
UniTraX: Protecting Data Privacy
with Discoverable Biases

Reinhard Munz1(B), Fabienne Eigner2, Matteo Maffei3, Paul Francis1,
and Deepak Garg1

1 MPI-SWS, Kaiserslautern and Saarbrücken, Germany
{munz,francis,dg}@mpi-sws.org

2 CISPA, Saarland University, Saarbrücken, Germany
eigner@cs.uni-saarland.de
3 TU Wien, Vienna, Austria
matteo.maffei@tuwien.ac.at

Abstract. An ongoing challenge with differentially private database
systems is that of maximizing system utility while staying within a
certain privacy budget. One approach is to maintain per-user budgets
instead of a single global budget, and to silently drop users whose budget
is depleted. This, however, can lead to very misleading analyses because
the system cannot provide the analyst any information about which users
have been dropped.

This paper presents UniTraX, the first differentially private system
that allows per-user budgets while providing the analyst information
about the budget state. The key insight behind UniTraX is that it tracks
budget not only for actual records in the system, but at all points in the
domain of the database, including points that could exist but do not.
UniTraX can safely report the budget state because the analyst does not
know if the state refers to actual records or not. We prove that UniTraX
is differentially private. UniTraX is compatible with existing differen-
tially private analyses and our implementation on top of PINQ shows
only moderate runtime overheads on a realistic workload.

1 Introduction

Differential Privacy (DP) is a model of anonymity that measures privacy loss
resulting from queries made to a database [6]. A bound on privacy loss can be
enforced by preventing queries after a privacy budget has been exceeded. An
ongoing challenge with DP systems is that of maximizing system utility while
staying within a privacy budget, where system utility is measured in terms of
both number of queries and amount of distortion (noise) in query answers.

A simple but common approach to DP budgets is to maintain a single global
budget. With this approach, all queries draw from the budget regardless of how
many user records are used to answer a given query. In systems where users
can specify their own individual budgets, the global budget is effectively the
minimum of user budgets.
c© The Author(s) 2018
L. Bauer and R. Küsters (Eds.): POST 2018, LNCS 10804, pp. 278–299, 2018.
https://doi.org/10.1007/978-3-319-89722-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89722-6_12&domain=pdf

UniTraX: Protecting Data Privacy with Discoverable Biases 279

An alternative approach is to maintain per-user budgets. The idea here is that
a given query draws only from the budgets of users whose records contribute to
the answer. This can substantially improve system utility. An analysis that for
instance targets smokers in a medical dataset would not reduce the budgets of
non-smokers. Furthermore, per-user budgets maximize utility in systems where
users specify their individual budgets because low-budget users do not constrain
the queries that are made over only high-budget users.

In spite of the tremendous potential for increasing the utility of DP systems,
we are aware of only a single system, ProPer [10], that tracks per-user budgets.1

This is because of a fundamental difficulty with per-user budget systems. Namely,
the system cannot report on the remaining budget of individual users without
revealing private information. If budgets were made public in this way, then an
analyst could trivially obtain information about users just by observing which
users’ budgets changed in response to a query.

Because of this, ProPer keeps user budgets private: it silently drops the record
of a user from the dataset when the user’s budget is depleted. This creates a
serious usability problem for the analyst. Suppose there are two analysts, Alice
and Bob. Alice wishes to learn about smokers, Bob wishes to learn about lung-
cancer patients. Suppose Alice makes a set of queries about smokers, and as
a result many smokers’ budgets are depleted and these smokers’ records are
dropped from the dataset. Afterwards Bob asks the question: “What fraction of
lung cancer patients are smokers?”. Because many smokers have been dropped
from the dataset, and non-smokers have not, Bob’s answer is incorrect. Worse,
Bob has no way of knowing whether the answer is incorrect, or how incorrect it
is. Bob’s answer is effectively useless. We call this unknown dataset bias.

To address this problem, this paper presents UniTraX, a DP system that
allows for the benefits of keeping per-user budgets without the disadvantage
of unknown dataset bias. The key insight of UniTraX is in how it tracks bud-
get. Rather than privately tracking individual users’ remaining budget, UniTraX
publicly tracks the budget consumed by prior queries over regions of the data
parameter space. In addition, UniTraX adds each user’s initial budget to the
dataset, making it a queryable parameter.

For example, assume a query asks for the count of users between the ages
of 10 and 20. ProPer would privately deduct the appropriate amount from the
individual remaining budget of all users in that age range. By contrast, UniTraX
publicly records that a certain amount of budget was consumed for the age
range 10–20. Because the consumed budget is public, the analyst can calculate
how much initial budget any given point in the data parameter space would
need in order to still have enough remaining budget for some specific query
the analyst may wish to make. Because initial budgets are also a queryable
parameter, the analyst can then explicitly exclude from the query any points
whose initial budget is too small. This allows the analyst to control which points
are included in answers and therefore avoid unknown dataset bias. (See Sect. 2
for a detailed example.)

1 Other DP systems also permit per-user or per-field initial budgets [1,15]. However,
these systems do not track the consumption of budget on a per-user basis.

280 R. Munz et al.

budget attribution

global per-user

consumed budget
visibility

private ProPer

public DP reference UniTraX

Fig. 1. System comparison

Internally, UniTraX utilizes the same calculation of required initial budget
to reject any query that covers points without sufficient budget. Critically, such
a rejection does not leak any private information as it solely depends on public
budget consumption data and query parameters. In fact, the decision to reject
a query does not even look at the actual data.

A significant practical concern is that tracking budgets across the entire
parameter space, which will usually be substantially larger than the number
of actual records in the database, can be quite expensive. To understand this
cost, we built a prototype implementation of UniTraX on top of PINQ [17].
By carefully clubbing budgets over contiguous regions of the parameter space,
we obtain average overheads of less than 80% over a no-privacy baseline on a
realistic workload.

The contributions of this paper are threefold:

1. A system model and design that maintains the advantages of per-user privacy
budgets, while avoiding the problems due to unknown dataset bias.

2. A theoretical framework and proof that the design provides DP.
3. An implementation and evaluation showing that the system is able to effi-

ciently track budgets with average overheads of less than 80%.

In Sect. 2 we compare different system models for DP and provide an example
to illustrate the effect of unknown dataset bias. We introduce the design of
UniTraX in Sect. 3 and detail the theoretical framework and the proof of DP in
Sect. 4. Our implementation and its evaluation are presented in Sects. 5 and 6.
We discuss related work in Sect. 7 and conclude in Sect. 8.

2 System Comparison

To better understand the differences and advantages of UniTraX, we start with
overviews of UniTraX and two prior system models, the classic DP “reference”
model with a global budget, and ProPer with private per-user budgets. We use
a simple running example to illustrate the differences. Figure 1 contrasts the
public, per-user budget model of UniTraX with DP reference and ProPer.

For the example we assume that two analysts Alice and Bob want to analyze
a dataset of patient records. These records contain a variety of fields among
which is one that indicates whether a patient is a smoker, and one that indicates
whether the patient suffers from lung cancer. We assume that Alice is interested
in smokers and wants to run various queries over different fields of smokers while
Bob is interested in the fraction of lung cancer patients that are smokers. We
assume that Alice does her analysis first, followed by Bob.

UniTraX: Protecting Data Privacy with Discoverable Biases 281

Regarding the setting of each patient’s (user’s) initial budget, we consider
two cases: (1) all initial budgets are the same (uniform initial budgets), and
(2) each budget is set by the user (non-uniform initial budgets). In the case of
UniTraX, the initial budget is just another field in each record.

DP Reference. The DP reference mechanism uses a publicly visible global bud-
get. In the case of uniform initial budgets, the global budget is set as the system
default. In the case of non-uniform initial budgets, the global budget is set to
the lowest initial budget among all users.

The reference mechanism counts every query against this single global bud-
get. First, Alice runs her queries against smokers. Since each query decrements
from the global budget, this budget may well be depleted before Bob can even
start. At this point no information about non-smokers will have left the system.
Still, the system has to reject all further queries.

ProPer. ProPer tracks one budget per user but must keep it private. Users whose
budgets are depleted are silently dropped from the dataset and not considered
for any further queries. Nevertheless, each user’s full budget can be used.

Staying in our example, Alice’s queries use no budget of non-smokers under
this tracking mechanism. Once Alice has finished her queries, Bob starts his
analysis. Bob wishes to make two queries, one counting the number of smokers
with lung cancer, and one counting the number of non-smokers with lung cancer.
Bob may look at Alice’s queries, and observe that she focused on smokers, and
therefore know that there is a danger that his answers will be biased against
smokers. In the general case, however, he cannot be sure if his answers are
biased or not.

In the case of uniform budgets, if Alice requested histograms, then she would
have consumed the smokers’ budgets uniformly and depleted either all or none
of the smokers’ budgets. If Bob gets an answer that, keeping in mind the noise,
is significantly larger than zero, then Bob’s confidence that his answer is non-
biased may be high. If on the other hand Alice focused some of her queries on
specific ranges (e.g., certain age groups), or if budgets are non-uniform, then
Bob knows that the answer for smokers with lung cancer may be missing users,
while the answer for non-smokers with lung cancer will not. He may therefore
have unknown dataset bias, and cannot confidently carry out his analysis.

Our System (UniTraX). UniTraX tracks public budgets that are computable
from the history of previous queries. UniTraX is able to tell an analyst how
much budget has been consumed by previous queries for any subspace of the
parameter space. For example, the analyst may request how much budget has
been consumed in the subspace defined by “age≥10 AND age<20 AND gen-
der=male AND smoker=1”.

UniTraX tracks budget consumption over regions of the parameter space. For
example, if a query selects records over the subspace “age≥10 AND age<20”,
then UniTraX records (publicly) that a certain amount of budget has been con-
sumed from this region of the parameter space. Initial budgets are an additional

282 R. Munz et al.

dimension of the parameter space in UniTraX. In particular, the initial budget
of an actual record in the database is stored in a field in the record. By com-
paring the (public) consumed budget of any point in the parameter space to
the initial budget of that point, UniTraX can determine publicly whether that
point’s budget has been fully consumed or not. This allows UniTraX to reject a
query safely: If, after the query, the consumed budget of any point selected by
the query will exceed that point’s initial budget, then the query is immediately
rejected. This decision does not require looking at the actual data, and reveals
no private information.

Critically, public consumed budgets combined with the ability to filter queries
based on users’ initial budgets allows analysts to control and eliminate unknown
dataset bias. Returning to our example, when Bob is ready to start his analysis,
he queries UniTraX to determine the consumed budgets for “smoker=1 AND
disease=lungCancer”, and “smoker=0 AND disease=lungCancer”. Because no
queries have been made for non-smokers, the consumed budget of the latter
query’s region would be zero. Suppose that UniTraX indicates that the consumed
budget for the region “smoker=1 AND disease=lungCancer” is 50, and that
Bob’s two queries will further consume a budget of 10 each. Because the two
groups are disjoint, Bob knows that any user with an initial budget of 60 or
higher has enough remaining budget for his queries. (If the two queries were not
known to have disjoint user populations, then Bob would need to filter for initial
budgets of 70 or higher.)

Bob generates the following two queries:

– “count WHERE smoker=1 AND disease=lungCancer AND initBudget≥60”,
– “count WHERE smoker=0 AND disease=lungCancer AND initBudget≥60”.

In doing so, Bob is assured that no users are excluded from either query, and
avoids unknown dataset bias.2

So far, we have described how Bob may query only points with sufficient
remaining budget. However, when this is not the case, UniTraX is able to simply
reject Bob’s queries. In fact, UniTraX can even inform him about which points
are out of budget without leaking private information. Privacy is protected by
the fact that Bob does not know whether these points exist in the dataset or
not. UniTraX’s rejection does not reveal this information to Bob as it solely
depends on public consumed budgets and query parameters. Using the returned
information, Bob is able to debug his analysis and retry.

UniTraX not only allows analysts to debug their analyses but is fully com-
patible with existing DP systems. Any analysis that successfully executes over a
dataset protected by a global budget system requires only a simple initialization

2 Note that if users select their own initial budgets, and there is some correlation
between user attributes and initial budgets, then there may still be a specific bias in
the data. For instance if smokers tend to choose high budgets and non-smokers tend
to choose low budgets, then Bob’s queries would be biased towards smokers. This
problem appears fundamental to any system that allows individual user budgets.

UniTraX: Protecting Data Privacy with Discoverable Biases 283

to run on the same dataset protected by UniTraX (see Sect. 5 for PINQ-based
analyses). Thus, analysts can easily adapt to UniTraX and exploit the increased
utility of per-user budgets.

3 Design Overview

Threat Model. UniTraX uses the standard threat model for DP. The goal is
to prevent malicious analysts from discovering whether a specific record (user)
exists in the queried database (dataset). We assume, as usual, that analysts are
limited to the interface offered by UniTraX and that they do not have direct
access to the database. We make no assumptions about the background or aux-
iliary knowledge of the analysts. Analysts may collude with each other offline.

Goals. We designed UniTraX with the following goals in mind.
Privacy: Users should be able to set privacy preferences (budgets) for their
records individually. These preferences must be respected across queries.
Utility: Querying a parameter subspace should not affect the usability of records
in a disjoint subspace.
Bias Discovery: The system should allow the analyst to discover when there
may be a bias in query answers because privacy budgets of some parts of the
parameter space have been depleted by past queries.
Efficiency: The overhead of the system should be moderate.

In the following we describe the design of UniTraX, explaining how it attains
the first three goals above. The fourth goal, efficiency, is justified by the experi-
mental evaluation in Sect. 6.

Design Overview. For simplicity, we assume that the entire database is organized
as a single table with a fixed schema. The schema includes a designated column
for the initial privacy budget of each record. UniTraX is agnostic to how this
initial budget is chosen—it may be a default value common to all records or
it may be determined individually for each record by the person who owns the
record. Higher values of initial budget indicate less privacy concerns for that
record. Records may be added to the database or removed from it at any time.

The set of all possible records constitutes the parameter space.3 We use the
term point for any point in the parameter space; a point may or may not exist
in the actual database under consideration. We use the terms actual record and
record for the points that actually exist in the database under consideration.

Like most DP systems, UniTraX supports statistical or aggregate queries.
The query model is similar to that of PINQ [17]. An analyst performs a query
in two steps. First, the analyst selects a subspace of the parameter space using
a SQL SELECT-like syntax. For example, the analyst may select the subspace
“age≥10 AND age<20 AND gender=male AND smoker=1”. Next, the analyst

3 The parameter space is also sometimes called the “domain” of the database.

284 R. Munz et al.

runs an aggregate query like count, sum or average on this selected subspace.
To protect privacy, UniTraX adds random noise to the result of the query. The
amount of noise added is determined by a privacy parameter, ε, that the analyst
provides with the query. For lower values of ε, the result is more noisy, but the
reduction of privacy budget is less (thus leaving more budget for future queries).

The novel aspect of UniTraX is how it tracks budgets. When an aggregate
query with privacy parameter ε is made on a selected subspace S, UniTraX
simply records that budget ε has been consumed from subspace S. The remaining
budget of any point in the parameter space is the point’s initial budget (from
the point’s designated initial budget field) minus the ε’s of all past queries that
ran on subspaces containing the point.

The consumed budgets of all subspaces are public—analysts can ask for them
at any time. This allows analysts to determine which subspaces have been heavily
queried in the past and, hence, become aware of possible data biases. Moreover,
analysts may select only subspaces with sufficient remaining budgets in subse-
quent queries, thus increasing their confidence in analysis outcomes, as illustrated
in Sect. 2.

To respect privacy budgets, it is imperative that a query with privacy param-
eter ε does not execute on any points whose remaining budget is less than ε.
This is enforced by query rejection, where a query is executed only if all points
in the selected subspace have remaining budget at least ε. Note that this check
is made on not only actual records but all points in the selected subspace. If
any such point does not have sufficient remaining budget, the query is rejected
and an error is returned to the analyst (who may then select a smaller subspace
with higher initial budgets and retry the query). Whether a query is executed or
rejected depends only on the consumption history, which is public, so rejecting
the query provides no additional information to the analyst.

Initial Budgets. UniTraX is agnostic to the method used to determine initial
budgets of actual records and supports any scheme for setting initial budgets on
actual records. The simplest scheme would assign the same, fixed initial budget
to every actual record. A more complex scheme may allow users to choose from
a small fixed set of initial budgets for each record they provide, while the most
complex scheme may let users freely choose any initial budget for every record.

4 Formal Description and Differential Privacy

In this section, we describe UniTraX using a formal model. We specify the dif-
ferential privacy property that we expect UniTraX to satisfy and formally prove
that the property is indeed satisfied. Our formalization is directly based on
ProPer’s formalization [10], which we find both elegant and natural.

4.1 Formal Model of UniTraX

Database. We treat the database as a table with n columns of arbitrary types
C1, . . . , Cn and an initial budget column—a non-negative real number. The type

UniTraX: Protecting Data Privacy with Discoverable Biases 285

of each record, also called the parameter space, is R = C1 × . . .×Cn ×CB , where
CB = R

≥0 is the type of the initial budget column. At any point of time, the
state of the database is a set E of records from the parameter space (E ∈ 2R).

UniTraX. UniTraX acts as a reference monitor between the database and the
analyst. Its internal state consist of two components: (1) the consumption history
H and (2) the select table T .

1. UniTraX tracks the budget consumed by past queries on every subspace of
the parameter space. Formally, this is equivalent to storing a map from points
in the parameter space to non-negative real numbers. We call this map the
consumption history, denoted H. H has the type H = R → R

≥0. Intuitively,
H(r) is the amount of budget consumed by past queries that ran on subspaces
containing the point r of the parameter space.

2. To run an aggregate query in UniTraX, the analyst must first select a sub-
space of the parameter space. To support selection of records that have at
least a stipulated remaining budget, UniTraX allows selected subspaces to also
span the consumption history. Consequently, a selected subspace is a subset
of R×R

≥0 (points extended with their consumed budgets). We represent such
subspaces via logical predicates sspace of type P = R × R

≥0 → {true, false}.
For the analyst’s convenience, UniTraX allows storing a list of selected sub-
spaces, indexed by subspace variables drawn from a set SVar. UniTraX stores
the association between subspace variables and subspaces in a select table, T ,
of type SVar → P.

Analyst. We model an adaptive analyst, who queries UniTraX based on an inter-
nal program and previously received answers. Formally, the analyst is a (possibly
infinite) state machine with states denoted by P and its decorated variants, and
state transitions defined by the relation P

a−−→ P ′. Here a, b denote interactions
between the analyst and UniTraX. Allowed interactions are summarized in Fig. 2.
Note that interactions consist of either an instruction to, or an observable output
from UniTraX, or both. In detail, the interactions are:

– sv := sspace represents the instruction to UniTraX to associate the subspace
variable sv with the subspace sspace, which must be in P. This models the
selection of a subspace (for use in later aggregation queries).

– Qε(sv)?n models the instruction to UniTraX to run the aggregation query Q
with privacy parameter ε on the subspace previously mapped to variable sv .
The interaction also includes the noised result n of the query. If some point
in subspace sv has remaining budget less than ε, the output n is ‘reject’.

– update represents an output from UniTraX to the analyst indicating that the
database has been updated. The output does not specify which records were
added or deleted (else the analyst could trivially break DP).

– read?H models reading the entire current consumption history by the analyst.
H is the history returned by UniTraX.

286 R. Munz et al.

a, b ::= sv := sspace select subspace sspace and name it sv
Qε(sv)?n run aggregation query Q on sv , observe output n
update database update
read?H read consumption history, result is H

Fig. 2. Allowed interactions between analyst and UniTraX

We make no assumptions about the analyst (i.e., its state machine).
It may select any subspace, run any aggregation query, and read the consump-
tion history at any time. However, for technical reasons we assume (like ProPer)
that the analyst is internally deterministic and deadlock-free, meaning that it
branches only on observable output from the database and that it can always
make progress.4 Our assumptions are formalized by the following condition:
If P

a−−→ P ′ and P
b−−→ P ′′, then

1. if a = b then P ′ = P ′′

2. if a = (sv := sspace) then a = b
3. if a = Qε(sv)?n then b = Qε(sv)?n′ for some n′ and for all n′′ there

exists P ′′′ with P
Qε(sv)?n

′′
−−−−−−−−→ P ′′′

4. if a = read?H then b = read?H ′ for some H ′ and for all H ′′ there
exists P ′′′ with P

read?H′′
−−−−−−−→ P ′′′

Configuration. A configuration C = (P,E,H, T) represents the state of the
complete system. It includes the state of the analyst (P), the database of actual
records (E) and the internal state of UniTraX (consumption history H and select
table T).

Execution Semantics. We model the evolution of the system using transitions
C

α−−→p C′. Here, α ∈ Act denotes an action label describing an operation within
the system and p is a transition probability (real number between 0 and 1). The
transition C

α−−→p C′ reads as follows: If, in configuration C, the operation α
happens, then, with probability p, the configuration changes to C′. α may be
any one of:

– τ : analyst selects a subspace
– n ∈ Val: query by analyst that returns result n
– reject: query by analyst that is rejected
– Rin : Rdel: database update that adds records Rin and removes records Rdel

– H: analyst reads consumption history H

The transition system C
α−−→p C′ is defined by the five rules shown in Fig. 3.

These rules model the system’s behavior as follows.
(Update) Models a database update by adding some record set Rin and remov-
ing some record set Rdel from the database E. This transition returns to the
analyst the observable output ‘update’ (first premise).
4 These restrictions do not affect the analyst’s attack capabilities.

UniTraX: Protecting Data Privacy with Discoverable Biases 287

Fig. 3. Semantics of UniTraX

(Select) Represents the analyst’s selection of subspace sspace, naming it sv .
(Read-History) Denotes the analyst reading the current consumption history
H. This rule forces our privacy proofs to internally show that the consumption
history is indeed public.
(Query) Models the successful execution of aggregation query Q on subspace
sspace identified by sv with privacy parameter ε. The execution requires all
points in sspace to have a remaining budget of at least ε. A point r is in sspace
if sspace(r,H(r)) = true. (In the rule, r.cB is short-hand for the initial budget
column of point r.) As a consequence of the query, two things happen. First, the
consumption history of all points in the subspace is increased by ε, to record that
a query with privacy parameter ε has run on the subspace. Second, the answer to
query Q executed over those records that are both in the subspace and actually
exist in the database E (selected by the operation E|sspace,H) is returned to
the analyst after adding differentially private noise for the parameter ε. The
transition’s probability p is equal to the probability of getting the specific noised
answer for the query (the noised answer is denoted n in the rule).
(Reject) Represents UniTraX’s rejection of query Q due to some point in the
query’s selected subspace not having sufficient remaining budget. The analyst
observes a special response ‘reject’ (first premise).

288 R. Munz et al.

With the notable exception of (Query), all rules are deterministic—they
happen with probability 1 (the p in α−−→p is 1).

Trace Semantics. The relation C
α−−→p C′ describes a single step of system evo-

lution. We lift this definition to multiple steps. A trace σ is a (possibly empty)
finite sequence of labels α1, . . . , αn. We write C

σ==⇒q C′ to signify that config-
uration C evolves in multiple steps to configuration C′ with probability q. The
individual steps of the evolution have labels in σ. Formally, we have:

C
[]

==⇒1 C

C
α−−→p C′ C′ σ==⇒q C′′

C
α σ===⇒p·q C′′

We abbreviate C
σ==⇒q C′ to C

σ==⇒q when C′ is irrelevant.
Note that from the transition semantics (Fig. 3) it follows that a trace σ

records all updates to the database and all observations of the analyst (the
latter is comprised of all responses from UniTraX to the analyst).

Extension to Silent Record Dropping. Up to this point, our design rejects a query
whose selected subspace includes at least one point with insufficient remaining
budget. This protects user privacy and prevents unknown dataset bias. However,
in some cases, an analyst might prefer the risk of unknown dataset bias over
modifying their existing programs to handle query rejections. This might be
the case, for instance, if the analyst already knows by other means that the
percentage of records with insufficient budget will be negligible. In this case, it
would be preferable to automatically drop records with insufficient budget during
query execution, as in ProPer. It turns out that we can provide silent record
dropping without weakening the privacy guarantee. In the following paragraph,
we detail a simple extension of UniTraX that allows the analyst to specify for
each query individually whether the system should silently drop records with
insufficient remaining budgets instead of rejecting the query.

In order to enable silent record dropping, we introduce an extended
query interaction Qdrop

ε (sv)?n for the analyst’s program. Unlike the previously
described interaction, Qε(sv)?n, this interaction cannot fail (be rejected). The
semantics of Qdrop

ε (sv)?n is defined by the new rule (Query-Drop) shown in
Fig. 4. The query executes on those records in database E that (1) are in sub-
space sspace, and (b) have remaining budget at least ε. These records are selected
by E‖sspace,H,ε. As a consequence of the query, two things happen. First, the
consumption history of all points in the parameter space satisfying (1) and (2) is
increased by ε. Second, the answer of the query is returned to the analyst with
probability p, which is determined by the same method used in (Query).

4.2 Privacy Property and Its Formalization

UniTraX respects the initial privacy budget of every record added to the database
in the sense of differential privacy. Before explaining this property formally, we
recap the standard notion of differential privacy due to Dwork et al. [6].

UniTraX: Protecting Data Privacy with Discoverable Biases 289

Fig. 4. Semantics extension for silent record dropping

Standard Differential Privacy. Let Q be a randomized algorithm on a database
that produces a value in the set V . For example, the algorithm may compute
a noisy count of the number of entries in the database. We say that Q is ε-
differentially private if for any two databases D,D′ that differ in one record and
for any V ′ ⊆ V , ∣

∣
∣
∣
ln

(
Pr [Q(D) ∈ V ′]
Pr [Q(D′) ∈ V ′]

)∣
∣
∣
∣
≤ ε.

In words, the definition says that for two databases that differ in only one record,
the probabilities that the analyst running Q makes a specific observation are very
similar. This means that any individual record does not significantly affect the
probability of observing any particular outcome. Hence, the analyst cannot infer
(with high confidence) whether any specific record exists in the database.

If the analyst runs n queries that are ε1-, . . . , εn-differentially private, then
the total loss of privacy is defined as ε1+ . . .+εn. Typically, a maximum privacy
budget is set when the analyst is given access to the database and after each ε-
differentially private query, ε is subtracted from this budget. Once the budget
becomes zero, no further queries are allowed. In this mode of use, DP guarantees
that for any two possible databases D,D′ that differ in at most one record, for
any sequence of queries Q, and for any sequence of observations o,

∣
∣
∣
∣
ln

(
Pr [Q results in o on D]
Pr [Q results in o on D′]

)∣
∣
∣
∣
≤ η,

where η is the privacy budget.

Our Privacy Property. We use the same privacy property as ProPer. This pri-
vacy property generalizes differential privacy described above by accounting for
dynamic addition and deletion of records and, importantly, allowing all new
records to carry their own initial budgets. Informally, our privacy property is
the following. Consider two possible traces σ0 and σ1 that can result from the
same starting configuration. Suppose that σ0 and σ1 differ only in the updates
made to the database and are otherwise identical. Let p0 and p1 be the respective
probabilities of the traces. Then,

∣
∣
∣ln

(
p0
p1

)∣
∣
∣ ≤ η, where η is the sum of the initial

budgets of all records in which the database updates differ between σ0 and σ1.

290 R. Munz et al.

Fig. 5. Trace distance

Why is this a meaningful privacy property? We remarked earlier that a trace
records all observations that the analyst (adversary) makes. Consequently, by
insisting that the traces agree everywhere except on database updates, we are
saying that the two traces agree on the analyst’s observations. Hence, if an
analyst makes a sequence of observations under database updates from σ0 with
probability p0, then the probability that the analyst makes the same observations
under database updates from σ1 is very close to p0. In fact, the log of the ratio of
the two probabilities is bounded by the sum of the initial budgets of the records
in which the updates differ. This is a natural generalization of DP’s per-database
budgets to per-record budgets.

To formalize this property, we define a partial function dist(σ, σ′) that returns
the set of records in which database updates in σ and σ′ differ if σ and σ′ agree
pointwise on all labels other than database updates. If σ and σ′ differ at a label
other than database update then dist(σ, σ′) is undefined. The formal definition
is shown in Fig. 5.

Definition 1 (Privacy). We say that UniTraX preserves privacy if whenever
C

σ0==⇒p0
and C

σ1==⇒p1
and dist(σ0, σ1) = R, then

∣
∣
∣ln

(
p0
p1

)∣
∣
∣ ≤

∑

r∈R

r.cB.

Our main result is that UniTraX is private in the sense of the above definition.

Theorem 1 (Privacy of UniTraX). UniTraX preserves privacy in the sense
of Definition 1.

We prove this theorem by first proving a strong invariant of configurations
that takes into account how UniTraX tracks the consumption history. The entire
proof is in our technical report [19].

5 Implementation

We have implemented UniTraX on top of PINQ, an earlier framework for enforc-
ing differential privacy with a global budget for the database [17]. We briefly
review relevant details of PINQ before explaining our implementation.

PINQ Review. PINQ adds differential privacy to LINQ, a general-purpose data-
base query framework. LINQ defines Queryable objects, abstractions over data
sources, e.g., a database table. The Queryable object may be transformed by a
SQL SELECT-like operation to obtain another Queryable object representing
selected records from the table. One may run an aggregate query on this second
object to obtain a specific value.

UniTraX: Protecting Data Privacy with Discoverable Biases 291

Building on LINQ, PINQ maintains a global privacy budget for the entire
database. This budget is set when a Queryable object is initialized. Subse-
quently, differentially-private noise is added to every aggregation query on every
object derived from this Queryable object and the global budget is appropriately
reduced.

UniTraX Implementation. Our implementation currently supports only query
execution with rejection. The main addition to PINQ is tracking of consump-
tion budgets over subspaces. In principle, we must store the consumption budget
for every point in the parameter space. In practice, queries tend to select contigu-
ous ranges, so at any point of time, the parameter space splits into contiguous
subspaces, each with a uniform consumption budget. Accordingly, our imple-
mentation tries to cluster contiguous subspaces with identical consumption and
represents them efficiently.

Our interface defines a new object type, UQueryable, which represents a
subspace. Like Queryable, this object can be transformed via SQL SELECT-like
operations to derive other, smaller UQueryable objects. To run an analysis on
a subspace, the analyst invokes a special function, GetAsPINQ, to convert a
UQueryable object representing the subspace into a PINQ object representing
the same subspace. This special function also takes as an argument a budget,
which the analysis will eventually consume. The function first checks that this
budget is larger than the remaining budget of all points in the subspace. If not,
the function fails. Otherwise, this budget is immediately added to the consump-
tion budget of the subspace and a fresh PINQ object initialized with this budget
is returned. Subsequently, the analyst can run any queries on the PINQ object
and PINQ’s existing framework enforces the allocated budget.

We also provide a new interface to the analyst to ask for the maximum budget
consumed in a given subspace.

Typical Analysis Workflow. We briefly describe the steps an analyst must follow
to run an analysis on our implementation. Assume that the analyst wants to
analyze records within a specific subspace with a set of queries that require a
certain amount of budget to run successfully. Further assume that the analysis
needs to run on a stipulated minimum number of user records for its results to
be meaningful. The analyst would perform the following steps:

1. Obtain the initial UQueryable object representing the entire database.
2. Select the desired subspace obtaining another UQueryable object.
3. Obtain the maximum budget consumed on the second object.
4. Add the budget required for the analysis and a budget for a noisy count to

the just-obtained maximum budget.
5. Select the subspace that has at least the just-calculated sum of budgets avail-

able, obtaining yet another UQueryable object.
6. Obtain a PINQ object from the last UQueryable object with the PINQ budget

set to the budget of the count.
7. Perform a (noisy) count on the PINQ object. If it is too low, stop here.

292 R. Munz et al.

8. Otherwise, obtain another PINQ object, this time with the budget required
for the analysis.

9. Perform the analysis on the second PINQ object. All records in the PINQ
object have enough budget for the full analysis.

Data Stream Analysis. UniTraX can be directly used for analysis on streams of
data since its design and privacy proof already take record addition and deletion
into account. To allow analysts to use the full budget of newly arriving records,
we assume records to be timestamped on arrival; this timestamp is another
column in our parameter space. At any time, all active analyses use points with
timestamps in a specific window of time only. When the budgets of points in
the window run out, the window is shifted to newer timestamps. Records with
timestamps in the old window can be discarded. All analyses share the budgets
of points in the active time window.

6 Preliminary Evaluation

This section presents a preliminary evaluation of the performance of our imple-
mentation of UniTraX. It is preliminary in that (1) it uses only one dataset (the
New York City taxi ride dataset [18,21]), and (2) we carry out only one “anal-
ysis session”. The session consists of queries that perform the basic statistical
operations of count, average, and median.

Objective. Of primary interest to us is the increase in end-to-end latency expe-
rienced by the analyst (time from query submission to answer reception) as
compared to both PINQ (reference DP) and LINQ (baseline that provides no
privacy). Additionally, we want to understand the overhead of storing UniTraX’s
budget consumption history data structure.

In absolute terms, these overheads are a function of the access pattern on
the parameter space. The exact column names, the data in them or the precise
queries do not matter for this. Nonetheless, we briefly describe the dataset we
use and the queries we run. The queries are deliberately chosen to be simple
since long-running, complex queries will mask UniTraX’s relative overheads.

Dataset. We use all taxi rides of New York City reported for January 2013
(≈14M records). We modify these records to only contain numerical data and
add an additional initial budget for each. For the purpose of our measurements
all budgets are chosen high enough so that no budgets expire.

Analysis Session. Our session is roughly patterned off of the analysis of the
same dataset described in [12]. The session consists of 1213 queries split into
three groups. The first group covers the entire geographic area, and consists of
six histograms for different columns. The subsequent groups focus on a 16 × 16
grid of squares in Manhattan. The second group of queries counts the number of
rides in each square, and takes averages over two different columns for squares

UniTraX: Protecting Data Privacy with Discoverable Biases 293

that have more than 5000 rides with sufficient budget. The third group counts
rides again and takes the median of one column for squares that have more than
1000 rides with sufficient budget.

Experimental Setups. We run the session over each of the following three setups:

1. Directly on LINQ using the LINQ-to-SQL interface (no privacy protection).
2. Through a PINQ object (DP protection with a global budget).
3. With UniTraX.

All numbers presented in this section are averages of five runs of the session.

Hardware. All experiments run on two identical commodity Dell PowerEdge
M620 blade systems. Each is equipped with dual Intel Xeon E5-2667 v2 8-
core CPUs with Hyperthreading (total of 32 hardware threads per machine) and
256 GB of main memory. Both systems are connected to the same top-of-rack
switch with two bonded 1 Gbit/s connections each.

Software. We use Microsoft Windows Server 2016 on both systems. The first
system runs both UniTraX as well as the client query program. Microsoft Visual
Studio Community 2015 is the only additional software installed for these tasks.
The second system runs Microsoft SQL Server 2016 Developer Edition as the
remote database server. To optimize database performance we put data and
index files of our database onto a RAM-disk, create indexes that fit our queries,
and make the database read-only.

Absolute and Relative Latency Overheads. Figure 6 presents absolute end-to-end
latencies for the three experimental setups: direct, only PINQ, and UniTraX. A
random 5% sample of the 1213 queries is shown, sorted on the x-axis by increas-
ing latency with respect to the direct experiment. Overheads are moderate. As
expected, UniTraX is usually slower than PINQ, which is slower than direct
query execution without any privacy protection. In 3.2% of the cases, UniTraX
outperforms direct and PINQ. We verified that in these cases the database server
chose to do a sequential table scan for direct and PINQ but a parallel and thus
faster index scan for UniTraX. We were unable to force parallel execution for
direct and PINQ.

Figure 7 presents a CDF for all 1213 queries in terms of the overhead of
UniTraX relative to direct and PINQ respectively. We observe that in half of the
cases, UniTraX is 1.5x slower than PINQ and 2x slower than the direct case. At
the 99th-percentile UniTraX is 2.5x slower than PINQ and 3.5x slower than the
direct case. The figure includes a tail between 0 and 1, indicating that UniTraX
is sometimes faster than PINQ or the direct case. As explained before, this
behavior is due to the database choosing sub-optimal query plans for PINQ and
the direct case. On average, UniTraX is 1.3x slower than PINQ and 1.8x slower
than the direct case. In summary, latency overheads introduced by UniTraX are
moderate.

294 R. Munz et al.

Query

direct
PINQ

UniTrax

Fig. 6. End-to-end latencies of a 5% sample of the 1213 queries ordered according to
latencies of direct. The trend in the order of performance is evident. UniTraX is slower
than PINQ, which is slower than direct. Where UniTraX outperforms the others, the
database chose a better query plan for UniTraX’s queries.

C
D
F

Fig. 7. CDF of relative overheads incurred by UniTraX across all 1213 queries. At
the 99th-percentile UniTraX is 2.5x slower than PINQ and 3.5x slower than the direct
case. The initial tail of inverse overhead before 1 consists of 3.2% of queries where the
database chooses sub-optimal query plans for PINQ and the direct case.

Size of Budget Tracking State. Figure 8 shows the number of subspaces tracked
by UniTraX at the beginning of each query. Numbers are again ordered according
to query latencies in the direct case (see Fig. 6). These numbers do not change
across different runs. The two curves represent two analyst query strategies, one
with and one without re-balancing. These two curves illustrate that the analyst
can dramatically affect the size of the budget tracking state based on how queries
are formulated.

Su
bs
pa
ce
s

Query

Fig. 8. Number of subspaces UniTraX tracks throughout the execution of the queries
shown in Fig. 6. Reported numbers are obtained at the beginning of each query and do
not change across different runs. The different curves represent two different analyst
query strategies, one where the analyst only requests data of interest (w/o RB), and
one where the analyst requests extra data in order to improve UniTraX’s re-balancing
(w/ RB). This shows that analysts can substantially reduce the overhead of UniTraX
through careful selection of query parameters.

UniTraX: Protecting Data Privacy with Discoverable Biases 295

In the “without re-balancing” strategy (w/o RB), the analyst queries data
only within a range of interest. For instance, suppose that the analyst is inter-
ested in a histogram of fares between $0 and $100. The analyst may request
ten $10 bars. As long as each bar consumes the same budget, UniTraX will
optimize tracking state and merge the subspaces of these 10 bars into a sin-
gle subspace. The range above the histogram (above $100), however, cannot be
merged. As a result, UniTraX stores two subspaces for the fare column. The same
happens with other columns, with the result that there is a combinatoric explo-
sion in the number of subspaces because of the combinations of the columns’
multiple subspaces.

In the “with re-balancing” strategy (w/ RB), the analyst instead queries
data that covers the full range of a column, even though the analyst may not
be interested in all of that range, or may even know that no data exists in some
subrange (e.g., no taxi pickups over water). As a result, UniTraX is able to
merge more subspaces, even those of different columns. At the cost of budget,
this reduces the number of subspaces substantially, in this case by more than
an order of magnitude. Re-balancing thus allows analysts to trade-off overheads
against budget savings.

7 Related Work

Due to its age, the area of privacy-preserving data analytics has amassed a vast
amount of work. The related work section of [16] provides a good overview of
early work in this space. Around ten years ago Dwork et al. introduced differen-
tial privacy or DP [6], which quickly developed into a standard for private data
analytics research (see [7,8]). In this section, we focus on research that investi-
gates heterogeneous or personalized budgets, tracking of personalized budgets,
private analytics on dynamic data sets, and PINQ, the system our implementa-
tion is based on.

Alaggan et al. [1] propose heterogeneous differential privacy (HDP) to deal
with user-specific privacy preferences. They allow users to provide a separate pri-
vacy weight for each individual data field, a granularity finer than that supported
by UniTraX. However, the total privacy budget is a global parameter. When
computing a statistical result over the dataset, HDP perturbs each accessed
data value individually according to its weight and the global privacy budget.
UniTraX can be extended to support per field rather than per record budgets
at the cost of additional runtime latency. Further, UniTraX allows analysts to
query parts of a dataset without consuming the privacy budget of other parts.
UniTraX also supports a greater set of analytic functions, e.g., median. HDP
does not provide these capabilities. Queries can only run over the whole dataset
and, as privacy weights are secret, the exact amount of answer perturbation
remains unknown to the analyst.

Jorgensen et al.’s personalized differential privacy (PDP) is a different app-
roach to the same problem [15]. In contrast to UniTraX, PDP trusts analysts
and assumes that per-user budgets are public. It tracks the budget globally but

296 R. Munz et al.

manages to avoid being limited to the most restrictive user’s budget by allow-
ing the analyst to sample the dataset prior to generating any statistical output.
Depending on the sampling parameters the analyst is able to use more than the
smallest user budget for a query (but on a subset of records). PDP only supports
querying the entire dataset at once. Nevertheless, we believe that a combination
of PDP and UniTraX could be useful, in particular to allow analysts to make
high budget queries on low budget records. The combination could also do away
with PDP’s assumption that analysts be trusted.

In place of personalized privacy protection, Nissim et al. [20] and earlier
research projects [5,14] provide users different monetary compensation based
on their individual privacy preferences. It is unclear whether these models can
be combined with UniTraX as they do not provide any personalized privacy
protection. Users with a higher valuation receive a higher compensation but
suffer the same privacy loss as other users.

Despite allowing users to specify individual privacy preferences, all the above
systems track budget globally and do not allow analysts to selectively query
records and consume budget only from the queried records. To the best of our
knowledge, ProPer [10] is the only system that allows this. We compared exten-
sively to ProPer in Sect. 2. Our formal model in Sect. 4 is also based on ProPer’s
formal model. Google’s RAPPOR [11] likewise provides differential privacy guar-
antees based on user-provided parameters, but the system model is significantly
different from ours and the privacy guarantee holds only when certain cross-
query correlations do not occur. In contrast, we (and ProPer) need no such
assumptions.

Differential privacy is being increasingly applied to dynamic datasets rather
than static databases. Since the first consideration of such scenarios in 2010 [9],
numerous systems have emerged [2–4,13,22,23] that aggregate dynamic data
streams rather than static datasets in a privacy-preserving manner. UniTraX and
ProPer can be immediately used for dynamic data streams since their designs
and privacy proofs already take record addition and deletion into account.

As explained in Sect. 5, our UniTraX implementation is based on the Pri-
vacy Integrated Queries (PINQ) [17] platform, which offers privacy-preserving
data analysis capabilities. PINQ, in turn, is based on the Language Integrated
Queries (LINQ) framework, a well-integrated declarative extension of the .NET
platform. LINQ provides a unified object-oriented data access and query inter-
face, allowing analysts data access independent of how the data is provided and
where the answer is finally computed. Data providers can be switched without
changing code and can be, e.g., local files, remote SQL servers, or even mas-
sive parallel cluster systems like DryadLINQ [24]. PINQ provides a thin DP
wrapper over LINQ. For all queries, it ensures that sufficient budget is available
and that returned answers are appropriately noised. The maximum budget must
be provided during object initialization. Our implementation uses PINQ in an
unconventional way—we initialize a new PINQ object prior to every data analy-
sis, and use PINQ to enforce a stipulated budget. Additionally, we track budget
consumption on subspaces of the parameter space across queries.

UniTraX: Protecting Data Privacy with Discoverable Biases 297

8 Conclusion and Future Work

This paper presented UniTraX, the first differentially private system that sup-
ports per-record privacy budgets, tells the analyst where (in the parameter space)
budgets have been used in the past, and allows the analyst to query only those
points that still have sufficient budget for the analyst’s task. UniTraX attains
this by tracking budget consumption not on actual records in the database,
but on points in the parameter space. As a result, information about budget
consumption reveals nothing about actual records to the analyst.

We have also presented a formal model of UniTraX and a formal proof that
UniTraX respects differential privacy for all records. Our prototype implemen-
tation incurs moderate overheads on a realistic workload.

There are several directions for future work. First, our implementation is not
very optimized and there is scope for reducing overheads even further. Second,
UniTraX can be extended to track budgets at even finer granularity, e.g., a
budget for every field. Third, one could investigate how queries can be optimized
to reduce budget consumption.

References

1. Allagan, M., Gambs, S., Kermarrec, A.M.: Heterogeneous differential privacy. J.
Priv. Confidentiality 7(2), 127–158 (2016). Article 6, http://repository.cmu.edu/
jpc/vol7/iss2/6/

2. Chan, T.-H.H., Li, M., Shi, E., Xu, W.: Differentially private continual monitoring
of heavy hitters from distributed streams. In: Fischer-Hübner, S., Wright, M. (eds.)
PETS 2012. LNCS, vol. 7384, pp. 140–159. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31680-7 8

3. Chan, T.-H.H., Shi, E., Song, D.: Private and continual release of statistics. ACM
Trans. Inf. Syst. Secur. (TISSEC) 14(3), 26:1–26:24 (2011). https://doi.org/10.
1145/2043621.2043626

4. Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with
fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 15

5. Dandekar, P., Fawaz, N., Ioannidis, S.: Privacy auctions for recommender systems.
In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 309–322. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35311-6 23

6. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg
(2006). https://doi.org/10.1007/11787006 1

7. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79228-4 1

8. Dwork, C.: A firm foundation for private data analysis. Commun. ACM (CACM)
54(1), 86–95 (2011). https://doi.org/10.1145/1866739.1866758

9. Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy under con-
tinual observation. In: Mitzenmacher, M., Schulman, L.J. (eds.) Proceedings of
the 42nd ACM Symposium on Theory of Computing (STOC 2010), pp. 715–724.
ACM, New York (2010). https://doi.org/10.1145/1806689.1806787

http://repository.cmu.edu/jpc/vol7/iss2/6/
http://repository.cmu.edu/jpc/vol7/iss2/6/
https://doi.org/10.1007/978-3-642-31680-7_8
https://doi.org/10.1007/978-3-642-31680-7_8
https://doi.org/10.1145/2043621.2043626
https://doi.org/10.1145/2043621.2043626
https://doi.org/10.1007/978-3-642-32946-3_15
https://doi.org/10.1007/978-3-642-35311-6_23
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1145/1866739.1866758
https://doi.org/10.1145/1806689.1806787

298 R. Munz et al.

10. Ebadi, H., Sands, D., Schneider, G.: Differential privacy: now it’s getting per-
sonal. In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2015), pp. 69–81. ACM, New York (2015). https://doi.org/10.1145/2676726.
2677005

11. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable
privacy-preserving ordinal response. In: Ahn, G., Yung, M., Li, N. (eds.) Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security (CCS 2014), pp. 1054–1067. ACM, New York (2014). https://doi.org/10.
1145/2660267.2660348

12. Esṕın Noboa, L., Lemmerich, F., Singer, P., Strohmaier, M.: Discovering and char-
acterizing mobility patterns in urban spaces: a study of Manhattan taxi data. In:
Bourdeau, J., Hendler, J., Nkambou, R., Horrocks, I., Zhao, B.Y. (eds.) Proceed-
ings of the 25th International Conference Companion on World Wide Web (WWW
2016 Companion), pp. 537–542. International World Wide Web Conferences Steer-
ing Committee, Republic and Canton of Geneva, Switzerland (2016). https://doi.
org/10.1145/2872518.2890468

13. Friedman, A., Sharfman, I., Keren, D., Schuster, A.: Privacy-preserving distributed
stream monitoring. In: Proceedings of the 21st Annual Symposium on Network
and Distributed System Security (NDSS 2014). ISOC (2014). https://doi.org/10.
14722/ndss.2014.23128

14. Ghosh, A., Roth, A.: Selling privacy at auction. In: Shoham, Y., Chen, Y., Rough-
garden, T. (eds.) Proceedings of the 12th ACM Conference on Electronic Com-
merce (EC 2011), pp. 199–208. ACM, New York (2011). https://doi.org/10.1145/
1993574.1993605

15. Jorgensen, Z., Yu, T., Cormode, G.: Conservative or liberal? Personalized differ-
ential privacy. In: Gehrke, J., Lehner, W., Shim, K., Cha, S.K., Lohman, G.M.
(eds.) Proceedings of the 31st IEEE International Conference on Data Engineering
(ICDE 2015), pp. 1023–1034. IEEE (2015). https://doi.org/10.1109/ICDE.2015.
7113353

16. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data (TKDD) 1(1)
(2007). Article 3, https://doi.org/10.1145/1217299.1217302

17. McSherry, F.: Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In: Çetintemel, U., Zdonik, S.B., Kossmann, D., Tatbul,
N. (eds.) Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD 2009), pp. 19–30. ACM, New York (2009). https://doi.
org/10.1145/1559845.1559850

18. Monroy-Hernández, A.: NYC taxi trips, June 2014. http://www.andresmh.com/
nyctaxitrips/

19. Munz, R., Eigner, F., Maffei, M., Francis, P., Garg, D.: UniTraX: protecting data
privacy with discoverable biases. Technical report MPI-SWS-2018-001, Max Planck
Institute for Software Systems (MPI-SWS), Kaiserslautern and Saarbrücken, Ger-
many, February 2018. https://www.mpi-sws.org/tr/2018-001.pdf

20. Nissim, K., Vadhan, S.P., Xiao, D.: Redrawing the boundaries on purchasing data
from privacy-sensitive individuals. In: Naor, M. (ed.) Proceedings of the 5th Con-
ference on Innovations in Theoretical Computer Science (ITCS 2014), pp. 411–422.
ACM, New York (2014). https://doi.org/10.1145/2554797.2554835

21. NYC Taxi & Limousine Commission: TLC trip record data, May 2017. http://
www.nyc.gov/html/tlc/html/about/trip record data.shtml

https://doi.org/10.1145/2676726.2677005
https://doi.org/10.1145/2676726.2677005
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/2872518.2890468
https://doi.org/10.1145/2872518.2890468
https://doi.org/10.14722/ndss.2014.23128
https://doi.org/10.14722/ndss.2014.23128
https://doi.org/10.1145/1993574.1993605
https://doi.org/10.1145/1993574.1993605
https://doi.org/10.1109/ICDE.2015.7113353
https://doi.org/10.1109/ICDE.2015.7113353
https://doi.org/10.1145/1217299.1217302
https://doi.org/10.1145/1559845.1559850
https://doi.org/10.1145/1559845.1559850
http://www.andresmh.com/nyctaxitrips/
http://www.andresmh.com/nyctaxitrips/
https://www.mpi-sws.org/tr/2018-001.pdf
https://doi.org/10.1145/2554797.2554835
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

UniTraX: Protecting Data Privacy with Discoverable Biases 299

22. Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series
with transformation and encryption. In: Elmagarmid, A.K., Agrawal, D. (eds.)
Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD 2010), pp. 735–746. ACM, New York (2010). https://doi.org/10.
1145/1807167.1807247

23. Shi, E., Chan, T.-H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggre-
gation of time-series data. In: Proceedings of the Symposium on Network and Dis-
tributed System Security (NDSS 2011). ISOC (2011). https://www.isoc.org/isoc/
conferences/ndss/11/pdf/9 3.pdf

24. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, Ú., Gunda, P.K., Currey,
J.: DryadLINQ: a system for general-purpose distributed data-parallel computing
using a high-level language. In: Draves, R., van Renesse, R. (eds.) Proceedings of
the 8th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2008), pp. 1–14. USENIX (2008). https://www.usenix.org/event/osdi08/
tech/full papers/yu y/yu y.pdf

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/1807167.1807247
https://doi.org/10.1145/1807167.1807247
https://www.isoc.org/isoc/conferences/ndss/11/pdf/9_3.pdf
https://www.isoc.org/isoc/conferences/ndss/11/pdf/9_3.pdf
https://www.usenix.org/event/osdi08/tech/full_papers/yu_y/yu_y.pdf
https://www.usenix.org/event/osdi08/tech/full_papers/yu_y/yu_y.pdf
http://creativecommons.org/licenses/by/4.0/

	UniTraX: Protecting Data Privacy with Discoverable Biases
	1 Introduction
	2 System Comparison
	3 Design Overview
	4 Formal Description and Differential Privacy
	4.1 Formal Model of UniTraX
	4.2 Privacy Property and Its Formalization

	5 Implementation
	6 Preliminary Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

