
Maliciously Secure Multi-Client ORAM

Matteo Maffei1, Giulio Malavolta2, Manuel Reinert3(B),
and Dominique Schröder2

1 TU Wien, Wien, Austria
matteo.maffei@tuwien.ac.at

2 Friedrich-Alexander Universität Erlangen-Nürnberg, Nürnberg, Germany
{giulio.malavolta,dominique.schroeder}@fau.de

3 CISPA, Saarland University, Saarbrücken, Germany
reinert@cs.uni-saarland.de

Abstract. Oblivious RAM (ORAM) has emerged as an enabling tech-
nology to secure cloud-based storage services. The goal of this crypto-
graphic primitive is to conceal not only the data but also the access
patterns from the server. While the early constructions focused on a sin-
gle client scenario, a few recent works have focused on a setting where
multiple clients may access the same data, which is crucial to support
data sharing applications. All these works, however, either do not con-
sider malicious clients or they significantly constrain the definition of
obliviousness and the system’s practicality. It is thus an open question
whether a natural definition of obliviousness can be enforced in a mali-
cious multi-client setting and, if so, what the communication and com-
putational lower bounds are.

In this work, we formalize the notion of maliciously secure multi-client
ORAM, we prove that the server-side computational complexity of any
secure realization has to be Ω(n), and we present a cryptographic instan-
tiation of this primitive based on private information retrieval techniques,
which achieves an O(

√
N) communication complexity. We further devise

an efficient access control mechanism, built upon a novel and generally
applicable realization of plaintext equivalence proofs for ciphertext vec-
tors. Finally, we demonstrate how our lower bound can be bypassed by
leveraging a trusted proxy, obtaining logarithmic communication and
server-side computational complexity. We implemented our scheme and
conducted an experimental evaluation, demonstrating the feasibility of
our approach.

1 Introduction

Oblivious RAM. Cloud storage has rapidly become a central component in
the digital society, providing a seamless technology to save large amounts of
data, to synchronize them across multiple devices, and to share them with
other parties. Popular data-sharing, cloud-based applications are e.g., personal
health record management systems (PHRs), like those employed in Austria [22]
and Estonia [20], collaborative platforms (e.g., Google Docs), and credit score

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 645–664, 2017.
DOI: 10.1007/978-3-319-61204-1 32

646 M. Maffei et al.

systems (e.g., Experian, Equifax, and TransUnion in US) are just a few popu-
lar data-sharing, cloud-based applications taking advantage of such features. A
stringent and well-understood security requirement is access control : read and
write access should be granted only to authorized clients.

While access control protects user’s data from other clients, encryption on
the server’s side is needed to obtain privacy guarantees against cloud administra-
tors. Encryption is, however, not enough: as shown in the literature [28,39], the
capability to observe which data are accessed by which users allows the cloud
administrator to learn sensitive information: for instance, it has been shown
that the access patterns to a DNA sequence allow for determining the patient’s
disease. The property of hiding data accesses is called obliviousness and the
corresponding cryptographic construction Oblivious RAM (ORAM): while the
first constructions were highly inefficient [23], recent groundbreaking research
paved the way for a tremendous efficiency boost, exploiting ingenious tree-based
constructions [2,3,8,14,15,24,32,39,44,45,47], server side computations [26,35],
and trusted hardware [5,27,31,42,48].

Except for a few recent noticeable exceptions, discussed below, a fundamental
limitation of all these constructions is that they target a single-client architec-
ture, where the data owner is the only party allowed to read outsourced data,
which does not make them suitable for data sharing services. The fundamental
challenge to solve is to enforce access control and obliviousness simultaneously.
These properties are seemingly contradictory: can the server check the correct-
ness of data accesses with respect to the access control policy at all, if it is not
allowed to learn anything about them?

Multi-Client ORAM. A few recent constructions gave positive answers to
this question, devising ORAM constructions in the multi-client setting, which
specifically allow the data owner to share data with other clients while impos-
ing fine-grained access control policies. Although, at a first glance, these con-
structions share the same high-level goal, they actually differ in a number of
important aspects. Therefore we find it interesting to draw a systematic com-
parison among these approaches (cf. Table 1). First of all, obliviousness is nor-
mally defined against the server, but in a multi-client setting it is important to
consider it against the clients too (MC), since they might be curious or, even
worse, collude with the server. This latter aspect is important, since depending
on the application, the cloud administrator might create fake clients or just have
common interests with one of the legitimate clients. Some constructions allow
multiple data owners to operate on the same ORAM (MD), while others require
them to use disjoint ORAMs: the latter are much less efficient, since if the client
does not want to reveal the owner of the accessed entry (e.g., to protect her
anonymity, think for instance of the doctor accessing the patient’s record), then
the client has to perform a fake access to each other ORAM, thereby introducing
a multiplicative factor of O(m), where m is the number of data owners. Some
constructions require the data owner to periodically access the dataset in order
to validate previous accesses (PI), some others rely on server-side client syn-
chronization, which can be achieved for instance by a shared log on the server,

Maliciously Secure Multi-Client ORAM 647

a gossiping protocol among clients, etc. (CS), while others assume a trusted
proxy (Pr). Among these, gossiping is the mildest assumption since it can be
realized directly on the server side as described by [30]. Another aspect to con-
sider is the possibility for the data owner to specify fine-grained access control
mechanisms (AC). Finally, some constructions enable concurrent accesses to
the ORAM (P). The final three columns compare the asymptotic complexity of
server-side and client-side computations as well as communication.

Table 1. Comparison of the related work supporting multiple clients to our construc-
tions. The abbreviations mean: MC: oblivious against malicious clients, MD: supports
multiple data owners sharing their data in one ORAM, PI: requires the periodic inter-
action with the data owner, CS: requires synchronization among clients, AC: access
control, Pr: trusted proxy, P: parallel accesses, S comp.: server computation complex-
ity, C comp.: client communication complexity, Comm.: communication complexity.

Franz et al. pioneered the line of work on multi-client ORAM, introducing
the concept of delegated ORAM [21]. The idea of this construction, based on
simple symmetric cryptography, is to let clients commit their changes to the
server and to let the data owner periodically validate them according to the
access control policy, finally transferring the valid entries into the actual data-
base. Assuming periodic accesses from the data owner, however, constrains the
applicability of this technique. Furthermore, this construction does not support
multiple data owners. Finally, it guarantees the obliviousness of access patterns
with respect to the server as well as malicious clients, excluding however the
accesses on data readable by the adversary. While excluding write operations is
necessary (an adversary can clearly notice that the data has changed), exclud-
ing read operations is in principle not necessary and limits the applicability of
the obliviousness definition: for instance, we would like to hide the fact that an
oncologist accessed the PHR of a certain patient even from parties with read
access to the PHR (e.g., the pharmacy, which can read the prescription but not
the diagnosis).

648 M. Maffei et al.

More recently, Maffei et al. [33] proposed the notion of group ORAM, in which
the server performs access control by verifying client-provided zero-knowledge
proofs: this approach enables direct client accesses without any interaction with
the data owner and more generic access control policies. The scheme relies on
a gossiping protocol, but malicious clients are considered only in the context of
access control and, indeed, obliviousness does not hold against them.

Another line of work, summarized in the lower part of Table 1, focuses on
the parallelization of client accesses, which is crucial to scale to a large number
of clients, while retaining obliviousness guarantees. Most of them [5,31,42,48]
assume a trusted proxy performing accesses on behalf of users, with TaoS-
tore [42] being the most efficient and secure among them. These constructions do
not formally consider obliviousness against malicious clients nor access control,
although a contribution of this work is to prove that a simple variant of TaoS-
tore [42] guarantees both. Finally, instead of a trusted proxy, BCP-OPRAM [7]
and CLT-OPRAM [10] rely on a gossiping protocol while PrivateFS [49] assumes
a client-maintained log on the server-side, but they do not achieve obliviousness
against malicious clients nor access control. Moreover, PrivateFS guarantees con-
current client accesses only if the underlying ORAM already does so.

To summarize, the progress in the field does not answer a few foundational
questions, which touch the core of the application of ORAM technologies in
cloud-based data-sharing applications. First, is it possible at all to enforce the
obliviousness of data accesses without constraining the security definition or
placing severe system assumptions? If the answer is positive, it would be inter-
esting to know at what computational cost.

Our Contributions. This work answers the questions above, providing a foun-
dational framework for multi-client ORAM. In particular,

– We give for the first time a formal definition of obliviousness against malicious
clients in the multi-client setting. Intuitively, none should be able to determine
which entry is read by which client. However, write operations are oblivious
only with respect to the server and to those clients who cannot read the
modified entry, since clients with read access can obviously notice that the
entry has changed.

– We establish an insightful computational lower bound : in a multi-client setting
where clients have direct access to the database, the number of operations on
the server side has to be linear in the database size. Intuitively, the reason
is that if a client does not want to access all entries in a read operation,
then it must know where the required entry is located in the database. Since
malicious clients can share this information with the server, the server can
determine for each read operation performed by an honest client, which among
the entries the adversary has access to might be the subject of the read, and
which certainly not.

– We present PIR-MCORAM, the first cryptographic construction that ensures
the obliviousness of data accesses as well as access control in a malicious
multi-client setting. Our construction relies on Private Information Retrieval
(PIR) [11] to achieve obliviousness and uses new accumulation technique

Maliciously Secure Multi-Client ORAM 649

based on an oblivious gossiping protocol to reduce the communication band-
width in an amortized fashion. Moreover, it combines public-key cryptography
and zero-knowledge proofs for access control.

– We present a novel technique based on universal pair-wise hash functions [9]
in order to speed up the efficiency of Plaintext Equivalence Proofs, a com-
putationally demanding cryptographic building block of PIR-MCORAM. This
construction is generally applicable and we show that it improves solutions
recently adopted in the multi-client ORAM literature [33] by one order of
magnitude.

– To bypass the aforementioned lower bound, we consider the recently proposed
proxy-based Setting [5,31,42,48,49], which assumes the presence of a trusted
party mediating the accesses between clients and server. We prove, in partic-
ular, that a simple variant of TaoStore [42] guarantees obliviousness in the
malicious setting as well as access control.

– We implement PIR-MCORAM and conduct an experimental evaluation of
our schemes. PIR-MCORAM constitutes a practical solution for databases of
modest size: for instance, DNA encoded in VCF files requires approximately
125MB [40]. Thus, an extended personal health record fits without problems
in a 256MB database, for which a read or write operation in PIR-MCORAM
takes approximately 14 seconds amortized. TaoStore offers much better per-
formance as well as support for parallel accesses, but it assumes a trusted
proxy.

2 A Lower Bound for Maliciously Secure Multi-Client
ORAM

In this section, we study how much computational effort is necessary to securely
realize ORAM in the malicious multi-client setting. Our result shows that any
construction, regardless of the underlying computational assumptions, must
access the entire memory (up to a constant factor) in every operation. Our lower
bound can be seen as a generalization of the result on history independence of
Roche et al. [41], in the sense that they consider a “catastrophic attack” where
the complete state of the client is leaked to the adversary, whereas we allow only
the corruption of a certain subset of clients. Note that, while the bound in [41]
concerns the communication complexity, our result only bounds the computation
complexity on the server side.

Before stating our lower bound, we formalize the notion of Multi-Client
ORAM in the malicious setting. We follow the definitional framework introduced
by Maffei et al. [33], refining the obliviousness definition in order to consider
malicious clients possibly colluding with the server.

2.1 Multi-Client Oblivious RAM

In a Multi-Client ORAM scheme the parties consist of the data owner O, several
clients C1, . . . , Ck, and the server S. The data owner outsources its database DB

650 M. Maffei et al.

to S while granting access to the clients C1, . . . , Ck in a selective manner. This
is expressed by an access control matrix ACM which has an entry ACM(i, idx)
for every client Ci and every entry idx in the database, characterizing which
access right Ci has for entry idx: either no access (⊥), read-only access (R), or
read-write access (RW). We treat ACM as a global variable for the data owner
so as to ease the presentation. Moreover, ACM is only accessible to the data
owner and not to any client. We write o ← A(. . .) to denote that algorithm A on
some input generates output o. Likewise, we write 〈oC , oS〉 ← 〈A(. . .),SA(. . .)〉
to denote that the protocol A executed between the client and the server yields
client output oC and server output oS .

Definition 1 (Multi-Client ORAM [33]). A Multi-Client ORAM scheme Θ
is composed of the following (interactive) ppt algorithms:

(capO,DB) ← gen(1λ, n). The generation algorithm initializes a database DB
of size n and an empty access control matrix ACM. Finally, the algorithm
returns the data owner’s capability capO.

capi ← addCl(capO, i). The input of the add client algorithm is the data owner’s
capability capO and a client identifier i. It appends a row corresponding to
i in ACM such that for all j ∈ {1, . . . , n} : ACM(i, j) = ⊥. The algorithm
outputs the capability for client Ci.

〈⊥,DB′〉 ← 〈addE(capO, idx, data),SaddE(DB)〉. The add entry algorithm takes
as input the data owner’s capability capO , an index idx, and a data data in
interaction with S that takes DB as input. It appends a column corresponding
to idx in ACM such that for all i ∈ {1, . . . , k} : ACM(i, idx) = ⊥, writes data
at position idx in DB, and outputs the modified database DB′ on S.

〈⊥,DB′〉 ← 〈chMode(capO, idx, i, p),SchMode(DB)〉. The change mode algorithm-
takes as input the data owner’s capability capO, some index idx, a client iden-
tifier i, and a permission p ∈ {R,RW,⊥} in interaction with S that takes DB
as input. It updates the entry ACM(i, idx) to p and returns the modified data-
base DB′ on S.

〈data,⊥〉 ← 〈read(idx, capi),Sread(DB)〉. The read algorithm takes as input an
index idx and a client capability capi on the client side and the database DB
on S and returns a data data on the client and generates no output on the
server.

〈data′,DB′〉 ← 〈write(idx, capi, data),Swrite(DB)〉. The write algorithm takes as
input an index idx, a client capability capi, and a data data on the client side
and the database DB on S. Let data′ be the data stored at idx in DB. The
protocol modifies DB at index idx to data. Finally, it returns data′ on the
client side as well as the modified database DB′ on S.

Attacker Model. The data owner is assumed to be trusted, since she is inter-
ested to protect her data. We allow the server to be fully compromised and to
corrupt an arbitrary subset of clients. As explained below, this attacker model
is relaxed when it comes to the integrity of outsourced data, which can only be
achieved by assuming an honest-but-curious server (while still allowing for client
compromise), as discussed below.

Maliciously Secure Multi-Client ORAM 651

Security. A Multi-Client ORAM has four fundamental security properties. The
first three concern access control and are intuitively described below.

Secrecy: only users with at least read permissions on an entry can learn its
content.

Integrity: only users with write permissions on an entry can change its content.
Tamper Resistance: only users with write permissions on an entry can change

its content in a way that the updated entry is considered valid by honest
clients.

The difference between integrity and tamper-resistance is that integrity prevents
unauthorized changes and thus requires an honest-but-curious server to perform
access control, while tamper resistance is a weaker property that allows clients to
detect unauthorized changes a-posteriori and thus can in principle be achieved
even if the server is malicious.

Obliviousness Against Malicious Clients. Intuitively, a Multi-Client
ORAM is secure if the server and an arbitrary subset of clients cannot get
any information about the access patterns of honest clients, other than what
is trivially leaked by the entries that the corrupted clients have read access to.
The original obliviousness definition [33] does not allow the server to corrupt
honest clients: here we extend it to handle static corruption of the clients and,
in order to avoid trivial attacks, we restrict the queries of the adversary to the
write oracle to indices that the set of corrupted clients cannot read.

Definition 2 (Obliviousness against Malicious Clients). A Multi-Client
ORAM Θ is secure against malicious clients, if for all ppt adversaries A the
success probability of A in the following experiment is negligibly close to 1/2.

1. A commits to a set of client identifiers ID.
2. The challenger samples b ∈ {0, 1}, executes (ACM,DB) ← gen(1λ, n) and

forwards DB to A and hands over the capabilities of all the clients ∈ ID to A.
3. The adversary has access to the following interfaces that he can query adap-

tively and in any order.
addClcapO (i): The challenger adds an empty row entry to ACM corresponding

to i.
addEcapO (idx, data): The challenger runs 〈addE(idx, data, capO),A〉 in inter-

action with A.
chModecapO (idx, i, {R,RW,⊥}): The challenger runs 〈chMode(capO, idx, i,

{R,RW,⊥}),A〉 in interaction with A.
read(idx, i): The challenger runs 〈read(idx, capi),A〉 in interaction with A.
write(idx, i, data): The challenger runs 〈write(idx, capi, data),A〉 in interac-

tion with A.
query((op0, op1), (idx0, idx1), (i0, i1), (data0, data1)): The challenger checks in

case that op0 = write or op1 = write if there is an i ∈ ID such that
ACM(i, idx0) �= ⊥ and ACM(i, idx1) �= ⊥, if this is the case the challenger
aborts. Otherwise it executes 〈read(idxb, capib

),A〉 (or 〈write(idxb, capib
,

652 M. Maffei et al.

datab),A〉, depending on the operation) in interaction with A. In case
op0 = write or op1 = write, from this moment on, the queries of A to the
interface chMode on any i ∈ ID and idx0 or idx1 are forbidden.

4. A outputs a bit b′, the challenger returns 1 if b′ = b.

2.2 Formal Result

In the following we state a formal lower bound on the computational complexity
of any ORAM secure against malicious clients. We denote by physical addresses
of a database the memory addresses associated with each storage cell of the
memory. Intuitively, the lower bound says that the server has to access a constant
fraction of the dataset for any read and write operation.

Theorem 1. Let n be the number of entries in the database and Θ be a multi-
client ORAM scheme. If Θ accesses on average o(n) physical addresses for each
read and write operation (over the random coins of the read or write operation,
respectively), Θ is not secure against malicious clients (see Definition 2).

We formally prove this theorem in our full version [34].

2.3 Discussion

Given the lower bound established in the previous section, we know that any
multi-client ORAM scheme that is secure against malicious clients must read and
write a constant fraction of the database on every access. However, the bound
does not impose any restriction on the required communication bandwidth. In
fact, it does not exclude constructions with sublinear communication complexity,
where the server performs a significant amount of computation. In particular,
the aforementioned lower bound calls for the deployment of private information
retrieval (PIR) [11] technologies, which allow a client to read an entry from a
database without the server learning which entry has been read.

The problem of private database modification is harder. A näıve approach
would be to let the client change each entry in the database DB upon every
access, which is however too expensive. Homomorphic encryption might be a
natural candidate to outsource the computation to the server and to reduce
the required bandwidth: unfortunately, Ostrovsky and Skeith III [37] showed
that no private database modification (or PIR writing) scheme with sublinear
communication (in the worst case) can be implemented using algebraic crypto-
graphic constructions, such as linearly homomorphic encryption schemes. This
result does not apply to schemes based on fully-homomorphic encryption, which
is however hardly usable in practice due to the high computation cost associated
with the currently known schemes.

The following sections describe our approach to bypass these two lower
bounds. First we show how to integrate non-algebraic techniques, specifically
out-of-band communication among clients, in order to achieve sublinear amor-
tized communication complexity (Sect. 3). Second, we show how to leverage a

Maliciously Secure Multi-Client ORAM 653

trusted proxy performing the access to the server on behalf of clients in order
to reach a logarithmic overhead in communication and server-side computation,
with constant client-slide computation (Sect. 5).

3 PIR-MCORAM

In this section, we present a high-level description of PIR-MCORAM, a Multi-
Client ORAM scheme based on PIR. The full details can be found in our full
version [34]. Our construction is inspired by Franz et al. [21], who proposed to
augment the database with a stack of modified entries, which is periodically
flushed into the database by the data owner. In our construction, we let each
client Ci maintain its own temporary stack of entries Si that is stored on the
server side in addition to the regular database DB. These stacks contain recent
changes to entries in DB and to entries in other clients’ stacks, which are not
yet propagated to DB. In contrast to the approach by Franz et al. [21], clients
themselves are responsible to flush their stack once it is filled (i.e., after |Si|
many operations), without requiring any intervention of the data owner. An
oblivious gossiping protocol, which can be realized using standard techniques [16,
30], allows clients to find the most up-to-date entry in the database, thereby
obtaining a sublinear communication bandwith even for write operations and
thus bypassing the impossibility result by Ostrovsky and Skeith III [37].

More precisely, when operating on index j, the client performs a PIR read on
DB and on all stacks Si, which can easily be realized since all stacks are stored
on the server. Thanks to the oblivious gossiping protocol, the client knows which
index is the most current one. At this point, the client appends either a dummy
entry (read) or a real entry (write) to its personal stack. If the stack is full, the
client flushes it. Flushing means to apply all changes in the personal stack to the
database. To be oblivious, the client has to ensure that all entries in DB change.
Moreover, for guaranteeing correctness, the client has to ensure that it does not
overwrite entries which are more recent than those in its stack.

After explaining how to achieve obliviousness, we also need to discuss how
to realize access control and how to protect the clients against the server. Data
secrecy (i.e., read access control) is obtained via public-key encryption. Tamper-
resistance (i.e., a-posteriori detection of illegal changes) is achieved by letting
each client sign the modified entry so that others can check that this entry
was produced by a client with write access. Data integrity (i.e., write access
control) is achieved by further letting each client prove to the server that it is
eligible to write the entry. As previously mentioned, data integrity is stronger
than tamper-resistance, but assumes an honest-but-curious server: a malicious
server may collude with malicious clients and thus store arbitrary information
without checking integrity proofs.

3.1 Analysis

We elaborate on the communication complexity of our solution. We assume that
|DB| = N , that there are M clients, and we set the stack length lenS =

√
N

654 M. Maffei et al.

for every client. The worst case for an operation, hence, happens every
√

N -th
operation for a client Ci, meaning that besides extracting the data from the
database and adding an entry to the personal stack, Ci has also to flush the
stack. We analyze the four algorithms independently: extracting data requires
two PIR reads, one on DB and the other on the concatenation of all stacks. Thus,
the overall cost is PIR(N) + PIR(M

√
N). Adding an entry to the personal stack

always requires to upload one entry, independently of whether this replacement
is real or dummy.

Our flushing algorithm assumes that Ci holds
√

N entries and then down-and-
uploads every entry of DB. Thus, the overall complexity is 2N +

√
N . A similar

analysis shows that if the client holds only O(1) many entries, then Ci down-and-
uploads DB but additionally performs a PIR step for every downloaded entry
in its own stack to retrieve a potential replacement, resulting in a complexity of
2N + N · PIR(

√
N).

To conclude, the construction achieves a worst-case complexity of
O(PIR(N) + PIR(M

√
N) + N) and O(PIR(N) + PIR(M

√
N) + NPIR(

√
N))

for O(
√

N) and O(1) client-side memory, respectively. By amortizing the
flush step over

√
N many operations, we achieve an amortized complexity of

O(PIR(N) + PIR(M
√

N) +
√

N) or O(PIR(N) + PIR(M
√

N) +
√

NPIR(
√

N)),
respectively. Since our construction is parametric over the specific PIR proto-
col, we can leverage the progress in this field: at present, the best PIR(N) is
O(log log(N)) [17] and, hence, the amortized cost becomes O(log log(M

√
N) +√

N) or O(log log(M
√

N) +
√

N log log(N)), respectively. Since, in most scenar-
ios, M

√
N < 22

N/2
, we get O(

√
N) and O(

√
N log log(N)).

3.2 Discussion

The construction presented in this section leverages PIR for reading entries and
an accumulated PIR writing technique to replace old entries with newer ones.
Due to the nature of PIR, one advantage of the construction is its possibility
to allow multiple clients to concurrently read from the database and to append
single entries to their stacks. This is no longer possible when a client flushes
her personal stack since the database is entirely updated, which might lead to
inconsistent results when reading from the database. To overcome this draw-
back, we present a fully concurrent, maliciously secure Multi-Client ORAM in
Sect. 5. Another drawback of the flush algorithm is the cost of the integrity
(zero-knowledge) proofs. Since we have to use public-key encryption as the top-
layer encryption scheme for every entry to allow for proving properties about
the underlying plaintexts, the number of proofs to be computed, näıvely imple-
mented, is proportional to the block size. Varying block sizes require us to split
an entry into chunks and encrypt every chunk separately since the message space
of public-key encryption is a constant amount of bits. The zero-knowledge proof
has then to be computed on every of these encrypted chunks. To overcome this
linear dependency, we present a new proof paradigm to make the number of
computed zero-knowledge proofs independent of the block size in Sect. 4.

Maliciously Secure Multi-Client ORAM 655

4 Integrity Proof Revised: The Hash-and-Proof Paradigm

In this section, we focus on the integrity proofs employed in our construction,
presenting a novel and generally applicable cryptographic technique to boost
their efficiency.

Plaintext Equivalence Proofs. To guarantee the integrity of the database,
our construction requires extensive use of proofs showing that the ciphertexts
were correctly rerandomized. In the literature, these proofs are called plaintext-
equivalence-proofs (PEPs) and are the main efficiency bottleneck of our writing
algorithm. Since the block size of an entry is in general much larger than the
message space of the encryption scheme, we have to compute zero-knowledge
proofs over vectors of ciphertexts. In this case, the integrity proof shows for
each of these ciphertext vectors that they have been correctly rerandomized.
The computational cost for these proofs scales linearly with the block size, which
is clearly an undesirable dependency. In fact, this problem is not unique to our
setting but affects any system deploying PEPs over long entries, among others
verifiable secret shuffling [4,25,36] and mix networks [29].

In the following, we put forward a general technique to improve the computa-
tional efficiency of PEPs over ciphertext vectors. Our approach is fully black-box,
non-interactive, and its proof size is independent of the number of ciphertexts
of each entry. Thus, our technique can be used to boost the efficiency of not
only PIR-MCORAM, but also any system based on PEPs. The basic idea behind
our solution is to homomorphically compute a pairwise independent hash func-
tion [9] over the plaintexts of the two vectors and a PEP over the two resulting
ciphertexts. Intuitively, a pairwise independent hash function is a collection of
compressing functions such that the probability of two inputs to yield the same
output is negligibly small in the size of the output domain (over the random
choice of the function). This property ensures that the soundness of the proof is
preserved.

General Problem Description. Let ΠPKE = (GenPKE,E,D,Rnd) be a random-
izable, additively homomorphic public-key encryption scheme and (P,V) be a
zero-knowledge proof system (ZKP) that takes as input two instances of cipher-
texts (c, b) ∈ E(ek ,m)2 for some m ∈ M and outputs a proof π for the statement
∃r : b = Rnd(ek , c, r). Construct a zero-knowledge proof system (P∗,V∗) that
takes as input two vectors of ciphertexts of length n, (c,b) ∈ E(ek ,m)n×2 for
some vector m and a vector r of randomnesses of the same length and outputs a
proof π∗ of the following statement: for all i ∈ {1, . . . , n} there exists a value ri

such that bi = Rnd(ek , ci, ri). The efficiency goal is to make the size of the proof
as well as the invocations of (P,V) independent of n. Knowing the decryption
key dk , this statement is equivalent to the following one: for all i ∈ {1, . . . , n}
we have D(dk , bi) = D(dk , ci).

Our Solution. Let M = Fp be the message space of ΠPKE for some field Fp,
such as the ElGamal or the Paillier encryption scheme [18,38]. We describe our
solution as an honest-verifier Σ-protocol which can be made non-interactive and

656 M. Maffei et al.

resilient against any malicious verifier by applying the Fiat-Shamir heuristic [19].
In the following, E(ek , z0; z1) denotes the encryption of z0 with key ek and ran-
domness z1.

(1) P∗ sends the vectors (c,b) to V∗.
(2) V∗ samples a vector z ∈ F

n+2
p uniformly at random and sends it to P∗.

(3) P∗ computes c′ ← E(ek , z0; z1)
⊗n

i=1 zi+1 ·ci and b′ ← E(ek , z0; z1)
⊗n

i=1 zi+1 ·
bi and runs P on inputs (c′, b′) to obtain π; P∗ sends π to V∗, who can
recompute (c′, b′) and run V on ((c′, b′), π). V∗ returns the output of V.

Security Analysis. In the following we state the formal guarantees of our
techniques.

Theorem 2 (Hash-and-Proof). Let ΠPKE be an additively homomorphic
CPA-secure public-key encryption scheme and let (P,V) be a ZKP for PEPs
over ΠPKE. Then (P∗,V∗) is a ZKP for PEPs over ΠPKE.

Proof. The correctness of ΠPKE and of the ZKP (P,V) imply the correctness of
the protocol described above. The zero-knowledge of the protocol follows from the
zero-knowledge of (P,V). Arguing about the soundness requires a more accurate
analysis: we define as cheat(P∗,V∗) the event where a malicious P∗ fools V∗ into
accepting a proof over a false statement. This event happens with probability

Pr
[
cheat(P∗,V∗)

]
=Pr

[
cheat(P,V) | D(dk , c′) = D(dk , b′)

]

· Pr [D(dk , c′) = D(dk , b′)] +

Pr
[
cheat(P,V) | D(dk , c′) �= D(dk , b′)

]

· Pr [D(dk , c′) �= D(dk , b′)]

where the probabilities are taken over the random coins of P∗ and V∗. By the
soundness of (P,V) we get

Pr
[
cheat(P∗,V∗)

] ≤ 1 · Pr [D(dk , c′) = D(dk , b′)] + μ · Pr [D(dk , c′) �= D(dk , b′)]
≤ μ + Pr [D(dk , c′) = D(dk , b′)]

where μ is a negligible function in the security parameter. Therefore, to prove
soundness, it is sufficient to show that when cheat(P∗,V∗) happens, then the
probability Pr [D(dk , c′) = D(dk , b′)] is a negligible function in the security
parameter. We shall note that, due to the homomorphic properties of ΠPKE,
the resulting plaintext of c′ and b′ are z0 +

∑n
i=1 zi+1D(dk , ci) ∈ Fp, and

z0 +
∑n

i=1 zi+1D(dk , bi) ∈ Fp, respectively. It is easy to see that this corresponds
to the computation of the universal pair-wise hash function h(z) as described
by Carter and Wegman in [9] (Proposition 8). It follows that for all c �= b
the resulting plaintexts of c′ and b′ are uniformly distributed over Fp, thus
Pr [D(dk , c′) = D(dk , b′)] = p−2, which is a negligible function in the security
parameter. This concludes our proof. ��

Maliciously Secure Multi-Client ORAM 657

5 Proxy-Based Realization

Driven by the goal of building an efficient and scaleable Multi-Client ORAM
that is secure against malicious users, we explore the usage of a trusted proxy
mediating accesses between clients and the server, an approach advocated in
recent parallel ORAM constructions [5,42,48]. In contrast to previous works, we
are not only interested in parallel accesses, but also in handling access control
and providing obliviousness against multiple, possibly malicious, clients.
TaoStore [42]. In a nutshell, trusted proxy-based ORAM constructions imple-
ment a single-client ORAM which is run by the trusted entity on behalf of
clients, which connect to it with read and write requests in a parallel fashion.
We leverage the state of the art, TaoStore [42], which implements a variant of
a Path-ORAM [46] client on the proxy and allows for retrieving multiple paths
from the server concurrently. More specifically, the proxy consists of the proces-
sor and the sequencer. The processor performs read and write requests to the
untrusted server: this is the most complex part of TaoStore and we leave it
untouched. The sequencer is triggered by client requests and forwards them to
the processor which executes them in a concurrent fashion.
Our Modifications. Since the proxy is trusted, it can enforce access control.
In particular, we can change the sequencer so as to let it know the access control
matrix and check for every client’s read and write requests whether they are
eligible or not. As already envisioned by Sahin et al. [42], the underlying ORAM
construction can be further refined in order to make it secure against a mali-
cious server, either by following the approach based on Merkle-trees proposed by
Stefanov et al. [46] or by using authenticated encryption as suggested by Sahin
et al. [42]. In the rest of the paper, we call the system TAO-MCORAM.

6 Security and Privacy Results

In the following we report the security results for PIR-MCORAM: those for TAO-
MCORAM follow along the same lines. For the formal definition of the security
properties we refer to [33]. Note that in our proofs we consider the adaptive
version of each definition where the attacker is allowed to spawn and corrupt
clients without restrictions. As a consequence, our instantiation requires us to fix
in advance the number of clients M supported by the construction. Alternatively,
one could consider the selective versions of the security definitions where the
attacker is required to commit in advance to the client subset that he wants to
corrupt. We postpone full proofs to our full version [34].

Theorem 3 (Secrecy). Let ΠPKE be a CPA-secure encryption scheme, then
PIR-MCORAM achieves secrecy.

Theorem 4 (Integrity). Let ΠDS be an existentially unforgeable digital signa-
ture scheme, ZKP be a zero-knowledge proof of knowledge protocol, and ΠPKE be
a CCA-secure encryption scheme, then PIR-MCORAM achieves integrity.

658 M. Maffei et al.

Theorem 5 (Tamper Resistance). Let ΠDS be an existentially unforgeable
digital signature scheme and let ΠPKE be a CCA-secure encryption scheme, then
PIR-MCORAM achieves tamper resistance.

Theorem 6 (Obliviousness against mal. clients). Let PIR be a private
information retrieval scheme, let ΠPKE be a CPA-secure encryption scheme, let
ΠDS be an existentially unforgeable digital signature scheme, and let ZKP be a
zero-knowledge proof of knowledge protocol, then PIR-MCORAM is secure against
malicious clients.

7 Evaluation

In this section, we describe our implementation and report on the experimental
results. We start by reviewing the cryptographic schemes that we deploy: all of
them are instantiated with a security parameter of 128 bits [6].
Cryptographic Instantiations. We deploy ElGamal encryption [18] in a
hybrid fashion to construct an entry in the database. Using the hybrid tech-
nique, we decrease the entry size from O(MB) to O(M + B) since the data
is encrypted only once and the corresponding secret key is encrypted for all
clients with read access. In contrast, we encrypt the signing keys of the Schnorr
signature scheme [43] using the Cramer-Shoup encryption scheme [13]. We use
XPIR [1], the state of the art in computational PIR.

Finally, in order to construct integrity proofs, we use an OR-proof [12] over
a conjunction of plaintext-equivalence proofs [29] (PEP) on the ElGamal cipher-
texts forming one entry and a standard discrete logarithm proof [43] showing that
the client knows the signing key corresponding to the authenticated verification
key. In the homomorphic hash version, the conjunction of PEPs reduces to the
computation of the homomorphic hash plus one PEP. As a matter of fact, since
the public components necessary to verify a proof (the new and old ciphertexts and
the verification key) and the secret components necessary to compute the proof
(the randomness used for rerandomization or the signing key) are independent of
the number of clients, all deployed proofs solely depend on the block size.
Implementation and Experiments. We implemented the cryptographic com-
ponents of PIR-MCORAM in Java and we use a wrapper to GMP to speed up
computations.

We used an Intel Xeon E5-4650L with 2.60 GHz, 8 cores, and 20 MB cache
for the client and server experiments. We performed micro-benchmarks for PIR-
MCORAM while varying the storage size from 32 MB to 2 GB and the block size
from 4 KB to 1 MB, both for the solution with and without the homomorphic
hash computation. We measured partial computation times as well as the end-
to-end access time where we assume a network with 100 Mbit/s downstream
and 10 Mbit/s upstream. In order to show the efficiency of our homomorphic
hash construction and demonstrate its generic applicability, we also compare
GORAM [33] with batched shuffle proofs, as originally presented, with a variant
thereof where we replace the batched shuffle proofs with our homomorphic hash
plus one shuffle proof.

Maliciously Secure Multi-Client ORAM 659

32 128 512 2K
0.1

1

10

Storage in MB

T
im

e
in

se
co

n
d
s

PIR Entry upload

End-to-end

(a) Access without flush, 1
MB block size.

32 128 512 2K

101

102

103

104

Storage in MB

T
im

e
in

se
co

n
d
s

DB download Prove

DB upload Verify

End-to-end

(b) Flush, 1 MB block size.

4 8 16 64 256 1024

11
15

31

132
198

395

Block size in KB

T
im

e
in

se
co

n
d
s

1 GB 256 MB

128 MB

(c) Amortized time, varying
block size.

Fig. 1. The end-to-end running time of an operation in PIR-MCORAM.

Discussion. Figures 1 and 2 report the results for PIR-MCORAM. Figure 1a
shows the end-to-end and partial running times of an access to the ORAM
when the flush algorithm is not executed, whereas Fig. 1b depicts the worst case
running time (i.e., with flush operation). For the example of the medical record
which usually fits into 128 MB (resp. 256 MB for additional files such as X-ray
images), the amortized times per access range from 11 (resp. 15) seconds for 4
KB up to 131 (resp. 198) seconds for 1 MB sized entries (see Fig. 1c).

Figure 2 shows the improvement as we compare the combined proof compu-
tation and proof verification time in the flush algorithm of PIR-MCORAM, first
as described in Sect. 3 and then with the integrity proof based on the universal
homomorphic hash (see Sect. 4). We observe that our expectations are fulfilled:
the larger the block size, the more effect has the universal hash computation
since the number of proofs to compute decreases. Concretely, with 1 MB block
size we gain a speed-up of about 4% for flush operations with respect to the
construction without homomorphic hash.

To demonstrate its general applicability, we instantiate our proof technique
into GORAM [33], which uses so-called batched shuffle proofs, achieving much
better results. In GORAM, clients have to compute integrity proofs, which are
proofs of shuffle correctness–a much more expensive primitive than PEPs. To
overcome the efficiency problem, the authors have developed batched shuffle
proofs: the idea is to homomorphically sum up half of the columns of the data-
base matrix at random and to perform a shuffle proof on the resulting list of
ciphertexts. To achieve soundness, the protocol has to be repeated k = 128 times.
We observe that we can replace batched shuffle proofs by our protocol: clients
compute the homomorphic hash on the old and the new ciphertexts and then
one shuffle proof on the resulting lists of ciphertexts. As shown in Table 2, this
modification speeds up GORAM by one order of magnitude (14x on the client
and 10.8x on the server).

660 M. Maffei et al.

32 128 512 2K 8K
128K 1M4

16
64

256
1024−2

0

2

4

Storage size in MB Block size in KB

Im
p
ro

v
em

en
t

(%
)

Fig. 2. The improvement in percent when comparing the combined proof computation
time on the client and proof verification time on the server for varying storage and
block sizes, once without and once with the universal homomorphic hash.

Table 2. Comparison of GORAM [33] with batched shuffle proofs and GORAM instan-
tiated with our homomorphic hash (HH) variant for 10 users, 1 GB storage, and 8 KB
block size.

Construction Client time Server time

GORAM with k = 128 91.315 s 39.213 s

GORAM with HH 5.980 s 3.384 s

Improvement 14x 10.8x

Finally, our solution TAO-MCORAM only adds access control to the actual
computation of TaoStore’s trusted proxy [42]. Interestingly enough, TaoStore’s
bottleneck is not computation, but communication. Hence, our modifications do
not cause any noticeable slowdown on the throughput of TaoStore. Consequently,
we end up with a throughput of about 40 operations per second when considering
an actual deployment of TAO-MCORAM in a cloud-based setting [42].

8 Conclusion

This work studies the problem of obliviousness in multi-client outsourced storage.
We establish a lower bound on the server-side computational complexity, showing
that any secure realization has to involve at least Ω(n) computation steps. We
further present a novel cryptographic instantiation, which achieves an amortized
communication overhead of O(

√
n) by combining private information retrieval

technologies, a new accumulation technique, and an oblivious gossiping protocol.
Access control is enforced by efficient integrity proofs, which leverage a new
construction for Plaintext Equivalence Proofs based on a homomorphic universal
pair-wise hash function. Finally, we showed how to bypass our lower bound by
leveraging a trusted proxy [42], thereby achieving logarithmic communication
and server side computational complexity.

Maliciously Secure Multi-Client ORAM 661

This work opens up a number of interesting research directions. Among those,
it would be interesting to prove a lower bound on the communication complex-
ity. Furthermore, we would like to relax the obliviousness property in order to
bypass the lower bound established in this paper, coming up with more efficient
constructions and quantifying the associated privacy loss.

Acknowledgements. This research is based upon work supported by the German
research foundation (DFG) through the collaborative research center 1223, by the
German Federal Ministry of Education and Research (BMBF) through the Center
for IT-Security, Privacy and Accountability (CISPA), and by the state of Bavaria
at the Nuremberg Campus of Technology (NCT). NCT is a research cooperation
between the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and the Tech-
nische Hochschule Nürnberg Georg Simon Ohm (THN). Dominique Schröder is sup-
ported by the German Federal Ministry of Education and Research (BMBF) through
funding for the project PROMISE. Finally, we thank the reviewers for their helpful
comments.

References

1. Aguilar-Melchor, C., Barrier, J., Fousse, L., Killijian, M.O.: XPIR : private infor-
mation retrieval for everyone. In: Proceedings of the Privacy Enhancing Technolo-
gies Symposium (PETS 2016), pp. 155–174. De Gruyter (2016)

2. Ajtai, M.: Oblivious RAMs without cryptographic assumptions. In: Proceedings
of ACM Symposium on Theory of Computing (STOC 2010), pp. 181–190. ACM
(2010)

3. Apon, D., Katz, J., Shi, E., Thiruvengadam, A.: Verifiable oblivious storage. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 131–148. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-54631-0 8

4. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 263–280. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 17

5. Bindschaedler, V., Naveed, M., Pan, X., Wang, X., Huang, Y.: Practicing obliv-
ious access on cloud storage: the gap, the fallacy, and the new way forward. In:
Proceedings of the Conference on Computer and Communications Security (CCS
2015), pp. 837–849. ACM (2015)

6. BlueKrypt: Cryptograhpic Key Length Recommendation. www.keylength.com
7. Boyle, E., Chung, K.-M., Pass, R.: Oblivious parallel RAM and applications. In:

Kushilevitz, E., Malkin, T. (eds.) TCC 2016 Part II. LNCS, vol. 9563, pp. 175–204.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 7

8. Carbunar, B., Sion, R.: Regulatory compliant oblivious RAM. In: Zhou, J., Yung,
M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 456–474. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13708-2 27

9. Carter, J.L., Wegman, M.N.: Universal classes of hash functions (extended
abstract). In: Proceedings of the ACM Symposium on Theory of Computing
(STOC 1977), pp. 106–112. ACM (1977)

10. Chen, B., Lin, H., Tessaro, S.: Oblivious parallel RAM: improved efficiency and
generic constructions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol.
9563, pp. 205–234. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 8

http://dx.doi.org/10.1007/978-3-642-54631-0_8
http://dx.doi.org/10.1007/978-3-642-29011-4_17
www.keylength.com
http://dx.doi.org/10.1007/978-3-662-49099-0_7
http://dx.doi.org/10.1007/978-3-642-13708-2_27
http://dx.doi.org/10.1007/978-3-662-49099-0_8

662 M. Maffei et al.

11. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

12. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). doi:10.1007/
3-540-48658-5 19

13. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998). doi:10.1007/BFb0055717

14. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM with-
out random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6 10

15. Dautrich, J., Stefanov, E., Shi, E.: Burst ORAM: minimizing ORAM response
times for bursty access patterns. In: Proceedings of the USENIX Security Sympo-
sium (USENIX 2014), pp. 749–764. USENIX Association (2014)

16. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance.
In: Proceedings of the Symposium on Principles of Distributed Computing (PODC
1987), pp. 1–12. ACM (1987)

17. Dong, C., Chen, L.: A fast single server private information retrieval protocol
with low communication cost. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS
2014 Part I. LNCS, vol. 8712, pp. 380–399. Springer, Cham (2014). doi:10.1007/
978-3-319-11203-9 22

18. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7 2

19. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

20. The EH Foundation. http://www.e-tervis.ee
21. Franz, M., Williams, P., Carbunar, B., Katzenbeisser, S., Peter, A., Sion, R.,

Sotakova, M.: Oblivious outsourced storage with delegation. In: Danezis, G. (ed.)
FC 2011. LNCS, vol. 7035, pp. 127–140. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-27576-0 11

22. GmbH, E.: ELGA. https://www.elga.gv.at
23. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious

RAMs. J. ACM 43(3), 431–473 (1996)
24. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data

via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22012-8 46

25. Groth, J.: A verifiable secret shuffe of homomorphic encryptions. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2003).
doi:10.1007/3-540-36288-6 11

26. Huang, Y., Goldberg, I.: Outsourced private information retrieval with pricing and
access control. In: Proceedings of the Annual ACM Workshop on Privacy in the
Electronic Society (WPES 2013). ACM (2013)

27. Iliev, A., Smith, S.W.: Protecting client privacy with trusted computing at the
server. IEEE Secur. Priv. 3(2), 20–28 (2005)

http://dx.doi.org/10.1007/3-540-48658-5_19
http://dx.doi.org/10.1007/3-540-48658-5_19
http://dx.doi.org/10.1007/BFb0055717
http://dx.doi.org/10.1007/978-3-642-19571-6_10
http://dx.doi.org/10.1007/978-3-319-11203-9_22
http://dx.doi.org/10.1007/978-3-319-11203-9_22
http://dx.doi.org/10.1007/3-540-39568-7_2
http://dx.doi.org/10.1007/3-540-47721-7_12
http://www.e-tervis.ee
http://dx.doi.org/10.1007/978-3-642-27576-0_11
http://dx.doi.org/10.1007/978-3-642-27576-0_11
https://www.elga.gv.at
http://dx.doi.org/10.1007/978-3-642-22012-8_46
http://dx.doi.org/10.1007/978-3-642-22012-8_46
http://dx.doi.org/10.1007/3-540-36288-6_11

Maliciously Secure Multi-Client ORAM 663

28. Islam, M., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: Proceedings of the Annual
Network & Distributed System Security Symposium (NDSS 2012). Internet Society
(2012)

29. Jakobsson, M., Juels, A.: Millimix: mixing in small batches. Technical report, pp.
99–33. DIMACS (1999)

30. Kim, B.H., Lie, D.: Caelus: verifying the consistency of cloud services with battery-
powered devices. In: Proceedings of the IEEE Symposium on Security & Privacy
(S&P 2015), pp. 880–896. IEEE Press (2015)

31. Lorch, J.R., Parno, B., Mickens, J., Raykova, M., Schiffman, J.: Shroud: ensuring
private access to large-scale data in the data center. In: Proceedings of the USENIX
Conference on File and Storage Technologies (FAST 2013), pp. 199–214. USENIX
Association (2013)

32. Maas, M., Love, E., Stefanov, E., Tiwari, M., Shi, E., Asanovic, K., Kubiatowicz,
J., Song, D.: PHANTOM: practical oblivious computation in a secure processor. In:
Proceedings of the Conference on Computer and Communications Security (CCS
2013), pp. 311–324. ACM (2013)

33. Maffei, M., Malavolta, G., Reinert, M., Schröder, D.: Privacy and access control for
outsourced personal records. In: Proceedings of the IEEE Symposium on Security
& Privacy (S&P 2015). IEEE Press (2015)

34. Maffei, M., Malavolta, G., Reinert, M., Schröder, D.: Maliciously Secure Multi-
Client ORAM. Cryptology ePrint Archive, Report 2017/329 (2017). eprint.iacr.org

35. Mayberry, T., Blass, E.O., Chan, A.H.: Efficient private file retrieval by combining
ORAM and PIR. In: Proceedings of the Annual Network & Distributed System
Security Symposium (NDSS 2014). Internet Society (2013)

36. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: Proceedings
of Conference on Computer and Communications Security (CCS 2001), pp. 116–
125. ACM (2001)

37. Ostrovsky, R., III, W.E.S.: Algebraic Lower Bounds for Computing on Encrypted
Data. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 14,
no. 022 (2007)

38. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

39. Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 27

40. Robinson, R.J.: How big is the human genome? https://medium.com/
precision-medicine/how-big-is-the-human-genome-e90caa3409b0

41. Roche, D.S., Aviv, A., Choi, S.G.: A practical oblivious map data structure with
secure deletion and history independence. In: Proceedings of the IEEE Symposium
on Security & Privacy (S&P 2016). IEEE Press (2016)

42. Sahin, C., Zakhary, V., Abbadi, A.E., Lin, H.R., Tessaro, S.: TaoStore: overcoming
asynchronicity in oblivious data storage. In: Proceedings of the IEEE Symposium
on Security & Privacy (S&P 2016). IEEE Press (2016)

43. Schnorr, C.P.: Efficient identification and signatures for smart cards. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
688–689. Springer, Heidelberg (1990). doi:10.1007/3-540-46885-4 68

44. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 11

http://www.eprint.iacr.org
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-642-14623-7_27
http://dx.doi.org/10.1007/978-3-642-14623-7_27
https://medium.com/precision-medicine/how-big-is-the-human-genome-e90caa3409b0
https://medium.com/precision-medicine/how-big-is-the-human-genome-e90caa3409b0
http://dx.doi.org/10.1007/3-540-46885-4_68
http://dx.doi.org/10.1007/978-3-642-25385-0_11

664 M. Maffei et al.

45. Stefanov, E., Shi, E., Song, D.: Towards practical oblivious RAM. In: Proceedings
of the Annual Network & Distributed System Security Symposium (NDSS 2012).
Internet Society (2012)

46. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.:
Path ORAM: an extremely simple oblivious RAM protocol. In: Proceedings of the
Conference on Computer and Communications Security (CCS 2013). ACM (2013)

47. Stefanov, E., Shi, E.: Multi-cloud oblivious storage. In: Proceedings of the Confer-
ence on Computer and Communications Security (CCS 2013), pp. 247–258. ACM
(2013)

48. Stefanov, E., Shi, E.: ObliviStore: high performance oblivious cloud storage. In:
Proceedings of the IEEE Symposium on Security & Privacy (S&P 2013), pp. 253–
267. IEEE Press (2013)

49. Williams, P., Sion, R., Tomescu, A.: PrivateFS: a parallel oblivious file system. In:
Proceedings of the Conference on Computer and Communications Security (CCS
2012), pp. 977–988. ACM (2012)

	Maliciously Secure Multi-Client ORAM
	1 Introduction
	2 A Lower Bound for Maliciously Secure Multi-Client ORAM
	2.1 Multi-Client Oblivious RAM
	2.2 Formal Result
	2.3 Discussion

	3 PIR-MCORAM
	3.1 Analysis
	3.2 Discussion

	4 Integrity Proof Revised: The Hash-and-Proof Paradigm
	5 Proxy-Based Realization
	6 Security and Privacy Results
	7 Evaluation
	8 Conclusion
	References

