that a program satisfies

ni_com. This certified typechecker has the following type:

val tc_com : env:store_labeling→ c:com→
Exn label (requires ⊤) (ensures λInl l→ ni_com env c l | _→⊤)



12 Grimm et al.

5.2 Combining syntactic IFC analysis with semantic
noninterference proofs

Building on §5.1, we show how programs that fall outside the

syntactic information-flow typing discipline can be proven

secure using a combination of typechecking and semantic

proofs of noninterference. This example is evocative (though

at a smaller scale) of the work of Küsters et al. (2015), who

combine automated information-flow analysis in the Joana

analyzer (Hammer and Snelting 2009) with semantic proofs

in the KeY verifier for Java programs (Darvas et al. 2005;

Scheben and Schmitt 2011). In contrast, we sketch a combina-

tion of syntactic and semantic proofs of relational properties

in a single framework. Consider the followingwhile program,

where the label of c and lo is Low and the label of hi is High.

while c ,0 do hi := lo + 1; lo := hi + 1; c := c − 1 (decr c)

The assignment lo := hi + 1 is ill-typed in the type system

of §5.1, since it directly assigns a High expression to a Low
location. However, the previous command overwrites hi so
that hi does not contain a High value anymore at that point.

As such, even though the IFC type system cannot prove it, the

program is actually noninterferent. To prove it, one could

directly attempt to prove ni_com for the entire program,

which would require a strong enough (relational) invariant

for the loop. A simpler approach is to prove just the sub-

program hi := lo + 1; lo := hi + 1 (c_s) noninterferent, while
relying on the type system for the rest of the program. The

sub-program can be automatically proven secure:

let c_s_ni () : Lemma (ni_com env c_s Low) = ()

This lemma has exactly the form of the other standard, typ-

ing rules proven previously, except it is specialized to the

command in question. As such, c_s_ni can just be used in

place of the standard sequence-typing rule (CSeq) when

proving the while loop noninterferent.

We can even modify our automatic typechecker from §5.1

to take as input a list of commands that are already proved

noninterferent (by whichever means), and simply look up

the command it tries to typecheck in the list before trying to

typecheck it syntactically. The type (and omitted implemen-

tation) of this typechecker is very similar to that of tc_com,

the only difference is the extra list argument:

val tc_com_hybrid : env:store_labeling→ c:com→
list (cl:(com∗label){ni_com env (fst cl) (snd cl)})→
Exn label (ensures λol→ Inl? ol =⇒ ni_com env c (Inl?.v ol))

We can complete the noninterference proof automatically

by passing the (c_s, Low) pair proved in ni_com by lemma

c_s_ni (or directly by SMT) to this hybrid IFC typechecker:

let c_loop_ni () : Lemma (ensures ni_com env c_loop Low) =
c_s_ni(); ignore (reify (tc_com_hybrid env c_loop [c_s, Low]) ())

Checking this in F
⋆
works by simply evaluating the invoca-

tion of tc_com_hybrid; this reduces fully to Inl Low and the

intrinsic type of tc_com_hybrid ensures the postcondition.

5.3 Semantic declassification
Beyond noninterference, reasoning directly about relational

properties allows us to characterize various forms of declas-
sificationwhere programs intentionally reveal some informa-

tion about secrets. For example, Sabelfeld and Myers (2003b)

propose delimited release, a discipline in which programs are

allowed to reveal the value of only certain pure expressions.

In a simple example by Sabelfeld and Myers some amount

of money (k) is transferred from one account (hi) to another

(lo). Simply by observing whether or not the funds are re-

ceived, the owner of the lo account gains some information

about the other account, namely whether or not hi contained
at least k units of currency—this is, however, by design.

let transfer (k:int) (hi:ref int) (lo:ref int) =
if k < !hi then (hi := !hi − k; lo := !lo + k)

To characterize this kind of intentional release of infor-

mation, delimited release describes two runs of a program

in initial states where the secrets, instead of being arbitrary,

are related in some manner, e.g., the initial states agree on

the value of the term being explicitly declassified. This is

easily captured in our setting. For example, we can prove

the following lemma for transfer, which shows that lo gains

no more information than intended.

let transfer_ok (k:int) (hi lo:ref int{addr_of lo ,addr_of hi})
(s0 s1:heap{lo ∈ s0 ∧ hi ∈ s0 ∧ lo ∈ s1 ∧ hi ∈ s1}) : Lemma

(∗ initial memories agree on lo and on the declassified term ∗)
(requires (s0.[lo] == s1.[lo] ∧ (k < s0.[hi]⇐⇒ k < s1.[hi])))
(ensures ((snd (reify (transfer k hi lo) s0)).[lo] ==

(snd (reify (transfer k hi lo) s1)).[lo])) = ()

Delimited release was about the what dimension of declas-

sification (Sabelfeld and Sands 2009). We also built a very

simple model that is targeted at the when dimension, illus-

trating a customization of the monadic model to the target

relational property. For instance, to track when information

is declassified, we augment the state with a bit recording

whether the secret component of the state was declassified

and is thus allowed to be leaked.

type ifc_state = { secret:int; public:int; release:bool }
new_effect STATE_IFC = STATE_h ifc_state

In this case the noninterference property depends on the

extra instrumentation bit we added to the state.

let ni (f:unit→ St unit) =
∀s0 s1. let (_, s0'), (_, s1') = reify (f ()) s0, reify (f ()) s1 in
s0'.release ∨ s1'.release ∨ (low_equiv s0 s1 =⇒ low_equiv s0' s1')

5.4 Soundness of an IFC monitor
Another popular technique for the enforcement of IFC are

runtime monitors: the idea is to dynamically track the se-

curity labels of expressions and to check them at runtime

in order to detect IFC violations, which cause the execution
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EVar

S, Γ ⊢ r → ⟨S (r ) , Γ (r )⟩

EInt

i : int

S, Γ ⊢ i → ⟨i, L⟩

EBinOp

S ⊢ e1 → ⟨v1, l1⟩ S, Γ ⊢ e2 → ⟨v2, l2⟩
S, Γ ⊢ e1 ⊕ e2 → ⟨v1 ⊕ v2, l1 ⊔ l2⟩

CAssign

S, Γ ⊢ e → ⟨ve , le ⟩ Γ (r ) = lr
le ⊔ pc ≤ lr

S, Γ, pc ⊢ r := e → S [r 7→ ve ]

CCondTrue

S, Γ ⊢ e → ⟨ve , le ⟩ ve = 0 S, Γ, (pc ⊔ le ) ⊢ c1 → S1

S, Γ, pc ⊢ if e = 0 then c1 else c2 → S1

Figure 2. Semantics of the IFC monitor

to halt. Here we implement an interpreter for the while lan-

guage presented in §5.1 extended with the security monitor

proposed by Sabelfeld and Russo (2009): a selection of the

semantic rules is reported in Figure 2. The store S maps refer-

ences to integers, while the store labeling Γ maps references

to security labels, which are then used to derive labels for ex-

pressions. Assignments are subject to the expected security

checks at run-time.

We embed themonitor in F
⋆
, obtaining amachine-checked

proof of soundness for it. The interpretation functions for

expressions and commands have the following signatures:

val interp_exp_monitor: store_labeling→ exp→Reader (int ∗ label)
val interp_com_monitor: store_labeling→ label→ com→ StExn unit

We prove termination-insensitive non-interference for

interpretation with the monitor and capture this with the

following lemma:

val dyn_ifc (s0:store) (s1:store) (env:store_labeling) (c:com) (pc:label) :
Lemma (requires (low_equiv env s0 s1))
(ensures (match (reify (interp_com_monitor env pc c)) s0,

(reify (interp_com_monitor env pc c)) s1 with
| (Inl _, s0'), (Inl _, s1')→ low_equiv env s0' s1'
| _→⊤))

Intuitively, we show that for any two low-equivalent initial

stores, the two resulting stores are also low equivalent, if

the interpretation with the monitor terminates without a

runtime exception.

While the result looks similar to the one shown for the

type system, there is a subtle difference in the enforced se-

curity property. Consider the following example where the

label of hi is High and the label of lo is Low:

if (hi=0) skip else lo := 0

The assignment to a low reference on the else branch is leak-

ing information about the value of the high reference in the

conditional expression. Nevertheless, if the then-branch of

the conditional is taken, the monitor will not report a viola-

tion, as it does not inspect the else-branch. This example does

however not break our theorem, since our theorem only re-

lates pairs of programs that terminate normally, while for all

stores in which the else branch is taken, the execution of the

interpreter halts with an error. The monitor is collapsing the

implicit-flow channel into an erroneous termination chan-

nel, thereby enforcing error-insensitive non-interference. For

comparison, notice that the (termination-insensitive) type

system from §5.1 accepts a variant of the program above, in

which the low assignment is replaced by a non-terminating

loop.

6 Program optimizations and refinement
This section presents two complete examples to prove a

few, classic algorithmic optimizations correct. These prop-

erties are very specific to their application domains and a

special-purpose relational logic would probably not be suit-

able. Instead, we make use of the generality of our approach

to prove application-specific relational properties (including

4- and 6-ary relations) of higher-order programs with local

state. In contrast, most prior relational logics are specialized

to proving binary relations, or, at best, properties of n runs

of a single first-order program (Sousa and Dillig 2016).

6.1 Effect for memoizing recursive functions
First, we look at memoizing total functions, including mem-

oizing a function’s recursive calls based on a partiality rep-

resentation technique due to McBride (2015). We prove that

a memoized function is extensionally equal to the original.

We define a custom effectMemo, a monadwith a state con-

sisting of a (partial, finite) mapping from a function’s domain

type (dom) to its codomain type (codom), with two actions:

get : dom→Memo (option codom), which returns a memo-

ized value if it exists; and put : dom→ codom→Memo unit,
which adds a new memoization pair to the state.

3

Take 1: Memoizing total functions Our goal is to turn a

total function g into a memoized function f computing the

same values as g. This relation between f’s reification and g
is captured by the computes predicate below, depending on

an invariant of the memoization state, valid_memo. A mem-

oization state h is valid for memoizing some total function

g : (dom→ codom) when h is a subset of the graph of g:

let valid_memo (h:memo_st) (g:dom→ codom) =

for_all_prop (λ (x,y)→ y == g x) h
let computes (f: dom→Memo codom) (g:dom→ codom) =

∀h0. valid_memo h0 g =⇒ (∀ x. (let y, h1 = reify (f x) h0 in
y == g x ∧ valid_memo h1 g))

3
This abstract model could be implemented efficiently, for instance by an

imperative hash-table with a specific memory-management policy.
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We have f `computes`g when given any state h0 containing
a subgraph of g, f x returns g x and maintains the invariant

that the result state h1 is a subgraph of g. It is easy to program
and verify a simple memoizing function:

let memoize (g : dom→ codom) (x:dom) =

match get x with Some y→ y | None→ let y = g x in put x y; y
let memoize_computes g :Lemma ((memoize g) `computes` g) = ...

The proof of this lemma is straightforward: we only need to

show that the value y we get back from the heap in the first

branch is indeed g x which is enforced by the valid_memo
in the precondition of computes.

Take 2: Memoizing recursive calls Now, what if we want

tomemoize a recursive function, for example, a function com-

puting the Fibonacci sequence? We also want to memoize

the intermediate recursive calls, and in order to achieve it,

we need an explicit representation of the recursive structure

of the function. Following McBride (2015), we represent

this by a function x:dom→ partial_result x, where a partial
result is either a finished computation of type codom or a

request for a recursive call together with a continuation.

type partial_result (x0:dom) =

| Done : codom→ partial_result x0
| Need : x:dom{x ≺ x0}→ cont:(codom→ partial_result x0)→

partial_result x0

As we define the fixed point using Need x f, we crucially

require x ≺ x0, meaning that the value of the function is re-

quested at a point xwhere function’s definition already exists.
For example encoding Fibonacci amounts to the following

code where the two recursive calls in the second branch have

been replaced by applications of the Need constructor. We

also define the fixpoint of such a function representation f:

let fib_skel (x:dom) : partial_result x =
if x ≤ 1 then Done 1 else
Need (x − 1) (λ y1→Need (x − 2) (λ y2→Done (y1 + y2)))

let rec fixp (f: x:dom→ partial_result x) (x0:dom) : codom =

let rec complete_fixp x = function
| Done y→ y
| Need x' cont→ let y = fixp f x' in complete_fixp x (cont y)

in complete_fixp x0 (f x0)

To obtain a memoized fixpoint, we need to memoize func-

tions defined only on part of the domain, x:dom{p x}.

let partial_memoize (p:dom→ Type)
(f : x:dom{p x}→Memo codom) (x:dom{p x}) =
match get x with Some y→ y | None→ let y = g x in put x y; y

let rec memoize_rec (f: x:dom→ partial_result x) (x0:dom) =

let rec complete_memo_rec x :Memo codom = function
| Done y→ y
| Need x' cont→
let y = partial_memoize (λ y→ y ≺ x) (memoize_rec f) x' in
complete_memo_rec (cont y)

in complete_memo_rec x0 (f x0)

Since both functions are syntactically similar it is relatively

easy to prove by structural induction on the code ofmemoize_rec
that, for any skeleton of a recursive function f, we have

that (memoize_rec f) `computes`(fixp f). The harder part is
proving that fixp fib_skel is extensionally equal to fibonacci,
the natural recursive definition of the sequence, as these

two functions are not syntactically similar—however, the

proof involves reasoning only about pure functions. As we

have already proven that memoize_rec fib_skel computes

fixp fib_skel, we easily gain a proof of the equivalence of

memoize_rec fib_skel to fibonacci by transitivity.

Finally, we can encapsulate the Memo effect and provide

a pure state-passing interface:

type memo_pack (f:dom→ codom) =

| MemoPack : h0:memo_st{valid_memo h0 f}→
mf:(dom→Memo codom){mf `computes` f}→memo_pack f

let apply_memo (#f:dom→ codom) (mp:memo_pack f) (x:dom) :

(codom ∗ memo_pack f) =
let MemoPack h0 mf = mp in let y, h1 = reify (mf x) h0 in
y,MemoPack h1 mf

let mk_memo_pack f : memo_pack (fixp f) = memo_lemma f ;
MemoPack [] (memoize_rec f)

6.2 Stepwise refinement and n-ary relations:
Union-find with two optimizations

In this section, we prove several classic optimizations of a

union-find data structure introduced in several stages, each

a refinement. For each refinement step, we employ relational

verification to prove that the refinement preserves the canon-

ical structure of union-find. We specify correctness using, in

some cases, 4- and 6-ary relations, which are easily manipu-

lated in our monadic framework.

Basic union-find implementation A union-find data

structure maintains disjoint partitions of a set, such that

each element belongs to exactly one of the partitions. The

data structure supports two operations: find, that identifies
to which partition an element belongs, and union, that takes
as input two elements and combines their partitions.

An efficient way to implement the union-find data struc-

ture is as a forest of disjoint trees, one tree for each partition,

where each node maintains its parent and the root of each

tree is the designated representative of its partition. The find

operation returns the root of a given element’s partition (by

traversing the parent links), and the union operation simply

points one of the roots to the other.

We represent a union-find of set [0, n − 1] as the type

‘uf_forest n’ (below), a sequence of ref cells, where the ith

element in the sequence is the ith set element, containing its

parent and the list of all the nodes in the subtree rooted at

that node. The list is computationally irrelevant (i.e., erased)—
we only use it to express the disjointness invariant and the

termination metric for recursive functions (e.g. find).
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type elt (n:N) = i:N{i < n} × erased (list N)
type uf_forest (n:N) = s:seq (ref (elt n)){length s = n}

The liveness and disjointness invariants on a union-find

forest are:

(∗ all the refs are distinct and live in the heap ∗)
let live (#n:N) (uf:uf_forest n) (h:heap) =
(∀ i j. i , j⇒ distinct uf[i] uf[j]) ∧ (∀ i. uf[i] ∈ h)
let disjoint (#n:N) (uf:uf_forest n) (h:heap) =
∀ i. i ∈ (subtree uf i h) ∧ (∗ i is in its own subtree ∗)

(∗ set_n is the set of all numbers from 0 to n − 1 ∗)
subtree uf i h ⊆ set_n n ∧
(∗ i's subtree is a subset of its parent's subtree ∗)
is_root i ∨ subtree uf i h ⊂ subtree uf (parent uf i h) h ∧
(∗ disjointness of subtrees ∗)
∀ j. (i , j ∧ is_root uf i h ∧ is_root uf j h)
⇒ subtree uf i h ∩ subtree uf j h = ϕ

The basic find and union operations are shown below,

where set and get are stateful functions that read and write

the ith index in the uf sequence. Reasoning about mutable

pointer structures requires maintaining invariants regarding

the liveness and separation of the memory referenced by

the pointers. While important, these are orthogonal to the

relational refinement proofs—so we elide them here, but still

prove them intrinsically in our code.

let rec find #n uf i = let p, _ =
get uf i in if p = i then i else find uf p

let union #n uf i1 i2 = let r1, r2 = find uf i1, find uf i2 in
let _, s1 = get uf r1 in let _, s2 = get uf r2 in
if r1 ,r2 then (set uf r1 (r2, s1); set uf r2 (r2, union s1 s2))

Union by rank The first optimization we consider is im-

proving union to union_by_rank, which decides whether to

merge r1 into r2, or vice versa, depending on the heights of

each tree, aiming to keep the trees shallow. We prove this

optimization in two steps, first refining the representation

of elements by adding a rank field to elt n and then proving

that union_by_rank maintains the same set partitioning as

union.

type elt (n:N) = i:N{i < n} × N × erased (list nat) (∗ added rank ∗)

We formally reason about the refinement by proving that

the outputs of the find and union functions do not depend on

the newly added rank field. The rank_independence lemma

(a 4-ary relation) states that find and unionwhen run on two

heaps that differ only on the rank field, output equal results

and the resulting heaps also differ only on the rank field.

let equal_but_rank uf h1 h2 = ∀ i. parent uf i h1 = parent uf i h2
∧ subtree uf i h1 = subtree uf i h2

let rank_independence #n uf i i1 i2 h1 h2 : Lemma
(requires (equal_but_rank uf h1 h2))
(ensures (let (r1,f1), (r2,f2) =
reify (find uf i) h1,reify (find uf i) h2 in
let (_,u1), (_,u2) =

reify (union uf i1 i2) h1,reify (union uf i1 i2) h2 in
r1 == r2 ∧ equal_but_rank uf f1 f2 ∧ equal_but_rank uf u1 u2))

Union by rank The rank based union optimization aims

at minimizing the height of the subtrees, so that the tree

traversal is more efficient. It does so by pointing the root with

smaller height to the other root during the union operation.

let union_opt #n uf i1 i2 =
let r1, r2 = find uf i1, find uf i2 in
let _, d1, s1 = get uf r1 in let _, d2, s2 = get uf r2 in
if r1 = r2 then ()

else begin
if d1 < d2 then begin (∗ point r1 to r2 ∗)
set uf r1 (r2, d1, s1); set uf r2 (r2, d2, union s1 s2)

end
else begin (∗ point r2 to r1 and adjust r1's height ∗)
set uf r2 (r1, d2, s2);
let d1 = if d1 = d2 then d1 + 1 else d1 in
set uf r1 (r1, d1, union s1 s2)

end
end

Next, we prove the union_by_rank refinement sound. Sup-

pose we run union and union_by_rank in h on a heap h pro-

ducing h1 and h2. Clearly, we cannot prove that find for a

node j returns the same result in h1 and h2. But we prove
that the canonical structure of the forest is the same in h1
and h2, by showing that two nodes are in the same partition

in h1 if and only if they are in the same partition in h2:

val union_by_rank_refinement #n uf i1 i2 h j1 j2 : Lemma
(let (_, h1), (_, h2) =
reify (union uf i1 i2) h, reify (union_by_rank uf i1 i2) h in
fst (reify (find uf j1) h1) == fst (reify (find uf j2) h1)⇐⇒
fst (reify (find uf j1) h2) == fst (reify (find uf j2) h2))

This property is 6-ary relation, relating 1 run of union
and 1 run of union_by_rank to 4 runs of find—its proof is a
relatively straightforward case analysis.

Path compression Finally, we consider find_compress,
which, in addition to returning the root for an element, sets

the root as the element’s new parent to accelerate subsequent

find queries.

let rec find_opt #n uf i =
let p, d, s = get uf i in
if p = i then i
else
let r = find_opt uf p in
set uf i (r, d, s);
r

To prove the refinement of find to find_compress sound,
we prove a 4-ary relation showing that if running find and

find_compress on a heap h results in the heaps h1 and h2,
then the partition of a node j is the same in h1 and h2. This
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also implies that find_compress retains the canonical struc-
ture of the union-find forest.

val find_compress_refinement #n uf i h j
: Lemma (let (r1, h1), (r2, h2) =
reify (find uf i) h, reify (find_compress uf i) h in
r1 == r2 ∧ fst (reify (find uf j) h1) == fst (reify (find uf j) h2))

7 Related work
Much of the prior related work focused on checking specific

relational properties of programs, or general relational prop-

erties using special-purpose logics. In contrast, we argue

that proof assistants that support reasoning about pure and

effectful programs can, using our methodology, model and

verify relational properties in a generic way. The specific

incarnation of our methodology in F
⋆
exploits its efficient

implementation of effects enabled by abstraction and con-

trolled reification; a unary weakest precondition calculus

as a base for relational proofs; SMT-based automation; and

the convenience of writing effectful code in direct style with

returns, binds, and lifts automatically inserted.

Static IFC tools Sabelfeld and Myers (2003a) survey a

number of IFC type systems and static analyses for show-

ing noninterference, trading completeness for automation.

More recent verification techniques for IFC aim for better

completeness (Amtoft and Banerjee 2004; Amtoft et al. 2012;

Banerjee et al. 2016; Barthe et al. 2014; Beringer and Hof-

mann 2007; Nanevski et al. 2013; Rabe 2016; Scheben and

Schmitt 2011), while compromising automation. The two

approaches can be combined, as discussed in in §5.2.

Relational program logics and type systems A variety

of program logics for reasoning about general relational prop-

erties have been proposed previously (Aguirre et al. 2017;

Barthe et al. 2009; Benton 2004; Yang 2007), while others

apply general relational logics to specific domains, including

access control (Nanevski et al. 2013), cryptography (Barthe

et al. 2009, 2012, 2013a; Petcher and Morrisett 2015), differ-

ential privacy (Barthe et al. 2013b; Zhang and Kifer 2017),

mechanism design (Barthe et al. 2015), cost analysis (Çiçek

et al. 2017), program approximations (Carbin et al. 2012).

RF
⋆
, is worth pointing out for its connection to F

⋆
. Barthe

et al.’s 2014 extend a prior, value-dependent version of F
⋆

(Swamy et al. 2013) with a probabilistic semantics and a

type system that combines pRHL with refinement types.

Like many other relational Hoare logics, RF
⋆
provided an

incomplete set of rules aimed at capturing many relational

properties by intrinsic typing only.

In this paper we instead provide a versatile generic method

for relational verification based on modeling effectful com-

putations using monads and proving relational properties

on their monadic representations, making the most of the

support for full dependent types and SMT-based automation

in the latest version of F
⋆
. This generic method can both be

used directly to verify programs or as a base for encoding

specialized relational program logics.

Product program constructions Product program con-

structions and self-composition are techniques aimed at re-

ducing the verification of k-safety properties (Clarkson and

Schneider 2010) to the verification of traditional (unary)

safety proprieties of a product program that emulates the

behavior of multiple input programs. Multiple such construc-

tions have been proposed (Barthe et al. 2016) targeted for

instance at secure IFC (Barthe et al. 2011; Naumann 2006; Ter-

auchi and Aiken 2005; Yasuoka and Terauchi 2014), program

equivalence for compiler validation (Zaks and Pnueli 2008),

equivalence checking and computing semantic differences

(Lahiri et al. 2012), program approximation (He et al. 2016).

Sousa and Dillig’s 2016 recent Descartes tool for k-safety

properties also creates k copies of the program, but uses

lockstep reasoning to improve performance by more tightly

coupling the key invariants across the program copies. Re-

cently Antonopoulos et al. (2017) propose a tool called Blazer

that obtains better scalability by using a new decomposition

of programs instead of using self-composition for k-safety

problems.

Other program equivalence techniques Beyond the ones

already mentioned above, many other techniques targeted

at program equivalence have been proposed; we briefly re-

view several recent works: Benton et al. (2009) do manual

proofs of correctness of compiler optimizations using par-

tial equivalence relations. Kundu et al. (2009) do automatic

translation validation of compiler optimizations by checking

equivalence of partially specified programs that can rep-

resent multiple concrete programs. Godlin and Strichman

(2010) propose proof rules for proving the equivalence of

recursive procedures. Lucanu and Rusu (2015) and Ştefan

Ciobâcă et al. (2016) generalize this to a set of co-inductive

equivalence proof rules that are language-independent. Auto-

matically checking the equivalence of processes in a process

calculus is an important building block for security protocol

analysis (Blanchet et al. 2008; Chadha et al. 2016).

Semantic techniques Many semantic techniques have

been proposed for reasoning about relational properties such

as observational equivalence, including techniques based on

binary logical relations (Ahmed et al. 2009; Benton et al.

2009, 2013, 2014; Dreyer et al. 2010, 2011, 2012; Mitchell

1986), bisimulations (Koutavas and Wand 2006; Sangiorgi

et al. 2011; Sumii 2009) and combinations thereof (Hur et al.

2012, 2014). While these very powerful techniques are often

not directly automated, they can be used to provide semantic

correctness proofs for relational program logics (Dreyer et al.

2010, 2011) and other verification tools (Benton et al. 2016).
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8 Future work
While we found F

⋆
to be a versatile tool for relational veri-

fication of effectful programs, we also contemplated about

features that would make it even better suited.

Tactics F
⋆
’s current combination of SMT solving and

dependent typechecking with higher-order unification and

normalization provides good automation, but the ongoing

addition of tactics will provide more control and the possibil-

ity of user-defined decision procedures. In particular, when

using shallow embeddings (like we do in §3) tactics will allow

us to write meta-programs that automatically apply derived

proof rules based on the structure of the F
⋆
program we

want to verify.

Extrinsic termination reasoning Aside from their use

in relational reasoning, extrinsic proofs of reified terms allow

programmers to defer proof obligations, rather than insisting

on proofs at the time of definition (while anticipating all

uses). While convenient, extrinsic proofs in F
⋆
only apply to

programs that are intrinsically proved terminating. Building

on our use of McBride’s 2015 approach in §6.1, we aim to

define divergence as a reifiable effect, placing it on par with

other effects in F
⋆
. We could then reason about the partial

correctness of a program declared in this effect or to prove

its termination after its definition. Going back to the while
interpreter from §5.1, we could forget about the decreasing

metric and use either Bove and Capretta’s 2005 termination

witnesses or step-indexing as in §3.3 (Amin and Rompf 2017;

Owens et al. 2016), proving, for example, noninterference of

reachable states of an interactive non-terminating program.

Observational purity Another desirable feature would

be to hide the effect of a term if it is proven observationally

pure, e.g., in §6.1 this would provide the ability to replace the

original pure code by its equivalent memoized variant. Since

we are able to prove that the memoized code has the same

extensional behaviour as the pure code up to some private

data that we could abstract over, we would like to implement

a mechanism to encapsulate observationally pure code. We

hope that this mechanism could also be applied to programs

proven terminating extrinsically.

9 Conclusion
This paper advocates verifying relational properties of ef-

fectful programs using generic tools that are not specific to

relational reasoning: monadic effects, reification, dependent

types, non-relational weakest preconditions, and SMT-based

automation. Our experiments in F
⋆
verifying relational prop-

erties about a variety of examples show thewide applicability

of this approach. One of the strong points is the great flexibil-

ity in modelling effects and expressing relational properties

about code using these effects. The other strong point is

the good balance between interactive control, SMT-based

automation, and the ability to encode even more automated

specialized tools where needed. Thanks to this, the effort

required from the F
⋆
programmer for relational verification

seems on par with non-relational reasoning in F
⋆
and with

specialized relational program logics.
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