
Concurrency and Privacy with Payment-Channel Networks
Giulio Malavolta

∗

Friedrich-Alexander-University

Erlangen-Nürnberg

malavolta@cs.fau.de

Pedro Moreno-Sanchez*

Purdue University

pmorenos@purdue.edu

Aniket Kate

Purdue University

aniket@purdue.edu

Matteo Maffei

TU Wien

matteo.maffei@tuwien.ac.at

Srivatsan Ravi

University of Southern California

srivatsr@usc.edu

ABSTRACT
Permissionless blockchains protocols such as Bitcoin are inherently

limited in transaction throughput and latency. Current efforts to

address this key issue focus on off-chain payment channels that

can be combined in a Payment-Channel Network (PCN) to enable

an unlimited number of payments without requiring to access the

blockchain other than to register the initial and final capacity of

each channel. While this approach paves the way for low latency

and high throughput of payments, its deployment in practice raises

several privacy concerns as well as technical challenges related to

the inherently concurrent nature of payments that have not been

sufficiently studied so far.

In this work, we lay the foundations for privacy and concur-

rency in PCNs, presenting a formal definition in the Universal

Composability framework as well as practical and provably se-

cure solutions. In particular, we present Fulgor and Rayo. Fulgor

is the first payment protocol for PCNs that provides provable pri-

vacy guarantees for PCNs and is fully compatible with the Bitcoin

scripting system. However, Fulgor is a blocking protocol and there-

fore prone to deadlocks of concurrent payments as in currently

available PCNs. Instead, Rayo is the first protocol for PCNs that

enforces non-blocking progress (i.e., at least one of the concurrent
payments terminates). We show through a new impossibility re-

sult that non-blocking progress necessarily comes at the cost of

weaker privacy. At the core of Fulgor and Rayo is Multi-Hop HTLC,

a new smart contract, compatible with the Bitcoin scripting system,

that provides conditional payments while reducing running time

and communication overhead with respect to previous approaches.

Our performance evaluation of Fulgor and Rayo shows that a pay-

ment with 10 intermediate users takes as few as 5 seconds, thereby

demonstrating their feasibility to be deployed in practice.

∗
Both authors have contributed equally and are considered to be co-first authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3134096

CCS CONCEPTS
• Security and privacy → Security requirements; Distributed sys-
tems security; Privacy protections;

KEYWORDS
Payment-Channel Network; Bitcoin; Scalability; Privacy; Concur-

rency

1 INTRODUCTION
Bitcoin [57] is a fully decentralized digital cryptocurrency network

that is widely adopted today as an alternative monetary payment

system. Instead of accounting payments in a ledger locally main-

tained by a trusted financial institute, these are logged in the Bitcoin

blockchain, a database replicated among mutually distrusted users

around the world who update it by means of a global consensus

algorithm based on proof-of-work. Nevertheless, the permissionless

nature of this consensus algorithm limits the transaction rate to tens

of transactions per second whereas other payment networks such

as Visa support peaks of up to 47,000 transactions per second [18].

In the forethought of a growing number of Bitcoin users andmost

importantly payments about them, scalability is considered today

an important concern among the Bitcoin community [3, 67]. Several

research and industry efforts are dedicated today to overcome this

important burden [2–4, 32, 60, 62].

The use of Bitcoin payment channels [6, 32] to realize off-chain

payments has flourished as a promising approach to overcome

the Bitcoin scalability issue. In a nutshell, a pair of users open a

payment channel by adding a single transaction to the blockchain

where they lock their bitcoins in a deposit secured by a Bitcoin

smart contract. Several off-chain payments can be then performed

by locally agreeing on the new distribution of the deposit balance.

Finally, the users sharing the payment channel perform another

Bitcoin transaction to add the final balances in the blockchain,

effectively closing the payment channel.

In this manner, the blockchain is required to open and close a

payment channel but not for any of the (possibly many) payments

between users, thereby reducing the load on the blockchain and

improving the transaction throughput. However, this simple ap-

proach is limited to direct payments between two users sharing an

open channel. Interestingly, it is in principle possible to leverage a

path of opened payment channels from the sender to the receiver

with enough capacity to settle their payments, effectively creating

a payment-channel network (PCN) [60].

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

455

https://doi.org/10.1145/3133956.3134096

Many challenges must be overcome so that such a PCN caters a

wide deployment with a growing number of users and payments.

In particular, today we know from similar payment systems such

as credit networks [15, 17, 36, 37] that a fully-fledged PCN must

offer a solution to several issues, such as liquidity [29, 55], network

formation [30], routing scalability [61, 71], concurrency [49], and

privacy [49, 54, 56] among others.

The Bitcoin community has started to identify these challenges [3,

22, 40, 41, 43, 47, 48, 67]. Nevertheless, current PCNs are still imma-

ture and these challenges require to be thoroughly studied. In this

work, we lay the foundations for privacy and concurrency in PCNs.

Interestingly, we show that these two properties are connected

to each other and that there exists an inherent trade-off between

them.

The Privacy Challenge. It seems that payment channels neces-

sarily improve the privacy of Bitcoin payments as they are no longer

logged in the blockchain. However, such pervading idea has started

to be questioned by the community and it is not clear at this point

whether a PCN can offer sufficient privacy guarantees [22, 43, 68].

Recent research works [40, 41, 47] propose privacy preserving pro-

tocols for payment hub networks, where all users perform off-chain

payments through a unique intermediary. Unfortunately, it is not

clear how to extend these solutions to multi-hop PCNs.

Currently, there exist some efforts in order to define a fully-

fledged PCN [10, 13, 19, 60]. Among them, the Lightning Net-

work [60] has emerged as the most prominent PCN among the

Bitcoin community [1]. However, its current operations do not pro-

vide all the privacy guarantees of interest in a PCN. For instance, the

computation of the maximum possible value to be routed through

a payment path requires that intermediate users reveal the current

capacity of their payment channels to the sender [62, Section 3.6],

thereby leaking sensitive information. Additionally, the Bitcoin

smart-contract used in the Lightning Network to enforce atomicity

of updates for payment channels included in the payment path,

requires to reveal a common hash value among each user in the

path that can be used by intermediate users to derive who is paying

to whom [60]. As a matter of fact, while a plethora of academic pa-

pers have studied the privacy guarantees offered by current Bitcoin

payments on the Bitcoin blockchain [21, 25, 45, 51, 52, 64, 66], there

exists at present no rigorous analysis of the privacy guarantees

offered by or desirable in PCNs. The lack of rigorous definitions for

their protocols, threat model and privacy notions, hinders a formal

security and privacy analysis of ongoing attempts, let alone the

development of provably secure and privacy-preserving solutions.

The Concurrency Challenge. The consensus algorithm, e.g.,

proof-of work in Bitcoin, eases the serialization of concurrent on-

chain payments. A miner with access to all concurrent payments at

a given time can easily serialize them following a set of predefined

rules (e.g., sort them by payment fee) before they are added to the

blockchain. However, this is no longer the case in a PCN: The bulk

of off-chain payments are not added to the blockchain and they

cannot be serialized during consensus. Moreover, individual users

cannot avoid concurrency issues easily either as a payment might

involve several other users apart from payer and payee.

In current PCNs such as the Lightning Network, a payment is

aborted as soon as a payment channel in the path does not have

enough capacity (possibly allocated for another in-flight payment

concurrently). This, however, leads to deadlock (and starvation)

situations where none of the in-flight payments terminates. In sum-

mary, although concurrent payments are likely to happen when

current PCNs scale to a large number of users and off-chain pay-

ments, the inherent concurrency issues have not been thoroughly

investigated yet.

Our Contribution. This work makes the following contributions:

First, we formalize for the first time the security and privacy

notions of interest for a PCN, namely balance security, value privacy
and sender/receiver anonymity, following the universal composabil-

ity (UC) framework [27].

Second, we study for the first time the concurrency issues in

PCNs and present two protocols Fulgor and Rayo that tackle this

issue with different strategies. Fulgor is a blocking protocol in line

with concurrency solutions proposed in somewhat similar payment

networks such as credit networks [15, 49] that can lead to deadlocks

where none of the concurrent payments go through. Overcoming

this challenge, Rayo is the first protocol for PCNs guaranteeing

non-blocking progress [20, 42]. In doing so, Rayo ensures that at

least one of the concurrent payments terminates.

Third, we characterize an arguably surprising tradeoff between

privacy and concurrency in PCNs. In particular, we demonstrate

that any PCN that enforces non-blocking progress inevitably re-

duces the anonymity set for sender and receiver of a payment,

thereby weakening the privacy guarantees.

Fourth, we formally describe the Multi-Hop Hash Time-Lock

Contract (Multi-Hop HTLC), a smart contract that lies at the core of

Fulgor and Rayo and which, in contrast to the Lightning Network,

ensures privacy properties even against users in the payment path

from payer to payee. We formally define the Multi-Hop HTLC

contract and provide an efficient instantiation based on the recently

proposed zero-knowledge proof system ZK-Boo [38], that improves

on previous proposals [69] by reducing the data required from 650

MB to 17 MB, the running time for the prover from 600 ms to 309 ms

and the running time for verifying from 500 ms to 130 ms. Moreover,

Multi-Hop HTLC does not require changes to the current Bitcoin

scripting system, can thereby be seamlessly deployed in current

PCNs, and is thus of independent interest.

Finally, we have implemented a prototype of Fulgor and Rayo in

Python and evaluated the running time and communication cost

to perform a payment. Our results show that a privacy-preserving

payment in a pathwith 10 intermediate users can be carried out in as

few as 5 seconds and incurs on 17 MB of communication overhead.

This shows that our protocols for PCN are in line with with other

privacy-preserving payment systems [49, 54]. Additionally, our

evaluation shows that Fulgor and Rayo can scale to cater a growing

number of users with a reasonably small overhead that can be

further reduced with an optimized implementation.

Organization. Section 2 overviews the required background. Sec-

tion 3 defines the problem we tackle in this work and overviews

Fulgor and Rayo, our privacy preserving solution for PCNs. Sec-

tion 4 details the Fulgor protocol. Section 5 describes our study

of concurrency in PCNs and details the Rayo protocol. Section 6

describes our implementation and the evaluation results. Section 7

discusses the related work and Section 8 concludes this paper.

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

456

Figure 1: Illustrative example of payment channel. White solid
boxes denote Bitcoin addresses and their current balance, dashed
boxes represent Bitcoin transactions, the clock denotes a time lock
contract [7], a user name along a tick denotes her signature to vali-
date the transaction and colored boxes denote the state of the pay-
ment channel. Dashed arrows denote temporal sequence. Alice first
deposits 5 bitcoins opening a payment channel with Bob, then uses
it to pay Bob off-chain. Finally, the payment channel is closed with
the most recent balance.

2 BACKGROUND
In this section, we first overview the notion of payment channels

and we then describe payment-channel networks.

2.1 Payment Channels
A payment channel enables several Bitcoin payments between two

users without committing every single payment to the Bitcoin

blockchain. The cornerstone of payment channels is depositing

bitcoins into a multi-signature address controlled by both users and

having the guarantee that all bitcoins are refunded at a mutually

agreed time if the channel expires. In the following, we overview the

basics of payment channels and we refer the reader to [32, 50, 60]

for further details.

In the illustrative example depicted in Figure 1, Alice opens a

payment channel with Bobwith an initial capacity of 5 bitcoins. This

opening transaction makes sure that Alice gets the money back after

a certain timeout if the payment channel is not used. Now, Alice

can pay off-chain to Bob by adjusting the balance of the deposit

in favor of Bob. Each off-chain payment augments the balance for

Bob and reduces it for Alice. When no more off-chain payments are

needed (or the capacity of the payment channel is exhausted), the

payment channel is closed with a closing transaction included in the
blockchain. This transaction sends the deposited bitcoins to each

user according the most recent balance in the payment channel.

The payment channel depicted in Figure 1 is an example of uni-
directional channel: it can be used only for payments from Alice to

Bob. Bidirectional channels are defined to overcome this limitation

as off-chain payments in both directions are possible. Bidirectional

payment channels operate in essence as the unidirectional version.
1

The major technical challenge consists in changing the direction

of the channel. In the running example, assume that the current

payment channel balance bal is {Alice: 4, Bob: 1} and further assume

1
Technically, a bidirectional channel might require that both users contribute funds

to the deposit in the opening transaction. However, current proposals [39] allow

bidirectional channels with single deposit funder.

Figure 2: Illustrative example of a payment in a PCN. Non-bold
(bold) numbers represent the capacity of the channels before (after)
the payment from Alice to Bob. Alice wants to pay 2 bitcoins to Bob
via Carol, Edward and Fabi. Therefore, she starts the payment with
3 bitcoins (i.e., payment amount plus fees).

that Bob pays off-chain one bitcoin back to Alice. The new payment

channel balance bal′ is {Alice: 5, Bob: 0}. At this point, Alice benefits
from bal′ balance while Bob benefits from bal. The solution to this

discrepancy consists on that Bob and Alice make sure that any

previous balance has been invalidated in favor of the most recent

one. Different “invalidation” techniques have been proposed and

we refer the reader to [32, 60, 65] for details.

The Bitcoin protocol has been updated recently to fully support

payment channels. In particular, transaction malleability [8], along

with a set of other interesting new features, have been added to

the Bitcoin protocol with the recent adoption of Segregated Wit-

ness [16]. This event paves the way to the implementation and

testing of PCNs on the main Bitcoin blockchain as of today [70].

2.2 A Payment Channel Network (PCN)
A PCN can be represented as a directed graph G = (V,E), where
the set V of vertices represents the Bitcoin accounts and the set E
of weighted edges represents the payment channels. Every vertex

u ∈ V has associated a non-negative number that denotes the

fee it charges for forwarding payments. The weight on a directed

edge (u1,u2) ∈ E denotes the amount of remaining bitcoins that u1

can pay to u2. For ease of explanation, in the rest of the paper we

represent a bidirectional channel betweenu1 andu2 as two directed

edges, one in each direction.
2
Such a network can be used then to

perform off-chain payments between two users that do not have an

open channel between them but are connected by a path of open

payment channels.

The success of a payment between two users depends on the

capacity available along a path connecting the two users and the

fees charged by the users in such path. Assume that s wants to
pay α bitcoins to r and that they are connected through a path

s → u1 → . . . → un → r . For their payment to be successful, every

link must have a capacityγi ≥ α ′i , where α
′
i = α −

∑i−1

j=1
fee(uj) (i.e.,

the initial payment value minus the fees charged by intermediate

users in the path). At the end of a successful payment, every edge

2
In practice, there is a subtle difference: In a bidirectional channel between Alice and

Bob, Bob can always return to Alice the bitcoins that she has already paid to him.

However, if two unidirectional channels are used, Bob is limited to pay to Alice the

capacity of the edge Bob→ Alice, independently of the bitcoins that he has received

from Alice. Nevertheless, our simplification greatly ease the understanding of the rest

of the paper and proposed algorithms can be easily extended to support bidirectional

channels.

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

457

in the path from s to r is decreased by α ′i . To ensure that r receives
exactly α bitcoins, s must start the payment with a value α∗ =
α +
∑n
j=1

fee(uj).
In the illustrative example of payment shown in Figure 2, assume

that Alice wants to pay Bob 2 bitcoins. For that she needs to start

a payment for a value of 3 bitcoins (2 bitcoins plus 1 bitcoin for

the fees charged by users in the path). Then the payment is settled

as follows: capacity in the link Alice → Carol is reduced by 3.

Additionally, Carol charges a fee if 0.25 bitcoins by reducing the

capacity of the link Carol→ Edward by 2.75 instead of 3 bitcoins.

Following the same reasoning, the link Edward → Fabi is set to

capacity 3.75 and the link Fabi→ Bob is set to 5.

2.3 State-of-the-Art PCNs
The concepts of payment channels [32, 41, 47] and PCNs [50] have

already attracted attention from the research community. In prac-

tice, there exist several ongoing implementations for a PCN in Bit-

coin [10–12, 19]. Among them, the Lightning Network has emerged

as the most prominent example in the Bitcoin community and an

alpha implementation has been released recently [1]. The idea of a

PCN has been proposed to improve scalability issues not only in

Bitcoin, but also in other blockchain-based payment systems such

as Ethereum [13].

2.3.1 Routing in PCNs. An important task in PCNs is to find

paths with enough capacity between sender and receiver. In our

setting, the network topology is known to every user. This is the

case since the opening of each payment channel is logged in the

publicly available blockchain. Additionally, a gossip protocol be-

tween users can be carried out to broadcast the existence of any

payment channel [62]. Furthermore, the fees charged by every user

can be made public by similar means. Under these conditions, the

sender can locally calculate the paths between the sender and the

receiver. In the rest of the paper, we assume that the sender chooses

the path according to her own criteria. Nevertheless, we consider

path selection as an interesting but orthogonal problem.

2.3.2 Payments in PCNs. A payment along a path of payment

channels is carried out by updating the capacity of each payment

channel in the path according to the payment amount and the asso-

ciated fees (see Section 2.2). Such an operation rises the important

challenge of atomicity: either the capacity of all channels in the path

Figure 3: Illustrative example of a payment from Alice to Fabi for
value 1 using HTLC contract. First, the condition is sent from Fabi
toAlice. The condition is then forwarded among users in the path to
hold 1 bitcoin at each payment channel. Finally, the receiver shows
R, releasing the held bitcoin at each payment channel. For simplic-
ity, we assume that there are no payment fees in this example.

is updated or none of the channels is changed. Allowing changes

in only some of the channels in the path can lead to the loss of

bitcoins for a user (e.g., a user could pay certain bitcoins to the next

user in the path but never receive the corresponding bitcoins from

the previous neighbor).

The current proposal in the Lightning Network consists of a

smart contract called Hash Time-Lock Contract (HTLC) [60]. This

contract locks x bitcoins that can be released only if the contract is

fulfilled. The contract is defined, in terms of a hash value y := H (R)
where R is chosen uniformly at random, the amount of bitcoins x
and a timeout t , as follows:

HTLC (Alice, Bob, y, x , t):
(1) If Bob produces the condition R∗ such that H (R∗) = y
before t days,3Alice pays Bob x bitcoins.

(2) If t days elapse, Alice gets back x bitcoins.

An illustrative example of the use of HTLC in a payment is

depicted in Figure 3. For simplicity, we assume that there are not

payment fees in this example. First, the payment amount (i.e., 1

bitcoin) is set on hold from the sender to the receiver and then

released from the receiver to the sender. In a bit more detail, after

the receiver (Fabi) sends the condition to the sender (Alice), Alice

sets an HTLC with her neighbor, effectively setting the payment

value (i.e., 1 bitcoin) on hold. Such HTLC is then set at each payment

channel in the path to the receiver. At this point, the receiver knows

that the payment value is on hold at each payment channel and

thus she reveals the value R, that allows her to fulfill the contract

and to settle the new capacity at each payment channel in the path.

It is important to note that every user in the path sets the HTLC

in the outgoing payment channel with a timeout smaller than the

HTLC in the incoming payment channel. In this manner, the user

makes sure that she can pull bitcoins from her predecessor after

her bitcoins have been pulled from her successor. An offline user

can outsource the monitoring of fulfillments corresponding to open

HTLC contracts associated to her payment channels [33].

Although HTLC is fully compatible with Bitcoin, its use in prac-

tice leads to important privacy leaks: It is easy to see that the value

of the hash H (R) uniquely identifies the users that took part in a

specific transaction. This fact has two main implications. First, any

two colluding users in a path can trivially derive the fact that they

took part in the same payment and this can be leveraged to recon-

struct the identity of sender and receiver.
4
Second, if the HTLC

statements are uploaded to the blockchain (e.g., due to uncollab-

orative intermediate users in the payment path), an observer can

easily track the complete path used to route the payment, even if

she is not part of the payment. In this work, we propose a novel

Multi-Hop HTLC smart contract that avoids this privacy problem

while ensuring that no intermediate user loses her bitcoins.

An important issue largely understudied in current PCNs is the

handling of concurrent payments that require a shared payment

channel in their paths. Current proposals simply abort a payment

if the balance at the shared payment channel in the path is not

enough. However, as we show in Section 3.3, this approach can lead

3
We use days here as in the original description [60]. Instead, recent proposals use the

sequence numbers of blocks as they appear in the Bitcoin blockchain [35].

4
As noted in [40], in a path A→ I1 → I2 → I3 → B , only I1 and I3 must collude to

recover the identities of A and B as all the contracts in the path share the same H (R).

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

458

to a deadlock situation where none of simultaneous payments ter-

minates. We propose a payment protocol that ensure non-blocking

progress, that is, at least one of the concurrent payments terminates.

Moreover, we show an inherent tradeoff between concurrency and

privacy for any fully distributed payment network.

3 PROBLEM DEFINITION
In this section, we first formalize a PCN and underlying operations,

and discuss the attacker model and our security and privacy goals.

We then describe an ideal world functionality for our proposal,

and present a system overview. Throughout the following descrip-

tion we implicitly assume that every algorithm takes as input the

blockchain, which is publicly known to all users.

Definition 3.1 (Payment Channel Network (PCN)). A PCN is de-

fined as graph G := (V,E), where V is the set of Bitcoin accounts

and E is the set of currently open payment channels. A PCN is de-

fined with respect to a blockchain B and is equipped with the three

operations (openChannel, closeChannel, pay) described below:

• openChannel(u1,u2, β , t , f) → {1, 0}. On input two Bitcoin

addresses u1,u2 ∈ V, an initial channel capacity β , a timeout t , and
a fee value f , if the operation is authorized by u1, and u1 owns

at least β bitcoins, openChannel creates a new payment channel

(c⟨u1,u2⟩, β , f , t) ∈ E, where c⟨u1,u2⟩ is a fresh channel identifier.

Then it uploads it to B and returns 1. Otherwise, it returns 0.

• closeChannel(c⟨u1,u2⟩, v) → {1, 0}. On input a channel identi-

fier c⟨u1,u2⟩ and a balance v (i.e., the distribution of bitcoins locked

in the channel between u1 and u2), if the operation is authorized by

both u1 and u2, closeChannel removes the corresponding channel

from G, includes the balance v in B and returns 1. Otherwise, it

returns 0.

• pay((c⟨s,u1⟩, . . . , c⟨un,r ⟩), v) → {1, 0}. On input a list of chan-

nel identifiers (c⟨s,u1⟩, . . . , c⟨un,r ⟩) and a payment value v, if the
payment channels form a path from the sender (s) to the receiver

(r) and each payment channel c⟨ui ,ui+1⟩ in the path has at least a

current balance γi ≥ v′i , where v′i = v −
∑i−1

j=1
fee(uj), the pay

operation decreases the current balance for each payment channel

c⟨ui ,ui+1⟩ by v′i and returns 1. Otherwise, none of the balances at

the payment channels is modified and the pay operation returns 0.

3.1 Attacker Model, and Security and Privacy
Goals

We consider a computationally efficient attacker that can shape the

network at her will by spawning users and corrupting an arbitrary

subset of them in an adaptive fashion. Once a user is corrupted,

its internal state is given to the attacker and all of the following

messages for that user are handed over to the attacker. On the

other hand, we assume that the communication between two non-

compromised users sharing a payment channel is confidential (e.g.,

through TLS). Finally, the attacker can send arbitrary messages on

behalf of corrupted users.

Against the above adversary, we identify the following security

and privacy notions of interest:

• Balance security. Intuitively, balance security guarantees

that any honest intermediate user taking part in a pay operation
(as specified in Definition 3.1) does not lose coins even when all

other users involved in the pay operation are corrupted.

• Serializability.We require that the executions of PCN are se-
rializable [58], i.e., for every concurrent execution of pay operations,
there exists an equivalent sequential execution.
• (Off-path) Value Privacy. Intuitively, value privacy guaran-

tees that for a pay operation involving only honest users, corrupted

users outside the payment path learn no information about the

payment value.

• (On-path) Relationship Anonymity [24, 59]. Relation-

ship anonymity requires that, given two simultaneous successful

pay operations of the form

{
payi ((c⟨si ,u1⟩, . . . , c⟨un,ri ⟩), v)

}
i ∈[0,1]

with at least one honest intermediate user uj ∈[1,n]
, corrupted in-

termediate users cannot determine the pair (si , ri) for a given payi
with probability better than 1/2.

3.2 Ideal World Functionality

Our Model. The users of the network are modeled as interactive

Turing machines that communicate with a trusted functionality F

via secure and authenticated channels. We model the attacker A

as a probabilistic polynomial-time machine that is given additional

interfaces to add users to the system and corrupt them.A can query

those interfaces adaptively and at any time. Upon corruption of a

user u, the attacker is provided with the internal state of u and the

incoming and outgoing communication of u is routed thorough A.

Assumptions. We model anonymous communication between

any two users of the network as an ideal functionality Fanon, as pro-

posed in [26]. Furthermore, we assume the existence of a blockchain

B that we model as a trusted append-only bulletin board (such

as [72]): The corresponding ideal functionality FB maintains B lo-

cally and updates it according to the transactions between users. At

any point in the execution, any user u of the PCN can send a distin-

guished message read to FB, who sends the whole transcript of B to

u. We denote the number of entries of B by |B|. In our model, time

corresponds to the number of entries of the blockchain B, i.e., time t
is whenever |B| = t . Our idealized process F uses Fanon and FB as

subroutines, i.e., our protocol is specified in the (Fanon,FB)-hybrid
model. Note that our model for a blockchain is a coarse grained

abstraction of the reality and that more accurate formalizations

are known in the literature, see [44]. For ease of exposition we

stick to this simplistic view, but one can easily extend our model to

incorporate more sophisticated abstractions.

Notation. Payment channels in the Blockchain B are of the form

(c⟨u,u′⟩, v, t , f), where c⟨u,u′⟩ is a unique channel identifier, v is the
capacity of the channel, t is the expiration time of the channel, and

f is the associated fee. For ease of notation we assume that the

identifiers of the users (u,u ′) are also encoded in c⟨u,u′⟩. We stress

that any two usersmay havemultiple channels open simultaneously.

The functionality maintains two additional internal lists C and L.

The former is used to keep track of the closed channels, while the

latter records the off-chain payments. Entries in L are of the form

(c⟨u,u′⟩, v, t ,h), where c⟨u,u′⟩ is the corresponding channel, v is the
amount of credit used, t is the expiration time of the payment, and

h is the identifier for this entry.

Operations. In Figure 4 we describe the interactions between F

and the users of the PCN. For simplicity, we only model unidirec-

tional channels, although our functionality can be easily extended

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

459

Open channel: On input (open, c⟨u,u′⟩, v,u ′, t , f) from a useru, the F checks whether c⟨u,u′⟩ is well-formed (contains valid identifiers

and it is not a duplicate) and eventually sends (c⟨u,u′⟩, v, t , f) to u ′, who can either abort or authorize the operation. In the latter case,

F appends the tuple (c⟨u,u′⟩, v, t , f) to B and the tuple (c⟨u,u′⟩, v, t ,h) to L, for some random h. F returns h to u and u ′.

Close channel: On input (close, c⟨u,u′⟩,h) from a user ∈ {u ′,u} the ideal functionality F parses B for an entry (c⟨u,u′⟩, v, t , f) and
L for an entry (c⟨u,u′⟩, v′, t ′,h), for h , ⊥. If c⟨u,u′⟩ ∈ C or t > |B| or t ′ > |B| the functionality aborts. Otherwise, F adds the entry

(c⟨u,u′⟩,u
′, v′, t ′) to B and adds c⟨u,u′⟩ to C. F then notifies both users involved with a message (c⟨u,u′⟩,⊥,h).

Payment: On input (pay, v, (c⟨u0,u1⟩, . . . , c⟨un,un+1⟩), (t0, . . . , tn)) from a user u0, F executes the following interactive protocol:

(1) For all i ∈ {1, . . . , (n+1)} F samples a random hi and parses B for an entry of the form (c⟨ui−1,u′i ⟩
, vi , t ′i , fi). If such an entry does

exist F sends the tuple (hi ,hi+1, c⟨ui−1,ui ⟩, c⟨ui ,ui+1⟩, v−
∑n
j=i fj , ti−1, ti) to the userui via an anonymous channel (for the specific

case of the receiver the tuple is only (hn+1, c⟨un,un+1⟩, v, tn)). ThenF checkswhether for all entries of the form (c⟨ui−1,ui ⟩, v
′
i , ·, ·) ∈

L it holds that v′i ≥
(
v −
∑n
j=i fj

)
and that ti−1 ≥ ti . If this is the case F adds di = (c⟨ui−1,ui ⟩, (v

′
i − (v −

∑n
j=i fj)), ti ,⊥) to L,

where (c⟨ui−1,ui ⟩, v
′
i , ·, ·) ∈ L is the entry with the lowest v′i . If any of the conditions above is not met, F removes from L all

the entries di added in this phase and aborts.

(2) For all i ∈ {(n + 1), . . . , 1} F queries all ui with (hi ,hi+1), through an anonymous channel. Each user can reply with either ⊤ or

⊥. Let j be the index of the user that returns ⊥ such that for all i > j : ui returned ⊤. If no user returned ⊥ we set j = 0.

(3) For all i ∈ {j + 1, . . . ,n} the ideal functionality F updates di ∈ L (defined as above) to (−,−,−,hi) and notifies the user of the

success of the operation with with some distinguished message (success,hi ,hi+1). For all i ∈ {0, . . . , j} (if j , 0) F removes di
from L and notifies the user with the message (⊥,hi ,hi+1).

Figure 4: Ideal world functionality for PCNs.

to support also bidirectional channels. The execution of our simu-

lation starts with F initializing a pair of local empty lists (L,C).
Users of a PCN can query F to open channels and close them to any

valid state in L. On input a value v and a set of payment channels

(c⟨u0,u1⟩, . . . , c⟨un,un+1⟩) from some user u0, F checks whether the

path has enough capacity (step 1) and initiates the payment. Each

intermediate user can either allow the payment or deny it. Once

the payment has reached the receiver, each user can again decide

to interrupt the flow of the payment (step 2), i.e., pay instead of

the sender. Finally F informs the involved nodes of the success

of the operation (step 3) and adds the updated state to L for the

corresponding channels.

Discussion. Here, we show that our ideal functionality captures

the security and privacy properties of interest for a PCN.

• Balance security. Let ui be any intermediate hop in a payment

pay((c⟨s,u1⟩, . . . , c⟨un,r ⟩), v). F locally updates in L the channels

corresponding to the incoming and outgoing edges of ui such that

the total balance of ui is increased by the coins she sets as a fee,

unless the user actively prevents it (step 2). Since F is trusted,

balance security follows.

• Serializability. Consider for the moment only single-hop pay-

ments. It is easy to see that the ideal functionality executes them

serially, i.e., any two concurrent payments can only happen on

different links. Therefore one can trivially find a scheduler that

performs the same operation in a serial order (i.e., in any order). By

balance security, any payment can be represented as a set of atomic

single-hop payments and thus serializability holds.

• Value Privacy. In the ideal world, users that do not lie in the

payment path are not contacted by F and therefore they learn

nothing about the transacted value (for the off-chain payments).

• Relationship Anonymity. Let ui be an intermediate hop in a

payment. In the interaction with the ideal functionality, ui is only
provided with a unique identifier for each payment. In particular,

such an identifier is completely independent from the identifiers

of other users involved in the same payment. It follows that, as

long as at least one honest user ui lies in a payment path, any

two simultaneous payments over the same path for the same value

v are indistinguishable to the eyes of the user ui+1. This implies

that any proper subset of corrupted intermediate hops, for any two

successful concurrent payments traversing all of the corrupted

nodes, cannot distinguish in which order an honest ui forwarded
the payments. Therefore such a set of corrupted nodes cannot

determine the correct sender-receiver pair with probability better

than 1/2.

UC-Security. Let EXECτ ,A,E be the ensemble of the outputs of

the environment E when interacting with the adversary A and

parties running the protocol τ (over the random coins of all the

involved machines).

Definition 3.2 (UC-Security). A protocol τ UC-realizes an ideal

functionality F if for any adversary A there exists a simulator S

such that for any environment E the ensembles EXECτ ,A,E and

EXECF ,S,E are computationally indistinguishable.

Lower bound on byzantine users in PCN. We observe that in

PCNs that contain channels in which both the users are byzantine
(à la malicious) [46], there is an inherent cost to concurrency. Specif-

ically, in such a PCN, if we are providing non-blocking progress,

i.e., at least one of the concurrent payments terminates, then it

is impossible to provide serializability in PCNs (cf. Figure 11 in

Appendix D). Thus, henceforth, all results and claims in this paper

assume that in any PCN execution, there does not exist a channel

in which both its users are byzantine.

Lemma 3.3. There does not exist any serializable protocol for the
PCN problem that provides non-blocking progress if there exists a
payment channel in which both users are byzantine.

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

460

3.3 Key Ideas and System Overview
In the following, we give a high-level overview on how we achieve

private and concurrent payments in PCNs.

3.3.1 Payment Privacy. The payment operation must ensure

the security and privacy properties of interest in a PCN, namely

balance security, value privacy and relationship anonymity. A naïve

approach towards achieving balance security would be to use HTLC-

based payments (see Section 2.3.2). This solution is however in

inherent conflict with anonymity: It is easy to see that contracts

belonging to the same transactions are linkable among each other,

since they encode the same condition (h) to release the payment.

Our proposal, called Multi-Hop HTLC, aims to remove this link

among hops while maintaining the full compatibility with the Bit-

coin network.

The idea underlying Multi-Hop HTLC is the following: At the

beginning of an n-hop transaction the sender samples n-many in-

dependent strings (x1, . . . ,xn). Then, for all i ∈ 1, . . . ,n, she sets

yi = H
(⊕n

j=i x j
)
, where H is an arbitrary hash function. That is,

eachyi is the result of applying the functionH to all of the input val-

ues x j for j ≥ i in an XOR combiner. The sender then provides the

receiver with (yn ,xn) and the i-th node with the tuple (yi+1,yi ,xi).
In order to preserve anonymity, the sender communicates those

values to the intermediate nodes over an anonymous channel. Start-

ing from the sender, each pair of neighboring nodes (ui+1,ui) de-
fines a standard HTLC on inputs (ui ,ui+1,yi ,b, t), where b and t
are the amount of bitcoin and the timeout parameter, respectively.

Note that the release conditions of the contracts are uniformly dis-

tributed in the range of the function H and therefore the HTLCs

of a single transaction are independent from each other. Clearly,

the mechanism described above works fine as long as the sender

chooses each value yi according to the specification of the protocol.

We can enforce an honest behavior by including non-interactive

zero-knowledge proofs [38].

3.3.2 Concurrent Payments. It is possible that two (or more)

simultaneous payments share a payment channel in their payment

paths in such a manner that none of the payments goes through.

In the example depicted in Figure 5, the payment from Alice to

Gabriel cannot be carried out as the capacity in the payment channel

between Fabi and Gabriel is already locked for the payment from

Bob to Edward. Moreover, this second payment cannot be carried

out either as the capacity on the payment channel between Carol

and Edward is already locked. This deadlock situation is a generic

problem of PCNs, where a payment is aborted as soon as there

exists a payment channel in the path without enough capacity.

Blocking Payments (Fulgor). A best-effort solution for avoid-

ing this deadlock consists on letting both payments fail. Aborted

payments do not affect the balance of the involved users as the

receiver would not disclose the release condition for the locked

payment channels. Therefore, involved payment channels would

get unlocked only after the corresponding timeout and bitcoins are

sent back to the original owner.

The sender of an aborted payment can then randomly choose

a waiting period to reissue the payment. Although the blocking

Figure 5: Illustrative example of two blocking payments: Alice to
Gabriel (red) and Bob to Edward (blue). For simplicity, assume each
payment pays 1 bitcoin and each payment channel has capacity 1

bitcoin. Each payment channel is coloredwith the payment that has
reached it first. In this deadlock situation, none of the payments can
continue further in the path and cannot be trivially completed.

mechanism closely resembles the practice of users in others pay-

ment networks such as Ripple [14] or SilentWhispers [49], it might

degrade transaction throughput in a fully decentralized PCN.

Non-blocking Payments (Rayo). An alternative solution con-

sists on a non-blocking solution where at least one out of a set of

concurrent payments completes. Our approach to achieve it as-

sumes that there exists a global ordering of payments (e.g., by a

global payment identifier). In a nutshell, users can queue payments

with higher identifier than the current one “in-flight”, and abort

payments with lower identifiers. This ensures that either the cur-

rent in-flight payment completes or one of the queued payments

would do, as their identifiers are higher.

4 FULGOR: OUR CONSTRUCTION
In this section, we introduce the cryptographic building blocks

required for our construction (Section 4.1), we describe the details

for the Multi-Hop HTLC contract (Section 4.2), we detail the con-

structions for PCN operations (Section 4.3), analyze its security and

privacy (Section 4.4) and conclude with a few remarks (Section 4.5).

Notation. We denote by λ the security parameter of our system

and we use the standard definition for a negligible function. We

denote by decision the possible events in a payment channel due

to a payment. The decision forward signals to lock the balance in

the payment channel corresponding to the payment value. The

decision abort signals the release of locked funds in the payment

channel due to the abortion of a payment. Correspondingly, the

decision accept signals the confirmation of a payment accepted by

the receiver.

For ease of notation, we assume that users identifiers (ui ,ui+1)
can be extracted from the channel identifier c⟨ui ,ui+1⟩.

System Assumptions. We assume that every user in the PCN

is aware of the complete network topology, that is, the set of all

users and the existence of a payment channel between every pair

of users. We further assume that the sender of a payment chooses

a payment path to the receiver according to her own criteria. The

current value on each payment channel is not published but instead

kept locally by the users sharing a payment channel as otherwise

privacy is trivially broken. We further assume that every user is

aware of the payment fees charged by each other user in the PCN.

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

461

This can be accomplished in practice. The opening of a payment

channel between two users requires to add a transaction in the

blockchain that includes both user identifiers. Therefore, the topol-

ogy of the PCN is trivially leaked. Moreover, the transaction used to

open a payment channel can contain user-defined data [5] so that

each user can embed her own payment fee. In this manner, each

user can proactively gather updated information about the network

topology and fees from the blockchain itself or be disseminated by

a gossip protocol [48, 62].

We further assume that pairs of users sharing a payment channel

communicate through secure and authenticated channels (such as

TLS), which is easy to implement given that every user is uniquely

identified by a public key. Also we assume that the sender and

the receiver of a (possibly indirect) transaction can communicate

through a secure and direct channel. Finally, we assume that the

sender of a payment can create an anonymous payment channel

with each intermediate user. The IP address where to reach each

user could be encoded in the channel creation transaction and

therefore logged in the blockchain. We note that our protocol is

completely parametric with respect to the routing, therefore any

onion routing-like techniques would work in this context.

We consider the bounded synchronous communication setting [23].

In such communication model, time is divided into fixed communi-

cation rounds and it is assumed that all messages sent by a user in

a round are available to the intended recipient within a bounded

number of steps in an execution. Consequently, absence of a mes-

sage indicates absence of communication from a user during the

round. In practice, this can be achieved with loosely synchronized

clocks among the users in the PCN [28].

Finally, we assume that there is a total order among the users

(e.g., lexicographically sorted by their public verification keys).

4.1 Building Blocks
Non-Interactive Zero-Knowledge. Let R : {0, 1}∗ × {0, 1}∗ →

{0, 1} be an NP relation, and let L be the set of positive instances

for R, i.e., L = {x | ∃w s.t. R (x ,w) = 1}. A non-interactive zero-

knowledge proof for R consists of a single message from a prover

P to a verifierV . The prover P wants to compute a proof π that

convinces the verifierV that a certain statement x ∈ L. We allow

the prover to run on an extra private inputw such that R (x ,w) = 1.

The verifier can either accept or reject, depending on π . A NIZK
is complete if the V always accepts honestly computed π for a

statement x ∈ L and it is sound if V always rejects any π for

all x < L, except with negligible probability. Loosely speaking, a

NIZK proof is zero knowledge if the verifier learns nothing from π
beyond the fact that x ∈ L. Efficient NIZK protocols are known to

exist in the random oracle model [38].

Two Users Agreement. Two users ui and uj sharing a payment

channel, locally maintain the state of the payment channel defined

as a scalar channel-state := cap(c⟨ui ,uj ⟩) that denotes the current ca-
pacity of their payment channel. We require a two party agreement

protocol that ensures that both users agree on the current value of

cap(c⟨ui ,uj ⟩) at each point in time. We describe the details of such

protocol in Appendix B. For readability, in the rest we implicitly

assume that two users sharing a payment channel satisfactorily

agree on its current state.

4.2 Multi-Hop HTLC
We consider the standard scenario of an indirect payment from a

sender Sdr to a receiver Rvr for a certain value v through a path

of users (u1, . . . ,un), where un = Rvr. All users belonging to the

same network share the description of a hash functionH : {0, 1}∗ →

{0, 1}λ that we model as a random oracle.

Let L be the following language: L = {(H ,y′,y,x) | ∃(w) s.t. y′

= H (w) ∧ y = H (w ⊕ x)} wherew ⊕ x denotes the bitwise XOR of

the two bitstrings. Before the payment starts, the sender Sdr locally
executes the following Setup

HTLC
algorithm described in Figure 6.

Intuitively, the sender samples n-many random strings xi and

defines yi as H
(⊕n

j=i x j
)
which is the XOR combination of all x j

such that j ≥ i . Then, Sdr computes the proofs π to guarantee that

each yi is well-formed, without revealing all of the xi . The receiver
is provided with (xn ,yn) and she simply checks that yn = H (xn).
Sdr then sends (xi ,yi ,πi) to each intermediate user ui , through a

direct communication channel. Eachui runsV ((H ,yi+1,yi ,xi),πi)
and aborts the payment if the verification algorithm rejects the

proof.

Starting from the user u0 = Sdr, each pair of users (ui ,ui+1)
check whether both users received the same values of (yi+1, v).
This can be done by simply exchanging and comparing the two

values. If this is the case, they establish HTLC (ui , ui+1, yi+1, v,
ti) as described in Section 2.3, where ti defines some timespan

such that for all i ∈ [n] : ti−1 = ti + ∆, for some positive value

∆. Once the contract between (un−1,un) is settled, the user un
(the receiver) can then pull v bitcoins by releasing the xn , which
by definition satisfies the constraint H (xn) = yn . Once the value
of xn is published, un−1 can also release a valid condition for the

contract between (un−2,un−1) by simply outputting xn−1 ⊕ xn . In
fact, this mechanism propagates for every intermediate user of the

payment path, until Sdr: For each node ui it holds that, whenever
the condition for the contract between (ui ,ui+1) is released, i.e.,
somebody publishes a string r such that H (r) = yi+1, then ui
immediately learns xi ⊕ r such that H (xi ⊕ r) = yi , which is a valid

condition for the contract between (ui−1,ui). It follows that each
intermediate user whose outgoing contract has been pulled is able

to release a valid condition for the incoming contract.

4.3 Construction Details
In the following, we describe the details of the three operations

(openChannel, closeChannel, pay) that compose Fulgor.

Setup
HTLC

(n) :

∀i ∈ [n] :

xi ∈ {0, 1}λ ;yi ← H *.
,

n⊕
j=i

x j
+/
-

∀i ∈ [n − 1] :

πi ← P
*.
,
(H, yi+1, yi , xi),

*.
,

n⊕
j=i+1

x j
+/
-

+/
-

return ((x1, y1, π1), . . . , (xn, yn))

Figure 6: Setup operation for the Multi-Hop HTLC contract.

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

462

payu0

(m) :

(Txid,
{
c⟨u0,u1⟩

}
∪
{
c⟨ui ,ui+1⟩

}
i∈[n]

, v) ←m

v1 := v +
n∑
i

fee(ui)

if v1 ≤ cap(c⟨u0,u1⟩
) then

cap(c⟨u0,u1⟩
) := cap(c⟨u0,u1⟩

) − v1

t0 := tnow + ∆ · n

∀i ∈ [n] :

vi := v1 −

i−1∑
j=1

fee(uj)

ti := ti−1 − ∆{
(xi , yi , πi)

}
i∈[n+1]

← Setup
HTLC

(n + 1)

Send(ui , ((Txid, xi , yi , yi+1,

πi , c⟨ui−1,ui ⟩, c⟨ui ,ui+1⟩
, vi+1, ti , ti+1), forward))

HTLC(u0, u1, y1, v1, t1)

Send(un+1, (Txid, xn+1, yn+1, c⟨un ,un+1⟩
,

vn+1, tn+1))

else

abort

Figure 7: The pay routine in Fulgor for the sender. The light blue
pseudocode shows additional steps required in Rayo.

• openChannel(u1,u2, β , t , f): The purpose of this operation is

to open a payment channel between users u1 and u2. For that, they

create an initial Bitcoin deposit that includes the following infor-

mation: their Bitcoin addresses, the initial capacity of the channel

(β), the channel timeout (t), the fee charged to use the channel (f)
and a channel identifier (c⟨u1,u2⟩) agreed beforehand between both

users. After the Bitcoin deposit has been successfully added to the

blockchain, the operation returns 1. If any of the previous steps is

not carried out as defined, the operation returns 0.

• closeChannel(c⟨u1,u2⟩, v): This operation is used by two users

(u1,u2) sharing an open payment channel (c⟨u1,u2⟩) to close it at the

state defined by v and accordingly update their bitcoin balances in

the Bitcoin blockchain. This operation in Fulgor is performed as de-

fined in the original proposal of payment channels (see Section 2.1),

additionally returning 1 if and only if the corresponding Bitcoin

transaction is added to the Bitcoin blockchain.

• pay((c⟨u0,u1⟩, . . . , c⟨un,un+1⟩), v): A payment operation trans-

fers a value v from a sender (u0) to a receiver (un+1) through a path

of open payment channels between them (c⟨u0,u1⟩, . . . , c⟨un,un+1⟩).

Here, we describe a blocking version of the payment operation

(see Section 3.3). We discuss the non-blocking version of the pay-

ment operation in Section 5.

As shown in Figure 7 (black pseudocode), the sender first calculates

the cost of sending v bitcoins to Rvr as v1 := v +
∑
i fee(ui), and

the corresponding cost at each of the intermediate hops in the pay-

ment path. If the sender does not have enough bitcoins, she aborts

the payment. Otherwise, the sender sets up the contract for each

intermediate payment channel following the mechanism described

in Section 4.2 and sends the information to the corresponding users.

payun+1

(m) :

(Txid, xn+1, yn+1, c⟨n,n+1⟩, vn+1, tn+1) ←m

if H (xn+1) = yn+1 and tn+1 > tnow + ∆ then

store (xn+1, yn+1, c⟨n,n+1⟩, tn+1)

Send(un, ((Txid, xn+1, yn+1, c⟨n,n+1⟩), accept))

else

Send(un, ((Txid, yn+1, c⟨n,n+1⟩, vn+1), abort))

payui (m) :

(m∗, decision) ←m

if decision = forward then

(Txid, xi , yi , yi+1, πi , c⟨i−1,i⟩, c⟨i,i+1⟩,

vi+1, ti , ti+1) ←m∗

if vi+1 ≤ cap(c⟨ui ,ui+1⟩
) and V ((H, yi+1, yi , xi), πi)

and ti+1 = ti − ∆ then

cap(c⟨ui ,ui+1⟩
) := cap(c⟨ui ,ui+1⟩

) − vi+1

HTLC(ui , ui+1, yi+1, vi+1, ti+1)

cur(c⟨ui ,ui+1⟩
).append(m∗)

else if ∃k | Txid > cur(c⟨ui ,ui+1⟩
)[k].Txid then

Q(c⟨ui ,ui+1⟩
).append(m∗)

else

Send(ui−1, ((Txid, yi , c⟨i−1,i⟩, vi), abort))

else if decision = abort then

(Txid, yi+1, c⟨i,i+1⟩, vi+1) ←m∗

cap(c⟨ui ,ui+1⟩
) := cap(c⟨ui ,ui+1⟩

) + vi+1

Send(ui−1, ((Txid, yi , c⟨i−1,i⟩, vi), abort))

cur(c⟨ui ,ui+1⟩
).delete(m∗ .Txid)

m′ := max(Q(c⟨ui ,ui+1⟩
))

payui ((m
′, forward))

else if decision = accept then

(Txid, xi+1, yi+1, c⟨i,i+1⟩, vi+1) ←m∗

store (xi+1 ⊕ xi , yi , c⟨i−1,i⟩, ti)

Send(ui−1, ((Txid, xi+1 ⊕ xi , yi , c⟨i−1,i⟩, vi), accept))

cur(c⟨ui ,ui+1⟩
).delete(m∗ .Txid)

Figure 8: The pay routine in Fulgor for the receiver and each inter-
mediate user. The light blue pseudocode shows additional steps in
Rayo. max(Q) returns the information for the payment with highest
identifier among those in Q.

Every intermediate user verifies that the incoming HTLC has an

associated value smaller or equal than the capacity of the payment

channel with her sucessor in the path. Additionally, every inter-

mediate user verifies that the zero-knowledge proof associated to

the HTLC for incoming and outgoing payment channels correctly

verifies and that the timeout for the incoming HTLC is bigger than

the timeout for the outgoing HTLC by a difference of ∆. If so, she
generates the corresponding HTLC for the same associate value

(possibly minus the fees) with the successor user in the path; other-

wise, she aborts by triggering the abort event to the predecessor

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

463

user in the path. These operations have been shown in Figure 8

(black pseudocode).

If every user in the path accepts the payment, it eventually reaches

the receiver who in turn releases the information required to fulfill

the HTLC contracts in the path (see Figure 8 (black pseudocode)).

Interestingly, if any intermediate user aborts the payment, the re-

ceiver does not release the condition as she does not receive any

payment. Moreover, payment channels already set in the previous

hops of the path are voided after the timeout set in the correspond-

ing HTLC.

4.4 Security and Privacy Analysis
In the following, we state the security and privacy results for Fulgor.

We prove our results in the (Fanon,FB)-hybrid model. In other

words, Theorem 4.1 holds for any UC-secure realization of Fanon
and FB. We show the proof of Theorem 4.1 in Appendix A.

Theorem 4.1 (UC-Security). Let H : {0, 1}∗ → {0, 1}λ be a
hash function modelled as a random oracle, and let (P,V) a zero-
knowledge proof system, then Fulgor UC-realizes the ideal functional-
ity F defined in Figure 5 in the (Fanon,FB)-hybrid model.

4.5 System Discussion
Compatibilitywith Bitcoin. Wenote that all of the non-standard

cryptographic operations (such as NIZK proofs) happen off-chain,

while the only algorithm required to be executed in the verification

of the blockchain is the hash function H , which can be instantiated

with SHA-256. Therefore our Multi-Hop HTLC scheme and Fulgor

as a whole is fully compatible with the current Bitcoin script. More-

over, as mentioned in Section 2.1, the addition of SegWit or similar

solution for the malleability issue in Bitcoin fully enables payment

channels in the Bitcoin system [70].

Generality. Fulgor is general to PCNs (and not only tied to Bit-

coin). Fulgor requires that: (i) openChannel allows to embed custom

data (e.g., fee); (ii) conditional updates of the balance in the pay-

ment channel. As arbitrary data can be included in cryptocurrency

transactions [5] and most PCNs support, among others, the HTLC

contract, Fulgor can be used in many other PCNs such as Raiden, a

PCN for Ethereum [13].

Support for Bidirectional Channels. Fulgor can be easily ex-

tended to support bidirectional payment channels and only two

minor changes are required. First, the payment information must

include the direction requested at each payment channel. Second,

the capacity of a channel c⟨uL,uR ⟩ is a tuple of values (L,R,T) where
L denotes the current balance for uL , R is the current balance of uR
and T is the total capacity of the channel. A payment from left to

right for value v is possible if L ≥ v and R + v ≤ T . In such case,

the tuple is updated to (L − v,R + v,T). A payment from right to

left is handled correspondingly.

5 NON-BLOCKING PAYMENTS IN PCNS
In this section, we discuss how to handle concurrent payments in

a non-blocking manner. In other words, how to guarantee that at

least one payment out of a set of concurrent payments terminates.

In the following, we start with an impossibility result that dic-

tates the design of Rayo, our protocol for non-blocking payments.

Then, we describe the modifications required in the ideal world

functionality and Fulgor to achieve them. Finally, we discuss the

implications of these modifications in terms of privacy properties.

5.1 Concurrency vs Privacy
We show that achieving non-blocking progress requires a global

state associated to each of the payments. Specifically, we show

that we cannot provide disjoint-access parallelism and non-blocking

progress for PCNs. Formally, a PCN implementation is disjoint-
access parallel if for any two payments channels ei , ej , channel-state
(ei) ∩ channel-state (ej) =∅.

Lemma 5.1. There does not exist any strictly serializable disjoint-
access parallel implementation for the payment channels problem
that provides non-blocking progress.

We defer to Appendix D for a proof sketch. Having established

this inherent cost to concurrency and privacy, we model global

state by a Txid field attached to each of the payments. We remark

that this Txid, however, allows an adversary to reduce the set of

possible senders and receivers for the payment, therefore inevitably

reducing the privacy guarantees, as we discuss in Section 5.2.

5.2 Ideal World Functionality
Here, we showhow tomodify the ideal functionalityF , as described

in Section 3.2, to account for the changes to achieve non-blocking

progress in any PCN. First, a single identifier Txid (as opposed to

independently sampled hi) is used for all the payment channels

in the path (c⟨u0,u1⟩, . . . , c⟨un,un+1⟩). Second, F no longer aborts

a payment simply when no capacity is left in a payment channel.

Instead, F queues the payment if its Txid is higher than the cur-

rent in-flight payment, or aborts it the Txid is lower. We detail the

modified ideal functionality in Appendix C.

Discussion. Here, we discuss how the modified ideal world def-

inition captures the security and privacy notions of interest as

described in Section 3.1. In particular, it is easy to see that the no-

tions of balance security and value privacy are enforced along the

same lines. However, the leakage of the same payment identifier

among all intermediate users in the payment path, reduces the

possible set of sender and receivers to the actual sender and re-

ceiver for such payment, thereby breaking relationship anonymity.

Therefore, there is an inherent tradeoff between how to handle con-

current payments (blocking or non-blocking) and the anonymity

guarantees.

An illustrative example of this tradeoff is shown in Figure 9.

It shows how two simultaneous payments pay
1
((c⟨S1,U1⟩, c⟨U1,U2⟩,

c⟨U2,U3⟩, c⟨U3,R1⟩), v) and pay2
((c⟨S2,U1⟩, c⟨U1,U2⟩, c⟨U2,,U3⟩, c⟨U3,R2⟩),

v) are handled depending on whether concurrent payments are

handled in a blocking or non-blocking fashion. We assume that

both payments can successfully finish in the current PCN and that

both payments transfer the same payment amount v, as otherwise
relationship anonymity is trivially broken.

For the case of blocking payments, each intermediate user uj
observes an independently chosen identifier Txidi j for each pay-

ment payi . Therefore, the attacker is not able to correlate the pair

(Txid11, Txid21) (i.e., view ofU1) with the pair (Txid13, Txid23) (i.e.,
view ofU3). It follows that for a pay operation issued by any node,

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

464

Figure 9: Illustrative example of tradeoff between concurrency and
privacy. Each node represents a user: black nodes are honest and red
are byzantine. In both cases, we assume two concurrent payments:
S1 pays R1 and S2 pays R2 through the path U1, U2, U3. The color of
the arrow denotes the payment identifier. Dashed ellipses denote
the anonymity set for each case.

say S1, the set of possible receivers that the adversary observes is

{R1,R2 }.

However, when the concurrent payments are handled in a non-

blocking manner, the adversary observes for pay
1
that Txid11 =

Txid13. Therefore, the adversary can trivially derive that the only

possible receiver for a pay initiated by S1 is R1.

5.3 Rayo: Our Construction
Building Blocks. We require the same building blocks as de-

scribed in Section 4.1 and Section 4.2. The only difference is that the

channel’s state between two users is now defined as channel-state :=

(cur (ui ,uj)[], Q(ui ,uj)[], cap(ui ,uj)), where cur denotes an array of

payments currently using (part of) the capacity available at the

payment channel; Q denotes the array of payments waiting for

enough capacity at the payment channel, and cap denotes the cur-

rent capacity value of the payment channel.

Operations. The openChannel and closeChannel operations re-
main as described in Section 4.3. However, the pay operation has to

be augmented to ensure non-blocking payments. We have described

the additional actions in light blue pseudocode in Figures 7 and 8.

In the following, we informally describe these additional actions

required for the pay operation. In a nutshell, when a payment

reaches an intermediate user in the path, several events can be

triggered. The simplest case is when the corresponding payment

channel is not saturated yet (i.e., enough capacity is left for the

payment to succeed). The user accepts the payment and simply

stores its information in cur as an in-flight payment.

The somewhat more interesting case occurs when the payment

channel is saturated. This means that (possibly several) payments

have been already gone through the payment channel. In this case,

the simplest solution is to abort the new payment, but this leads

to deadlock situations. Instead, we ensure that deadlocks do not

occur by leveraging the total order of payment identifiers: If the

new payment identifier (Txid) is higher than any of the payment

identifiers currently active in the payment channel (i.e., included

in cur []), the payment identified by Txid is stored in Q. In this

manner, if any of the currently active payments are aborted, a

queued payment (Txid∗) can be recovered from Q and reissued

towards the receiver. On the other hand, if Txid is lower than every

identifier for currently active payments, the payment identified

by Txid is directly aborted as it would not get to complete in the

presence of a concurrent payment with higher identifier in the

PCN.

5.4 Analysis and System Discussion

Security and Privacy Analysis. In the following, we state the

security and privacy results for Rayo when handling payments in

a non-blocking manner. We prove our results in the (Fanon,FB)-
hybrid model. In other words, Theorem 5.2 holds for any UC-secure

realization of Fanon and FB (analysis in Appendix A).

Theorem 5.2 (UC-Security). Let H : {0, 1}∗ → {0, 1}λ be a
hash function modelled as a random oracle, and let (P,V) a zero-
knowledge proof system, then Rayo UC-realizes the ideal functionality
F described in Figure 10 in the (Fanon,FB)-hybrid model.

System Discussion. Rayo is compatible with Bitcoin, can be

generally applicable to PCN and supports bidirectional payment

channels similar to Fulgor. Moreover, the Rayo protocol provides

non-blocking progress. Specifically, Rayo ensures that some pay-

ment successfully terminates in every execution. Intuitively, this is

because any two conflicting payments can necessarily be ordered

by their respective unique identifier: the highest payment identifier

is deterministically identified and terminates successfully while the

lower priority payment aborts.

5.5 Fulgor vs Rayo
In this work, we characterize the tradeoff between the two protocols

presented in this work. As shown in Table 1, both protocols guar-

antee crucial security and correctness properties such as balance

security and serializability. By design, Rayo is the only protocol that

ensures non-blocking progress. Finally, regarding privacy, we aimed

at achieving the strongest privacy possible. However, although both

protocols guarantee value privacy, we have shown that it is impos-

sible to simultaneously achieve non-blocking progress and strong

anonymity. Therefore, Fulgor achieves strong anonymity while

Rayo achieves non-blocking progress at the cost of weakening the

anonymity guarantees. We note nevertheless that Rayo provides

relationship anonymity only if none of the intermediate nodes

is compromised. Intuitively, Rayo provides this (weaker) privacy

guarantee because it still uses Multi-Hop HTLC as Fulgor.

Table 1: Comparison between Fulgor and Rayo.

Fulgor Rayo
Balance security
Serializability

Non-blocking progress #
Value Privacy
Anonymity G#

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

465

6 PERFORMANCE ANALYSIS
In this section, we first evaluate the performance of Fulgor. Finally,

we describe the overhead required for Rayo.

We have developed a proof-of-concept implementation in Python

to evaluate the performance of Fulgor. We interact with the API of

lnd [1], the recently released Lightning Network implementation,

We use listchannels to extract the current capacity of an open pay-

ment channel, listpeers to extract the list of public keys from other

users in the network, and getinfo to extract the user’s own public

key. We have instantiated the hash function with SHA-256. We

have implemented the Multi-Hop HTLC using a python-based im-

plementation of ZK-Boo [63] to create the zero-knowledge proofs.

We set ZK-Boo to use SHA-256, 136 rounds to achieve a soundness

error of the proofs of 2
−80

, and a witness of 32 bytes as in [69].

Implementation-level Optimizations. During the protocol de-

scription, we have assumed that the sender creates a different anony-

mous communication channel with each intermediate user. In our

implementation, however, we use Sphinx [31] to create a single

anonymous communication channel between sender and receiver,

where intermediate nodes are the intermediate users in the path.

Sphinx allows to send the required payment information to each

intermediate user while obfuscating the information intended for

other users in the path and the actual length of the path by padding

the forwarded data. This optimization has been discussed in the bit-

coin community and implemented in the current release of lnd [9].

Testbed. We have simulated five users and created a linear struc-

ture of payment channels: user i has payment channels open only

with user i − 1 and user i + 1, user 0 is the sender, and user 4 is

the receiver of the pay operation. We run each of the users in a

separated virtual machine with an Intel Core i7 3.1 GHz processor

and 2 GB RAM. The machines are connected in a local network

with a mean latency of 111.5 milliseconds. For our experiments,

we assume that each user has already opened the corresponding

payment channels and got the public verification key of each other

user in the PCN. As this is a one time setup operation, we do not

account for it in our experiments.

Performance. We have first executed the payment operation avail-

able in the lnd software, which uses the HTLC-based payment as

the contract for conditional updates in a payment channel. We ob-

serve that a (non-private) pay operation over a path with 5 users

takes 609 ms and so needs Fulgor. Additionally, the Sdr must run

the Setup
HTLC

(n+1) protocol, increasing thereby her computation

time. Moreover, the Sdr must send the additional information cor-

responding to the Multi-Hop HTLC contract (i.e., (xi ,yi ,yi+1,πi))
to each intermediate user, which adds communication complexity.

The sender requires 309 ms to compute the proof πi for each of

the intermediate users. Each proof is of size 1.65 MB. Finally, each

intermediate user requires 130 ms to verify πi . We focus on the

zero-knowledge proofs as they are the most expensive operation.

Therefore, the total computation overhead is 1.32 seconds (lnd
pay and Multi-Hop HTLC) and the total communication overhead

is less than 5 MB (3 zero-knowledge proofs plus the tuple of small-

size values (xi ,yi ,yi+1) per intermediate user). We observe that

previous proposal [69] required around 10 seconds to compute only

a single zero-knowledge proof. In contrast, the pay operation in

Fulgor requires less than 2 seconds of computation and to commu-

nicate less than 5 MB among the users in the path for the complete

payment operation, which demonstrates the practicality of Fulgor.

Scalability. In order to test the scalability of the pay operation

in Fulgor, we have studied the running time and communication

overhead required by each of the roles in a payment (i.e., sender,

receiver, and intermediate user). Here, we take into account that

Sphinx requires to pad the forwarded messages to the maximum

path length. In the absence of widespread PCN in practice, we set

the maximum path length to 10 in our test, as suggested for similar

payment networks such as the Ripple credit network [49].

Regarding the computation time, the sender requires 3.09 sec-

onds to create πi for each intermediate user. However, this compu-

tation time can be improved if different πi are calculated in parallel

taking advantage of current multi-core systems. Each intermediate

user requires 130 ms as only has to check the contract for payment

channels with successor and predecessor user in the path. Finally,

the receiver incurs in few ms as she only has to check whether a

given value is the correct pre-image of a given hash value.

Regarding communication overhead, the sender must create a

message with 10 proofs of knowledge and other few bytes asso-

ciated to the contract for each intermediate payment channel. So

in total, the sender must forward 17MB approximately. As Sphinx

requires padded messages at each node to ensure anonymity, every

intermediate user must forward a message of the same size.

In summary, these results show that even with an unoptimized

implementation, a payment with 10 intermediate users takes less

than 5 seconds and require a communication overhead of approxi-

mately 17MB at each intermediate user. Therefore, Fulgor induces

a relatively small overhead while enabling payments between any

two users in the PCN and has the potential to be deployed as a PCN

with a growing base of users performing payments with even 10

intermediate users in a matter of few seconds, a result in line with

other privacy preserving payment systems [49, 54].

Non-blocking payments (Rayo). Given the similarities in their

definitions, the performance evaluation for Fulgor carries over to

Rayo. Additionally, the management of non-blocking payments

requires that intermediate users maintain a list (cur) of current
in-flight payments and a queue (Q) of payments waiting to be for-

warded when capacity is available. The management of these data

structures requires a fairly small computation overhead. Moreover,

the number of messages to be stored in these data structures ac-

cording to the specification of Rayo is clearly linear in the length of

the path. Specifically, a payment involving a path of length k ∈ N
incurs O(c·k) message complexity, where c is bounded by the total

of concurrent conflicting payments.

7 RELATEDWORK
Payment channels were first introduced by the Bitcoin commu-

nity [2] and since then, several extensions have been proposed.

Decker and Wattenhofer [32] describe bidirectional payment chan-

nels [32]. Lind et al. [47] leverage trusted platform modules to use

a payment channel without hindering compatibility with Bitcoin.

However, these works focus on a single payment channel and their

extension to support PCNs remain an open challenge.

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

466

TumbleBit [41] and Bolt [40] propose off-chain path-based pay-

ments while achieving sender/receiver anonymity in Tumblebit

and payment anonymity in Bolt. However, these approaches are

restricted to single hop payments, and it is not clear how to ex-

tend them to account for generic multi-hop PCNs and provide the

privacy notions of interest, as achieved by Fulgor and Rayo.

The Lightning Network [60] has emerged as the most prominent

proposal for a PCN in Bitcoin. Other PCNs such as Thunder [19]

and Eclair [10] for Bitcoin and Raiden [13] for Ethereum are being

proposed as slight modifications of the Lightning Network. Never-

theless, their use of HTLC leaks a common identifier per payment,

thereby reducing the anonymity guarantees as we described in this

work. Moreover, current proposals lack a non-blocking solution for

concurrent payments. Fulgor and Rayo, instead, rely on Multi-Hop

HTLC to overcome the linkability issue with HTLC. They provide

a tradeoff between non-blocking progress and anonymity.

Recent works [49, 54] propose privacy definitions for credit net-

works, a payment system that supports multi-hop payments similar

to PCNs. Moreover, privacy preserving protocols are described for

both centralized [54] and decentralized credit networks [49]. How-

ever, credit networks differ from PCNs in that they do not require

to ensure accountability against an underlying blockchain. This

requirement reduces the set of cryptographic operations available

to design a PCN. Nevertheless, Fulgor and Rayo provide similar

privacy guarantees as credit networks even under those restrictions.

Miller et al [53] propose a construction for payment channels

to reduce the time that funds are locked at intermediate payment

channels (i.e., collateral cost), an interesting problem but orthog-

onal to our work. Moreover, they formalize their construction for

multi-hop payments as an ideal functionality. However, they focus

on collateral cost and do not discuss privacy guarantees, concur-

rent payments are handled in a blocking manner only, and their

construction relies on smart contracts available on Ethereum that

are incompatible with the current Bitcoin scripting system.

Towns proposed [69] a variation of the HTLC contract, based on

zk-SNARKs, to avoid its linkability problem among payment chan-

nels in a path. However, the Bitcoin community has not adopted

this approach due to its inefficiency. In this work, we revisit this

solution with a formal protocol with provable security and give an

efficient instantiation based on ZK-Boo [38].

8 CONCLUSION
Permisionless blockchains governed on global consensus proto-

cols face, among others, scalability issues in catering a growing

base of users and payments. A burgeoning approach to overcome

this challenge consists of PCNs and recent efforts have derived

in the first yet alpha implementations such as the Lightning Net-

work [60] in Bitcoin or Raiden [13] in Ethereum. We are, however,

only scratching the surface as many challenges such as liquidity,

network formation, routing scalability, concurrency or privacy are

yet to be thoroughly studied.

In this work, we lay the foundations for privacy and concurrency

in PCNs. In particular, we formally define in the Universal Com-

posability framework two modes of operation for PCNs attending

to how concurrent payments are handled (blocking versus non-

blocking). We provide formally proven instantiations (Fulgor and

Rayo) for each, offering a tradeoff between non-blocking progress

and anonymity. Our evaluation results demonstrate that is feasi-

ble to deploy Fulgor and Rayo in practice and can scale to cater a

growing number of users.

Acknowledgments. We thank the anonymous reviewers for their

helpful reviews, and Ivan Pryvalov for providing his python-based

implementation of ZK-Boo.

This work is partially supported by a Intel/CERIAS research

assistantship, and by the National Science Foundation under grant

CNS-1719196. This research is based upon work supported by

the German research foundation (DFG) through the collaborative

research center 1223 and by the state of Bavaria at the Nurem-

berg Campus of Technology (NCT). NCT is a research cooperation

between the Friedrich-Alexander-University Erlangen-Nürnberg

(FAU) and the Technische Hochschule Nürnberg Georg Simon Ohm

(THN).

REFERENCES
[1] Alpha release of the lightning network daemon. Blog entry.

http://lightning.community/release/software/lnd/lightning/2017/01/10/

lightning-network-daemon-alpha-release/.

[2] Bitcoin wiki: Bitcoin contract. https://en.bitcoin.it/wiki/Contract.

[3] Bitcoin wiki: Bitcoin scalability faq. https://en.bitcoin.it/wiki/Scalability_FAQ.

[4] Bitcoin wiki: Block size limit controversy. https://en.bitcoin.it/wiki/Block_size_

limit_controversy.

[5] Bitcoin wiki: Op_return. https://en.bitcoin.it/wiki/OP_RETURN.

[6] Bitcoin wiki: Payment channels. https://en.bitcoin.it/wiki/Payment_channels.

[7] Bitcoin wiki: Timelock. https://en.bitcoin.it/wiki/Timelock.

[8] Bitcoin wiki: Transaction malleability. https://en.bitcoin.it/wiki/Transaction_

Malleability.

[9] Bolt #4: Onion routing protocols. https://github.com/lightningnetwork/

lightning-rfc/blob/master/04-onion-routing.md.

[10] Eclair implementation of the lightning network. https://github.com/ACINQ/

eclair.

[11] Lightning network daemon. Github implementation. https://github.com/

LightningNetwork/lnd.

[12] Lightning protocol reference implementation. Github implementation. https:

//github.com/ElementsProject/lightning.

[13] Raiden network. Project’s website. http://raiden.network/.

[14] Reliable transaction submission. Ripple protocol’s documentation. https://ripple.

com/build/reliable-transaction-submission/.

[15] Ripple protocol. Project’s website. https://ripple.com/.

[16] Segregated witness adoption. Blog entry. https://bitcoincore.org/en/segwit_

adoption/.

[17] Stellar protocol. Project’s website. https://www.stellar.org/.

[18] Stress test prepares visanet for the most wonderful time of the

year. Blog entry. http://www.visa.com/blogarchives/us/2013/10/10/

stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/

index.html.

[19] Thunder network. Project’s website. https://github.com/blockchain/thunder.

[20] Alpern, B., and Schneider, F. B. Defining liveness. Inf. Process. Lett. 21, 4 (Oct.
1985), 181–185.

[21] Androulaki, E., Karame, G. O., Roeschlin, M., Scherer, T., and Capkun, S.

Evaluating user privacy in bitcoin. Financial Cryptography and Data Security

2013.

[22] Atlas, K. The inevitability of privacy in lightning networks. Blog entry. https:

//www.kristovatlas.com/the-inevitability-of-privacy-in-lightning-networks/.

[23] Attiya, H., and Welch, J. Distributed Computing. Fundamentals, Simulations,
and Advanced Topics. John Wiley & Sons, 2004.

[24] Backes, M., Kate, A., Manoharan, P., Meiser, S., and Mohammadi, E. Anoa:

A framework for analyzing anonymous communication protocols. In IEEE 26th
Computer Security Foundations Symposium (2013).

[25] Barber, S., Boyen, X., Shi, E., and Uzun, E. Bitter to better. how to make Bitcoin

a better currency. Financial Cryptography and Data Security 2012.

[26] Camenisch, J., and Lysyanskaya, A. A formal treatment of onion routing. In

Advances in Cryptology—CRYPTO (2005).

[27] Canetti, R. Universally composable security: A new paradigm for cryptographic

protocols. In "FOCS’01".
[28] Cristian, F., Aghili, H., and Strong, H. R. Approximate clock synchronization

despite omission and performance faults and processor joins. In Proceedings of
the 16th International Symposium on Fault-Tolerant Computing (July 1986).

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

467

http://lightning.community/release/software/lnd/lightning/2017/01/10/lightning-network-daemon-alpha-release/
http://lightning.community/release/software/lnd/lightning/2017/01/10/lightning-network-daemon-alpha-release/
https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/Scalability_FAQ
https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://en.bitcoin.it/wiki/OP_RETURN
https://en.bitcoin.it/wiki/Payment_channels
https://en.bitcoin.it/wiki/Timelock
https://en.bitcoin.it/wiki/Transaction_Malleability
https://en.bitcoin.it/wiki/Transaction_Malleability
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/ACINQ/eclair
https://github.com/ACINQ/eclair
https://github.com/LightningNetwork/lnd
https://github.com/LightningNetwork/lnd
https://github.com/ElementsProject/lightning
https://github.com/ElementsProject/lightning
http://raiden.network/
https://ripple.com/build/reliable-transaction-submission/
https://ripple.com/build/reliable-transaction-submission/
https://ripple.com/
https://bitcoincore.org/en/segwit_adoption/
https://bitcoincore.org/en/segwit_adoption/
https://www.stellar.org/
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
https://github.com/blockchain/thunder
https://www.kristovatlas.com/the-inevitability-of-privacy-in-lightning-networks/
https://www.kristovatlas.com/the-inevitability-of-privacy-in-lightning-networks/

[29] Dandekar, P., Goel, A., Govindan, R., and Post, I. Liquidity in credit networks:

a little trust goes a long way. In ACM Conference on Electronic Commerce (2011).
[30] Dandekar, P., Goel, A., Wellman, M. P., and Wiedenbeck, B. Strategic forma-

tion of credit networks. InWWW (2012).

[31] Danezis, G., and Goldberg, I. Sphinx: A compact and provably secure mix

format. In 30th IEEE Symposium on Security and Privacy (S&P 2009).
[32] Decker, C., and Wattenhofer, R. A fast and scalable payment network with

bitcoin duplex micropayment channels. In Stabilization, Safety, and Security of
Distributed Systems (2015).

[33] Dryja, T. Unlinkable outsourced channel monitoring. (Talk

transcript) https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/

unlinkable-outsourced-channel-monitoring/.

[34] Fischer, M. J., Lynch, N. A., and Paterson, M. S. Impossibility of distributed

consensus with one faulty process. J. ACM 32, 2 (Apr. 1985), 374–382.
[35] Friedenbach, M., BtcDrak, Dorier, N., and kinoshitajona. Bip 68: Relative

lock-time using consensus-enforced sequence numbers. https://github.com/

bitcoin/bips/blob/master/bip-0068.mediawiki.

[36] Fugger, R. Money as ious in social trust networks & a proposal for a decentralized

currency network protocol. Technical Report, 2004. http://archive.ripple-project.

org/decentralizedcurrency.pdf.

[37] Ghosh, A., Mahdian, M., Reeves, D. M., Pennock, D. M., and Fugger, R. Mech-

anism design on trust networks. InWINE’07.
[38] Giacomelli, I., Madsen, J., and Orlandi, C. Zkboo: Faster zero-knowledge for

boolean circuits. In USENIX Security (2016).

[39] go1111111 (pseudonym). Idea to improve lightning network. Forum post. https:

//bitcointalk.org/index.php?topic=1134319.0.

[40] Green, M., and Miers, I. Bolt: Anonymous payment channels for decentralized

currencies. In CCS (2017).
[41] Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., and Goldberg, S.

TumbleBit: An untrusted bitcoin-compatible anonymous payment hub. In NDSS
(2017).

[42] Herlihy, M., and Shavit, N. On the nature of progress. In OPODIS (2011),

pp. 313–328.

[43] Herrera-Joancomartí, J., and Pérez-Solà, C. Privacy in bitcoin transactions:

New challenges from blockchain scalability solutions. In Modeling Decisions for
Artificial Intelligence (2016).

[44] Kosba, A., Miller, A., Shi, E., Wen, Z., and Papamanthou, C. Hawk: The

blockchain model of cryptography and privacy-preserving smart contracts. In

IEEE S&P (2016).

[45] Koshy, P., Koshy, D., and McDaniel, P. An analysis of anonymity in bitcoin

using p2p network traffic. In Financial Cryptography and Data Security (2014).

[46] Lamport, L., and Fischer, M. Byzantine generals and transaction commit

protocols. Tech. Rep. 62, SRI International, Apr. 1982.

[47] Lind, J., Eyal, I., Pietzuch, P. R., and Sirer, E. G. Teechan: Payment channels

using trusted execution environments. http://arxiv.org/abs/1612.07766.

[48] Lopp, J. Lightning’s balancing act: Challenges face bitcoin’s

scalability savior. Blog entry. http://www.coindesk.com/

lightning-technical-challenges-bitcoin-scalability/.

[49] Malavolta, G., Moreno-Sanchez, P., Kate, A., and Maffei, M. SilentWhispers:

Enforcing security and privacy in credit networks. In NDSS (2017).
[50] McCorry, P., Möser, M., Shahandashti, S. F., and Hao, F. Towards bitcoin

payment networks. In Australasian Conference Information Security and Privacy
(2016).

[51] Meiklejohn, S., and Orlandi, C. Privacy-enhancing overlays in bitcoin. In

BITCOIN (2015).

[52] Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,

G. M., and Savage, S. A fistful of bitcoins: Characterizing payments among men

with no names. In IMC (2013).

[53] Miller, A., Bentov, I., Kumaresan, R., and McCorry, P. Sprites: Payment

channels that go faster than lightning. CoRR abs/1702.05812 (2017).
[54] Moreno-Sanchez, P., Kate, A., Maffei, M., and Pecina, K. Privacy preserving

payments in credit networks. In NDSS (2015).
[55] Moreno-Sanchez, P., Modi, N., Songhela, R., Kate, A., and Fahmy, S. Mind

your credit: Assessing the health of the ripple credit network. CoRR abs/1706.02358
(2017).

[56] Moreno-Sanchez, P., Zafar, M. B., and Kate, A. Listening to whispers of

ripple: Linking wallets and deanonymizing transactions in the ripple network.

In PETS (2016).
[57] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.

org/bitcoin.pdf, 2008.

[58] Papadimitriou, C. H. The serializability of concurrent database updates. J. ACM
26 (1979), 631–653.

[59] Pfitzmann, A., and Hansen, M. Anonymity, unlinkability, undetectability, un-

observability, pseudonymity, and identity management – a consolidated proposal

for terminology, 2008.

[60] Poon, J., and Dryja, T. The bitcoin lightning network: Scalable off-chain instant

payments. Technical Report. https://lightning.network/lightning-network-paper.

pdf.

[61] Post, A., Shah, V., and Mislove, A. Bazaar: Strengthening user reputations in

online marketplaces. In NSDI (2011).
[62] Prihodko, P., Zhigulin, S., Sahno, M., and Ostrovskiy, A. Flare: An

approach to routing in lightning network. http://bitfury.com/content/

5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_

lightning_network_7_7_2016.pdf.

[63] Pryvalov, I. pyZKBoo++ implementation. Project’s website. https://sites.google.

com/view/pyzkboopp/home.

[64] Reid, F., and Harrigan, M. An analysis of anonymity in the bitcoin system. In

Security and Privacy in Social Networks (2013).
[65] Russell, R. Reaching the ground with lightning. Technical Report. http://ozlabs.

org/~rusty/ln-deploy-draft-01.pdf.

[66] Spagnuolo, M., Maggi, F., and Zanero, S. BitIodine: Extracting intelligence

from the bitcoin network. In Financial Cryptography and Data Security (2014).

[67] Torpey, K. Brock pierce: Bitcoin’s scalability issues are a sign

of its success. Blog entry. https://bitcoinmagazine.com/articles/

brock-pierce-bitcoin-s-scalability-issues-are-a-sign-of-its-success-1459867433/.

[68] Torpey, K. Does the lightning network threaten bitcoin?s censor-

ship resistance? Blog entry. https://bitcoinmagazine.com/articles/

does-the-lightning-network-threaten-bitcoin-s-censorship-resistance-1461953131/.

[69] Towns, A. Better privacy with SNARKs. Mailing List. https://lists.

linuxfoundation.org/pipermail/lightning-dev/2015-November/000309.html.

[70] van Wirdum, A. Segwit or not, bitfury is getting ready for lightning with

successful bitcoin main net test. Blog entry. https://bitcoinmagazine.com/articles/

segwit-or-not-bitfury-ready-lightning-successful-bitcoin-main-net-test/.

[71] Viswanath, B., Mondal, M., Gummadi, K. P., Mislove, A., and Post, A. Canal:

Scaling social network-based sybil tolerance schemes. In EuroSys (2012).
[72] Wikström, D. A universally composable mix-net. In Theory of Cryptography

Conference (2004), M. Naor, Ed.

A SECURITY ANALYSIS
Our proof strategy consists of the description of a simulator S that

handles users corrupted by the attacker and simulates the real world

execution protocol while interacting with the ideal functionality F .

The simulator S spawns honest users at adversarial will and imper-

sonates them until the environment E makes a corruption query on

one of the users: At this point S hands over toA the internal state

of the target user and routes all of the subsequent communications

to A, who can reply arbitrarily. For operations exclusively among

corrupted users, the environment does not expect any interaction

with the simulator. Similarly, communications exclusively among

honest nodes happen through secure channels and therefore the

attacker does not gather any additional information other than the

fact that the communication took place. For simplicity, we omit

these operations in the description of our simulator. The random

oracle H is simulated by S via lazy-sampling. The operations to be

simulated for a PCN are described in the following.

openChannel(c⟨u1,u2⟩, β, t , f): Let u1 be the user that initiates the

request. We analyze two possible cases:

(1) Corrupted u1: S receives a (c⟨u1,u2⟩, β , t , f) request from the

adversary on behalf of u1 and initiates a two-user agree-

ment protocol with A to convey upon a local fresh channel

identifier c⟨u1,u2⟩. If the protocol successfully terminates, S

sends (open, c⟨u1,u2⟩, β , t , f) to F , which eventually returns

(c⟨u1,u2⟩,h).
(2) Corrupted u2: S receives a message (c⟨u1,u2⟩, v, t , f) from
F engages A in a two-user agreement protocol on behalf

of u1 for the opening of the channel. If the execution is

successful,S sends an acceptingmessage to F which returns

(c⟨u1,u2⟩,h), otherwise it outputs ⊥.

If the opening was successful the simulator initializes an empty list

Lc⟨u
1
,u

2
⟩
and appends the value (h, v,⊥,⊥).

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

468

https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring/
https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring/
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
http://archive.ripple-project.org/decentralizedcurrency.pdf
http://archive.ripple-project.org/decentralizedcurrency.pdf
https://bitcointalk.org/index.php?topic=1134319.0
https://bitcointalk.org/index.php?topic=1134319.0
http://arxiv.org/abs/1612.07766
http://www.coindesk.com/lightning-technical-challenges-bitcoin-scalability/
http://www.coindesk.com/lightning-technical-challenges-bitcoin-scalability/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://sites.google.com/view/pyzkboopp/home
https://sites.google.com/view/pyzkboopp/home
http://ozlabs.org/~rusty/ln-deploy-draft-01.pdf
http://ozlabs.org/~rusty/ln-deploy-draft-01.pdf
https://bitcoinmagazine.com/articles/brock-pierce-bitcoin-s-scalability-issues-are-a-sign-of-its-success-1459867433/
https://bitcoinmagazine.com/articles/brock-pierce-bitcoin-s-scalability-issues-are-a-sign-of-its-success-1459867433/
https://bitcoinmagazine.com/articles/does-the-lightning-network-threaten-bitcoin-s-censorship-resistance-1461953131/
https://bitcoinmagazine.com/articles/does-the-lightning-network-threaten-bitcoin-s-censorship-resistance-1461953131/
https://lists.linuxfoundation.org/pipermail/lightning-dev/2015-November/000309.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2015-November/000309.html
https://bitcoinmagazine.com/articles/segwit-or-not-bitfury-ready-lightning-successful-bitcoin-main-net-test/
https://bitcoinmagazine.com/articles/segwit-or-not-bitfury-ready-lightning-successful-bitcoin-main-net-test/

closeChannel(c⟨u1,u2⟩, v): Let u1 be the user that initiates the re-

quest. We distinguish two possible scenarios:

(1) Corrupted u1: S receives a closing request from the adver-

sary on behalf of u1, then it fetches Lc⟨u
1
,u

2
⟩
for some value

(h, v,x ,y). If such a value does not exist then it aborts. Oth-

erwise it sends (close, c⟨u1,u2⟩,h) to F .

(2) Corrupted u2: S receives (c⟨u1,u2⟩,h,⊥) from F and simply

notifies A of the closing of the channel c⟨u1,u2⟩.

pay((c⟨u0,u1⟩, . . . , c⟨un,un+1⟩), v): Since the specifications of the pro-
tocol differ depending on whether a user is a sender, a receiver or an

intermediate node of a payment, we consider the cases separately.

(1) Sender: In order to initiate a payment, the adversary must

provide each honest user ui involved with a message mi
that the simulator parses as (c⟨ui−1,ui ⟩, c⟨ui ,ui−1⟩,xi ,yi ,yi+1,

πi , vi , ti , ti+1), also the receiver of the paymentun+1 (in case

it is not corrupted) is notified with some message (c⟨un,un+1⟩,

xn ,yn , v, tn). For each intermediate honest user ui , the simu-

lator checks whether ti ≥ ti+1 andV ((H ,yi ,yi+1,xi),πi) =
1. If the conditions hold, S sends to F the tuple (pay, vi ,
(c⟨ui−1,ui ⟩, c⟨ui ,ui+1⟩), ti−1, ti), whereas for the receiver (in

case it is honest) sends (pay, v, c⟨un,un+1⟩, tn) if yn = H (xn),
otherwise it aborts. For each intermediate userui the simula-

tor confirms the payment only when receives from the user

ui+1 an x such that H (xi ⊕ x) = yi . If A outputs a value x∗

such that H (x∗) = yi+1 but H (xi ⊕ x∗) , yi then S aborts

the simulation. If the receiver is honest then the simulator

confirms the payment if the amount v corresponds to what

agreed with the sender and if H (xn) = yn . If the payment

is confirmed the entry (hi , v∗ − vi ,xi ⊕ x ,yi) is added to

Lc⟨ui−1
,ui ⟩

, where (h∗i , v
∗, ·, ·) is the entry of Lc⟨ui−1

,ui ⟩
with

the lowest v∗, and the same happens for the receiver.

(2) Receiver: S receives some (h, c⟨un,un+1⟩, v, tn) from F , then

it samples a random x ∈ {0, 1}λ and returns to A the tuple

(x ,H (x), v). If A returns a string x ′ = x , then S returns ⊤

to F , otherwise it sends ⊥.

(3) Intermediate user: S is notified that a corrupted user is in-

volved in a payment with a message of the form (hi ,hi+1,

c⟨ui−1,ui ⟩, c⟨ui ,ui+1⟩, v, ti−1, ti) byF .S samples anx ∈ {0, 1}λ

and an x ′ ∈ {0, 1}λ and runs the simulator of the zero-

knowledge scheme to obtain the proof π over the statement

(H ,H (x ⊕ x ′),H (x ′),x). The adversary is provided with the

tuple (c⟨ui−1,ui ⟩, c⟨ui ,ui−1⟩,x ,H (x ⊕ x ′),H (x ′),π , v, ti−1, ti)
via an anonymous channel. IfA outputs a string x ′′ = x ⊕x ′,
then S aborts the simulation. At some point of the execution

the simulator is queried again on (hi ,hi+1), then it sends x ′

to A on behalf of ui+1. If A outputs a string z = x ⊕ x ′ the
simulator sends ⊤ to F and appends (hi , v∗ − v, z,H (z)) to
Lc⟨ui−1

,ui ⟩
, where (h∗i , v

∗, ·, ·) is the entry of Lc⟨ui−1
,ui ⟩

with

the lowest v∗. The simulator sends ⊥ otherwise. Note that

we consider the simpler case where a single node in the

payment is corrupted. However this can be easily extended

to the more generic case by book-keeping the values of hi
and choosing the corresponding the pre-images x and x ′

consistently. The rest of the simulation is unchanged.

Analysis. Since the simulation runs only polynomially-bounded

algorithms it is easy to see that the simulation is efficient. We

now argue that the view of the environment in the simulation is

indistinguishable from the execution of the real-world protocol.

For the moment, we assume that the simulation never aborts, then

we separately argue that the probability of the simulator to abort

is negligible. For the openChannel and closeChannel algorithms

the indistinguishability argument is trivial. On the other hand for

the payment we need a more sophisticated reasoning. Consider

first the scenario where the sender is corrupted: In this case the

simulation diverges form the the original protocol since each multi-

hop payment is broke down into separate single-hop payments.

Note that the off-chain communication mimics exactly the real-

world protocol (as long as S does not abort): Each node ui that
is not the receiver confirms the transaction to F only if it learns

a valid pre-image of its yi . Since we assume that the simulation

does not abort, it follows that the simulation is consistent with

the fact that each honest node always returns ⊤ at this stage of

the execution (i.e., the payment chain does not stop at a honest

node, other than the sender). However, the values published in

the blockchain could in principle diverge from what the adversary

is expecting in the real execution. In fact, an entry of the real

blockchain contains the values of (x ,H (x)) corresponding to a

particular payment, in addition to the information that is leaked

by the ideal functionality. Therefore we have to show that the

values of (x ,y) that the simulator appends to A’s view of B (in the

closeChannel simulation) have the same distribution as in the real

world. Note that those values are either selected by the adversary

if the sender is corrupted (there the argument is trivial) or chosen

to be (x ,H (x)) by the simulator, for some randomly chosen x ∈

{0, 1}λ . For the latter case it is enough to observe that the following

distributions are statistically close

*
,
*
,

n⊕
i=1

xi ,y1
+
-
, . . . , (xn ,yn)+

-
≈ ((r1, s1), . . . , (rn , sn)),

where for all i : (xi , ri) ← {0, 1}
2·λ

, yi ← H (xi), and si ← H (ri).
Note that on the left hand side of the equation the values are dis-

tributed accordingly to the real-world protocol, while on the right

hand side the distribution corresponds to the simulated values.

The indistinguishability follows. For the simulation of the receiver

and of the intermediate users one can use a similar argument. We

only need to make sure that A cannot interrupt a payment chain

before it reaches the receiver, which is not allowed in the ideal

world. It is easy to see that in that case (A outputs x ′′ such that

H (x ′′) = H (x ⊕ x ′) before receiving x ′) the simulation aborts.

What is left to be shown is that the simulation aborts with at

most negligible probability. Let aborts the event thatS aborts in the

simulation of the sender and let aborti be the event that S aborts

in the simulation of the intermediate user. By the union bound we

have that Pr [abort] ≤ Pr [aborts] + Pr [aborti].
We note that in case aborts happens than the adversary was able

to output a valid proof πi over (H ,yi ,yi+1,xi) and an x∗ such that

H (x∗) = yi+1 and H (x∗ ⊕ xi) , yi . Let w be a bitstring such that

H (w) = yi+1 and H (w ⊕ xi) = yi , by the soundness of the proof πi
such a string is guaranteed to exists. It follows that H (x∗ ⊕ xi) ,
H (w ⊕ xi) which implies that w , x∗, since H is a deterministic

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

469

function. However we have that H (x∗) = H (w), which implies that

w = x∗, sinceA can query the random oracle at most polynomially-

many times. This is a contradiction and therefore it must be the case

that for all PPT adversaries the probability of aborts to happen is

0. We can now rewrite Pr [abort] ≤ Pr [aborti]. Consider the event
aborti: In this case we have that A, on input (H (x ⊕ x ′),H (x ′),x),
is able to output some x ′′ = x ⊕x ′. Note that x ′ is a freshly sampled

value and therefore the values H (x ⊕ x ′) and H (x ′) are uniformly

distributed over the range of H . Thus the probability thatA is able

to output the pre-image ofH (x⊕x ′) without knowing x ′ is bounded
by a negligible function in the security parameter. It follows that

Pr [abort] ≤ negl(λ). And this concludes our proof. □

Non-Blocking Solution. The security proof for our non-blocking
solution is identical to what described above, with the only excep-

tion that the ideal functionality leaks the identifier of a payment

to the intermediate users. Therefore the simulator must make sure

to choose the transaction identifier consistently for all of the cor-

rupted users involved in the same payment. In addition to that,

the simulator must also implement the non-blocking logic for the

queueing of the payments. The rest of the argument is unchanged.

B AGREEMENT BETWEEN TWO USERS
In this section, we describe the protocol run by two users,u0 andu1,

sharing a payment channel to reach agreement [34] on the channel’s
state at each point in time.

Notation and Assumptions. In this section, we follow the no-

tation we introduced in Section 4. We assume that there is a total

order between the events received by the users at a payment chan-

nel (e.g., lexicographically sorted by the hash of the corresponding

payment data) and the users (e.g., lexicographically sorted by their

public verification keys). Moreover, we assume that users perform

the operations associated to each event as defined in our construc-

tion (see Section 4.3). Therefore, in this section we only describe the

additional steps required by users to handle concurrent payments.

Finally, we assume that two users sharing a payment channel, lo-

cally maintain the state of the payment channel (channel-state).
The actual definition of channel-state depends on whether concur-

rent payments are handled in a blocking or non-blocking man-

ner. For blocking, channel-state is defined as cap(c⟨u0,u1⟩), where
cap denotes the current capacity in the payment channel. For non-

blocking, channel-state is defined as a tuple {cur[],Q[], cap}, where
cur denotes an array of payments currently using (part of) the ca-

pacity available at the payment channel; Q denotes the array of

payments waiting for enough capacity at the payment channel.

The agreement on channel-state between the corresponding two

users u0 and u1 is performed in two communication rounds. In

the first round, both users exchange the set of events {decisionb }
to be applied into the channel-state. At the end of this first round,

each user comes up with the aggregated set of events {decision} :=

{decision}0 ∪ {decision}1 deterministically sorted according to the

following criteria. First, the events proposed by the user with the

highest identifier are included first. Second, if several events are

included in {decision}b , they are sorted according to the follow-

ing sequence: accept, abort, forward.5 Finally, events of the same

5
Although other sequences are possible, we fix this one to ensure that the sorting is

deterministic.

type are sorted in decreasing order by the corresponding payment

identifier. These set of rules ensure that the both users can deter-

ministically compute the same sorted version of the set {decisioni }.
Before starting the second communication round, each user

applies the changes related to each event in {decisioni } to the

current channel-state. The mapping between each event and the

corresponding actions is defined as a function

{
(decisionj ,mj)

}

← f ({decisioni }). This function returns a set of tuples that indicate

what events must be forwarded to which user in the payment path.

Then, in the second communication round, each event decisionj
is sent to the corresponding user uj (encoded inmj). The actual

implementation of the function f determines how the concurrent

payments are handled. In Fulgor, we implement the function f as

described in Figures 7 and 8 (black pseudocode) for blocking ap-

proach and as described in Figures 7 and 8 (light blue pseudocode)

for non-blocking approach.

In the following, we denote the complete agreement protocol

between two users by 2ProcCons(u0,u1, {decisioni }).

Lemma B.1. 2ProcCons(u0,u1, {decisioni }) ensures agreement on
the channel-state given the set of events {decision }.

Proof. Assume that channel-state is consistent between two

users ui and uj before 2ProcCons(u0,u1, {decisioni }) is invoked. It
is easy to see that both users come with the same sorted version of

{decisioni } since the sorting rules are deterministic. Moreover, for

each event, the function f deterministically updates channel-state
and returns a tuple (m, decision). As the events are applied in the

same order by both users, they reach agreement on the same up-

dated channel-state and the same set of tuples

{
(uk , decisionk)

}
. □

C IDEAL WORLD FUNCTIONALITY FOR
NON-BLOCKING PAYMENTS

In this section, we detail the ideal world functionality for a PCN

that handles concurrent payments in a non-blocking manner. We

highlight in light blue the changes with respect to the ideal world

functionality presented in Section 3.2 that correspond to a PCN that

handles concurrent payments in a blocking manner. Moreover, we

assume the same model, perform the same assumptions and use the

same notation as described in Section 3.2. Additionally, we use the

variable queued to track at which intermediate user the payment

is queued if there is not enough capacity in her channel and the

payment identifier is higher than those in-flight. Moreover, we use

a listW to keep track of remaining hops for queued payments. En-

tries inW are of the form ((c⟨u1,u2⟩, . . . , c⟨uk ,uk+1
⟩), v, (t1, . . . , tk))

and contain the remaining list of payment channels (c⟨u1,u2⟩, . . . ,

c⟨uk ,uk+1
⟩), their associated timeouts (t1, . . . , tk) and the remaining

payment value v.
For simplicity we only model unidirectional channels, although

our functionality can be easily extended to support also bidirec-

tional channels. The execution of our simulation starts with F

querying FB to initialize it and F initializing itself the locally stored

empty lists L,C,W .

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

470

Open channel: On input (open, c⟨u,u′⟩, v,u ′, t , f) from a user u, F checks whether c⟨u,u′⟩ is well-formed (contains valid identifiers

and it is not a duplicate) and eventually sends (c⟨u,u′⟩, v, t , f) to u ′, who can either abort or authorize the operation. In the latter case,

F appends the tuple (c⟨u,u′⟩, v, t , f) to B and the tuple (c⟨u,u′⟩, v, t ,h) to L, for some random h. F returns h to u and u ′.

Close channel: On input (close, c⟨u,u′⟩,h) from a user ∈ {u ′,u} the ideal functionality F parses B for an entry (c⟨u,u′⟩, v, t , f) and L
for an entry (c⟨u,u′⟩, v′, t ′,h), for h , ⊥. If c⟨u,u′⟩ ∈ C or or t > |B| or t ′ > |B|, the functionality aborts. Otherwise, F adds the entry

(c⟨u,u′⟩, v′, t ′, f) to B and adds c⟨u,u′⟩ to C. F then notifies both users involved with a message (c⟨u,u′⟩,⊥,h).

Payment: On input (pay, v, (c⟨u0,u1⟩, . . . , c⟨un,un+1⟩), (t0, . . . , tn), Txid) from a user u0, F executes the following interactive protocol:

(1) For all i ∈ {1, . . . , (n + 1)}, F parses B for an entry of the form ((c⟨ui−1,u′i ⟩
, vi , t ′i , fi)). If such an entry does exist, F sends the

tuple (Txid, Txid, c⟨ui−1,ui ⟩, c⟨ui ,ui+1⟩, v −
∑n
j=i fj , ti−1, ti) to the user ui via an anonymous channel (for the specific case of the

receiver the tuple is only (Txid, c⟨un,un+1⟩, v, tn)). Then, F checks whether for all entries of the form (c⟨ui−1,ui ⟩, v
′
i , ·, ·) ∈ L it

holds that v′i ≥
(
v −
∑n
j=i fj

)
and that ti−1 ≥ ti . If this is the case, F adds di = (c⟨ui−1,ui ⟩, v

′
i − (v −

∑n
j=i fj), ti ,⊥) to L, where

(c⟨ui−1,ui ⟩, v
′
i , ·, ·) ∈ L is the entry with the lowest v′i and sets queued = n + 1. Otherwise, F performs the following steps:

• If there exists an entry of the form (c⟨uk ,uk+1
⟩,−,−, Txid

∗) ∈ L such that Txid > Txid∗, then F adds dl = (c⟨ul−1
,ul ⟩, v

′
l − (v +∑n

j=l fj), tl ,⊥) to L, for l ∈ {1, . . . ,k } . Additionally, F adds (Txid, (c⟨uk ,uk+1
⟩, . . . , c⟨un,un+1⟩), v−

∑n
j=k fj , (tk , . . . , tn)) ∈ W .

Finally, F sets queued = k .
• Otherwise, F removes from L all the entries di added in this phase. Additionally, F looks for entries of the form

(Txid′, (c⟨i,i+1⟩, . . . , c⟨ñ,ñ+1⟩), ṽ, (ti , . . . , ˜tn)) ∈ W , deletes them and execute (pay, ṽ, (c⟨i,i+1⟩, . . . , c⟨ñ,ñ+1⟩), (ti , . . . , ˜tn)).
(2) For all i ∈ {queued, . . . , 1} F queries all ui with (hi ,hi+1), through an anonymous channel. Each user can reply with either ⊤

or ⊥. Let j be the index of the user that returns ⊥ such that for all i > j : ui returned ⊤. If no user returned ⊥ we set j = 0.

(3) For all i ∈ {j + 1, . . . , queued} the ideal functionality F updates di ∈ L (defined as above) to (−,−,−, Txid) and notifies the user
of the success of the operation with with some distinguished message (success, Txid, Txid). For all i ∈ {0, . . . , j} (if j , 0) F

performs the following steps:

• Removes di from L and notifies the user with the message (⊥, Txid, Txid).
• F looks for entries of the form (Txid′, (c⟨i,i+1⟩, . . . , c⟨ñ,ñ+1⟩), ṽ, (ti , . . . , ˜tn)) ∈ W , removes them fromW and execute

(pay, ṽ, (c⟨i,i+1⟩, . . . , c⟨ñ,ñ+1⟩), (ti , . . . , ˜tn)).

Figure 10: Ideal world functionality for PCNs for non-blocking progress.

D PROOF FOR CONCURRENCY LEMMAS
Proof for Lemma 3.3. Consider an execution of two payments

depicted in Figure 11: payment Txidi from Alice to Edward and

payment Txidj from Alice to Fabi. The payment channel between

Alice and Bob is a contending bottleneck for both Txidi and Txidj ,
however, only one of the payments can be successfully executed

since the payment channel between Alice and Bob has the capacity

for only one of the two to be successful. Suppose by contradiction

that both Txidi and Txidj are successfully completed. Indeed, this

is possible since byzantine users Alice and Bob can respond with

an incorrect payment channel capacity to users Edward and Fabi.

However, the payment channel between Alice and Bob does not

have sufficient capacity for both transactions to be successful—

contradiction since there does not exist any equivalence to the

sequential specification of payments channels. □

Proof for Lemma 5.1. Suppose by contradiction that there ex-

ists a strictly serializable disjoint-access implementation providing

non-blocking progress. Consider the following payment network:

u1 → u2 → u3 → u4 → u5 → u1. Consider two concurrent pay op-

erations of the form pay
1
(c⟨u1,u2⟩, c⟨u2,u3⟩, c⟨u3,u4⟩, c⟨u4,u5⟩, v) and

pay
2
(c⟨u4,u5⟩, c⟨u5,u1⟩, c⟨u1,u2⟩, c⟨u2,u3⟩, v). Consider the execution

E in which pay
1
and pay

2
run concurrently up to the following

step: pay
1
executes from u1 → . . .u4 and pay2 executes from u4→

u5 → u1. Let E1 (and resp. E2) be the extensions of E in which pay
1

(and resp. pay
2
) terminates successfully and pay

2
(and resp. pay

1
)

terminates unsuccessfully. By assumption of non-blocking progress,

there exists such a finite extension of this execution in which both

pay
1
and pay

2
must terminate (though they may not be successful

since this depends on the available channel capacity).

Since the implementation is disjoint-access parallel, execution

E1 is indistinguishable to (u1, . . . ,u5) (and resp. (u4, . . . ,u3)) from
the execution Ē, an extension of E, in which only pay

1
(and resp.

pay
2
) is successful and matches the sequential specification of PCN.

Note that analogous arguments applies for the case of E2.

However, E1 (and resp. E2) is not a correct execution since it lacks

the all-or-nothing semantics: only a proper subset of the channels

from the execution E involved in pay
1
(and resp. pay

2
) have their

capacities decreased byv (and resp.v ′). This is a contradiction to the
assumption of strict serializability, thus completing the proof. □

Figure 11: Execution depicting two payments:payment Txidi from
Alice to Edward and payment Txidj from Alice to Fabi. If Alice and
Bob are byzantine, they can allow both payments to be successful
(while losing funds themselves).

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

471

	Abstract
	1 Introduction
	2 Background
	2.1 Payment Channels
	2.2 A Payment Channel Network (PCN)
	2.3 State-of-the-Art PCNs

	3 Problem Definition
	3.1 Attacker Model, and Security and Privacy Goals
	3.2 Ideal World Functionality
	3.3 Key Ideas and System Overview

	4 Fulgor: Our Construction
	4.1 Building Blocks
	4.2 Multi-Hop HTLC
	4.3 Construction Details
	4.4 Security and Privacy Analysis
	4.5 System Discussion

	5 Non-blocking Payments in PCNs
	5.1 Concurrency vs Privacy
	5.2 Ideal World Functionality
	5.3 Rayo: Our Construction
	5.4 Analysis and System Discussion
	5.5 Fulgor vs Rayo

	6 Performance Analysis
	7 Related Work
	8 Conclusion
	References
	A Security Analysis
	B Agreement between Two Users
	C Ideal World Functionality for Non-Blocking Payments
	D Proof for Concurrency Lemmas

