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Abstract—The present paper proposes the first static analysis
for Android applications which is both flow-sensitive on the heap
abstraction and provably sound with respect to a rich formal
model of the Android platform. We formulate the analysis as a
set of Horn clauses defining a sound over-approximation of the
semantics of the Android application to analyse, borrowing ideas
from recency abstraction and extending them to our concurrent
setting. Moreover, we implement the analysis in HornDroid, a
state-of-the-art information flow analyser for Android applica-
tions. Our extension allows HornDroid to perform strong updates
on heap-allocated data structures, thus significantly increasing its
precision, without sacrificing its soundness guarantees. We test
our implementation on DroidBench, a popular benchmark of
Android applications developed by the research community, and
we show that our changes to HornDroid lead to an improvement
in the precision of the tool, while having only a moderate cost in
terms of efficiency. Finally, we assess the scalability of our tool
to the analysis of real applications.

I. INTRODUCTION

Android is today the most popular operating system for
mobile phones and tablets, and it boasts the largest application
market among all its competitors. Though the huge number of
available applications is arguably one of the main reasons for
the success of Android, it also poses an important security
challenge: there are way too many applications to ensure that
they go through a timely and thorough security vetting before
their publication on the market. Automated analysis tools thus
play a critical role in ensuring that security verification does
not fall behind with respect to the release of malicious (or
buggy) applications.

There are many relevant security concerns for Android
applications, e.g., privilege escalation [12], [5] and component
hijacking [26], but the most important challenge in the area is
arguably information flow control, since Android applications
are routinely granted access to personal information and other
sensitive data stored on the device where they are installed.
To counter the threats posed by malicious applications, the
research community has proposed a plethora of increasingly
sophisticated (static) information flow control frameworks for
Android [41], [42], [27], [14], [22], [3], [40], [15], [7]. Despite
all this progress, however, none of these static analysis tools
is able to properly reconcile soundness and precision in its
treatment of heap-allocated data structures.

A. Soundness vs. Precision in Android Analyses

Designing a static analysis for Android applications which
is both sound and precise on the heap abstraction is very

challenging, most notably because the Android ecosystem is
highly concurrent, featuring multiple components running in
the same application at the same time and sharing part of
the heap. More complications come from the scheduling of
these components, which is user-driven, e.g., via button clicks,
and thus statically unknown. This means that it is hard to
devise precise flow-sensitive heap abstractions for Android
applications without breaking their soundness. Indeed, most
existing static analysers for Android applications turn out to
be unsound and miss malicious information leaks ingeniously
hidden in the control flow: for instance, Table I shows a leaky
code snippet that cannot be detected by FlowDroid [3], a state-
of-the-art taint tracker for Android applications1.

1 public class Leaky extends Activity {
2 Storage st = new Storage();
3 Storage st2 = new Storage();
4 onRestart() { st2 = st; }
5 onResume() { st2.s = getDeviceId(); }
6 onPause() { send(st.s, "http://www.myapp.com/"); }
7 }

TABLE I
A SUBTLE INFORMATION LEAK

Assume that the Storage class has only one field s of
type String, populated with the empty string by its default
constructor. The activity class Leaky has two fields st and
st2 of type Storage. A leak of the device id may be
performed in three steps. First, the activity is stopped and then
restarted: after the execution of the onRestart() callback,
st2 becomes an alias of st. Then, the activity is paused
and resumed. As a result, the execution of the onPause()
callback communicates the empty string over the Internet,
while the onResume() callback stores the device id in st2
and thus in st due to aliasing. Finally, the activity is paused
again and the device id is leaked by onPause().

HornDroid [7] is the only provably sound static analyser for
Android applications to date and, as such, it correctly deals
with the code snippet in Table I. In order to retain soundness,
however, HornDroid is quite conservative on the prediction
of the control flow of Android applications and implements
a flow-insensitive heap abstraction by computing just one
static over-approximation of the heap, which is proved to be
correct at all reachable program points. This is a significant

1Android applications are written in Java and compiled to bytecode run
by a register-based virtual machine (Dalvik). Most static analysis tools for
Android analyse Dalvik bytecode, but we present our examples using a Java-
like language to improve readability.
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limitation of the tool, since it prevents strong updates [23]
on heap-allocated data structures and thus negatively affects
the precision of the analysis. Concretely, to understand the
practical import of this limitation, consider the Java code
snippet in Table II.

1 public class Anon extends Activity {
2 Contact[] m = new Contact[]();
3 onStart() {
4 for (int i = 0; i < contacts.length(); i++) {
5 Contact c = contacts.getContact(i);
6 c.phone = anonymise(c.phone);
7 m[i] = c;
8 }
9 send(m, "http://www.cool-apps.com/");

10 }
11 }

TABLE II
ANONYMIZING CONTACT INFORMATION

This code reads the contacts stored on the phone, but then
calls the anonymise method at line 6 to erase any sensitive
information (like phone numbers) before sending the collected
data on the Internet. Though this code is benign, HornDroid
raises a false alarm, since the field c.phone stores sensitive
information after line 5 and strong updates of object fields are
not allowed by the static analysis implemented in the tool.

B. Contributions

In the present paper we make the following contributions:
1) we extend an operational semantics for a core fragment

of the Android ecosystem [7] with multi-threading and
exception handling, in order to provide a more accurate
representation of the control flow of Android applications;

2) we present the first static analysis for Android applica-
tions which is both flow-sensitive on the heap abstraction
and provably sound with respect to the model above. Our
proposal borrows ideas from recency abstraction [4] in
order to hit a sweet spot between precision and efficiency,
extending it for the first time to a concurrent setting;

3) we implement our analysis as an extension of Horn-
Droid [7]. This extension allows HornDroid to perform
strong updates on heap-allocated data structures, thus
significantly increasing the precision of the tool;

4) we test our extension of HornDroid against DroidBench,
a popular benchmark proposed by the research commu-
nity [3]. We show that our changes to HornDroid lead
to an improvement in the precision of the tool, while
having only a moderate cost in terms of efficiency. We
also discuss analysis results for 64 real applications to
demonstrate the scalability of our approach. Our tool and
more details on the experiments are available online [1].

II. DESIGN AND KEY IDEAS

A. Our Proposal

Our proposal starts from the pragmatic observation that
statically predicting the control flow of an Android application
is daunting and error-prone [15]. For this reason, our analysis

simply assumes that all the activities, threads and callbacks of
the application to analyse are concurrently executed under an
interleaving semantics2. (In the following paragraphs, we just
refer to threads for brevity.)

The key observation to recover precision despite this con-
servative assumption is that the runtime behaviour of a given
thread can only invalidate the static approximation of the heap
of another thread whenever the two threads share memory.
This means that the heap of each thread can be soundly
analysed in a flow-sensitive fashion, as long as the thread
runs isolated from all other threads. Our proposal refines this
intuition and achieves a much higher level of precision by
using two separate static approximations of the heap: a flow-
sensitive abstract heap and a flow-insensitive abstract heap.

Abstract objects on the flow-sensitive abstract heap approx-
imate concrete objects which are guaranteed to be local to
a single thread (not shared). Moreover, these abstract objects
always approximate exactly one concrete object, hence it is
sound to perform strong updates on them. Abstract objects on
the flow-insensitive abstract heap, instead, approximate either
(1) one concrete object which may be shared between multiple
threads, or (2) multiple concrete objects, e.g., produced by a
loop. Thus, abstract objects on the flow-insensitive abstract
heap only support weak updates to preserve soundness. In
case (1), this is a consequence of the analysis conservatively
assuming the concurrent execution of all the threads and the
corresponding loss of precision on the control flow. In case (2),
this follows from the observation that only one of the multiple
concrete objects represented by the abstract object is updated
at runtime, but the updated abstraction should remain sound for
all the concrete objects, including those which are not updated.
The analysis moves abstract objects from the flow-sensitive
abstract heap to its flow-insensitive counterpart when one of
the two invariants of the flow-sensitive abstract heap may be
violated: this mechanism is called lifting.

Technically, the analysis identifies heap-allocated data struc-
tures using their allocation site, like most traditional abstrac-
tions [32], [17], [23], [21]. Unlike these, however, each allo-
cation site λ is bound to two distinct abstract locations: FS(λ)
and NFS(λ). We use FS(λ) to access the flow-sensitive ab-
stract heap and NFS(λ) to access the flow-insensitive abstract
heap. The abstract location FS(λ) contains the abstraction
of the most-recently-allocated object created at λ, provided
that this object is local to the creating thread. Conversely, the
abstract location NFS(λ) contains a sound abstraction of all
the other objects created at λ.

Similar ideas have been proposed in recency abstraction [4],
but standard recency abstraction only applies to sequential
programs, where it is always sound to perform strong updates
on the abstraction of the most-recently-allocated object. Our
analysis, instead, operates in a concurrent setting and assumes
that all the threads are concurrently executed under an inter-
leaving semantics. As we anticipated, this means that, if a

2We are aware of the fact that the Java Memory Model allows more
behaviours than an interleaving semantics (see [24] for a formalisation), but
since its connections with Dalvik depend on the Android version and its
definition is very complicated, in this work we just consider an interleaving
semantics for simplicity.
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pointer may be shared between different threads, performing
strong updates on the abstraction of the object indexed by the
pointer would be unsound. Our analysis allows strong updates
without sacrificing soundness by statically keeping track of a
set of pointers which are known to be local to a single thread:
only the abstractions of the most-recently-allocated objects
indexed by these pointers are amenable for strong updates.

B. Examples

By being conservative on the execution order of callbacks,
our analysis is able to soundly analyse the leaky example of
Table I. We recall it in Table III, where we annotate it with
a simplified version of the facts generated by the analysis:
the heap fact H provides a flow-insensitive heap abstraction,
while the Sink fact denotes communication to a sink. We use
line numbers to identify allocation sites and to index the heap
abstractions.

1 public class Leaky extends Activity {
H(1, {|Leaky;st 7→ NFS(2),st2 7→ NFS(3)|})
// flow-insensitivity on activity object

2 Storage st = new Storage();
H(2, {|Storage;s 7→ ""|}) // after the constructor

3 Storage st2 = new Storage();
H(3, {|Storage;s 7→ ""|}) // after the constructor

4 onRestart() { st2 = st; }
H(1, {|Leaky;st 7→ NFS(2),st2 7→ NFS(2)|}) // aliasing

5 onResume() { st2.s = getDeviceId(); }
H(2, {|Storage;s 7→ id|}) ∧ H(3, {|Storage;s 7→ id|})
// due to flow-insensitivity on activity object

6 onPause() { send(st.s, "http://www.myapp.com/");
Sink("") ∧ Sink(id) // the leak is detected

7 }
8 }

TABLE III
A SUBTLE INFORMATION LEAK (DETECTED)

In our analysis, activity objects are always abstracted in
a flow-insensitive way, which is crucial for soundness, since
we do not predict the execution order of their callbacks.
When the activity is created, an abstract flow-insensitive heap
fact H(1, {|Leaky;st 7→ NFS(2),st2 7→ NFS(3)|}) is
introduced, and two facts H(2, {|Storage;s 7→ ""|}) and
H(3, {|Storage;s 7→ ""|}) abstract the objects pointed by
the activity fields st and st2. Then the life-cycle events are
abstracted: the onRestart method performs a weak update
on the activity object, adding a fact H(1, {|Leaky;st 7→
NFS(2),st2 7→ NFS(2)|}) which tracks aliasing; after the
onResume method, st can thus point to two possible ob-
jects, as reflected by the abstract flow-insensitive heap facts
generated at line 2 and at line 5. Since the latter fact tracks a
sensitive value in the field s, the leak is caught in onPause.

Our analysis can also precisely deal with the benign ex-
ample of Table II thanks to recency abstraction. We show a
simplified version of the facts generated by the analysis in Ta-
ble IV. If our static analysis only used a traditional allocation-
site abstraction, the benefits of flow-sensitivity would be
voided by the presence of the “for” loop in the code. Indeed,
the allocation site of c would need to identify all the concrete
objects allocated therein, hence a traditional static analysis

could not perform strong updates on c.phone without break-
ing soundness and would raise a false alarm on the code.

1 public class Anon extends Activity {
H(1, {|Anon;m 7→ NFS(2)|})
// flow-insensitivity on activity object

2 Contact[] m = new Contact[]();
H(2, []) // new empty array is created

3 onStart() {
LState3(c 7→ null; 5 7→ ⊥)
// no allocated contact at location 5 yet

4 for (int i = 0; i < contacts.length(); i++) {
LState4(c 7→ null; 5 7→ ⊥) ∧ LState4(c 7→ NFS(5); 5 7→ ⊥)
// loop invariant (see below)

5 Contact c = contacts.getContact(i);
LState5(c 7→ FS(5); 5 7→ oc) // flow-sensitivity

6 c.phone = anonymise(c.phone);
LState6(c 7→ FS(5); 5 7→ oc{phone 7→ ""}) // strong update

7 m[i] = c;
LState7(c 7→ NFS(5); 5 7→ ⊥) ∧ H(5, oc{phone 7→ ""}) ∧
H(2, [NFS(5)]) // lifting is performed

8 }
9 send(m, "http://www.cool-apps.com/");
Sink([oc{phone 7→ ""}]) // no leak is detected

10 }
11 }

TABLE IV
ANONYMIZING CONTACT INFORMATION (ALLOWED)

The local state fact LStatepp provides a flow-sensitive
abstraction of the state of the registers and the heap at program
point pp. Recall that activity objects are always abstracted in
a flow-insensitive fashion, therefore the Contact array m is
also abstracted by a flow-insensitive heap fact H(2, []). At each
loop iteration, our static analysis abstracts the most-recently-
allocated Contact object at line 5 in a flow-sensitive fashion.
This is done by putting the abstract flow-sensitive location
FS(5) in c and by storing the abstraction of the Contact
object oc in the flow-sensitive local state abstraction LState5,
using its allocation site 5 as a key. This allows us to perform a
strong update on the c.phone field at line 6, overwriting the
private information with a public one. At line 7 the program
stores the public object in the array m, which is abstracted by
a flow-insensitive heap fact: to preserve soundness, the flow-
sensitive abstraction of oc is lifted (downgraded) to a flow-
insensitive abstraction by generating a flow-insensitive heap
fact H(5, oc[phone 7→ ""]) and by changing the abstraction
of c from FS(5) to NFS(5). We then perform a weak update
on the array stored in m by generating a flow-insensitive heap
fact H(2, [NFS(5)]). Thanks to the previous strong update,
however, the end result is that m only stores public information
at the end of the loop and no leak is detected.

III. CONCRETE SEMANTICS

Our static analysis is defined on top of an extension of
µ-DalvikA, a formal model of a core fragment of the Android
ecosystem [7]. It includes the main bytecode instructions of
Dalvik, the register-based virtual machine running Android
applications, and a few important API methods. Moreover,
it captures the life-cycle of the most common and complex
application components (activities), as well as inter-component
communication based on asynchronous messages (intents, with
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a dictionary-like structure). Our extension of µ-DalvikA adds
two more ingredients to the model: multi-threading and excep-
tions, which are useful to get a full account of the control flow
of Android applications. For space reasons, the presentation
focuses on a relatively high-level overview of our extensions:
the formal details, including the full operational semantics, can
be found in the long version of the paper [6].

A. Basic Syntax

We write (ri)
i≤n to denote the sequence r1, . . . , rn. When

the length of the sequence is unimportant, we simply write
r∗. Given a sequence r∗, rj stands for its j-th element
and r∗[j 7→ r′] denotes the sequence obtained from r∗ by
substituting its j-th element with r′. We let ki 7→ vi denote
a key-value binding and we represent partial maps using a
sequence of key-value bindings (ki 7→ vi)

∗, where all the
keys ki are pairwise distinct; the order of the keys in a partial
map is immaterial.

We introduce in Table V a few basic syntactic categories.
A program P is a sequence of classes. A class cls c ≤
c′ imp c∗ {fld∗; mtd∗} consists of a name c, a super-class c′,
a sequence of implemented interfaces c∗, a sequence of fields
fld∗, and a sequence of methods mtd∗. A method m : τ∗

n−→
τ {st∗} consists of a name m, the type of its arguments τ∗,
the return type τ , and a sequence of statements st∗ defining
the method body; the syntax of statements is explained below.
The integer n on top of the arrow declares how many registers
are used by the method. Observe that field declarations f : τ
include the type of the field. A left-hand side lhs is either a
register r, an array cell r1[r2], an object field r.f , or a static
field c.f , while a right-hand side rhs is either a left-hand side
lhs or a primitive value prim .

P ::= cls∗

cls ::= cls c ≤ c′ imp c∗ {fld∗; mtd∗}
τprim ::= bool | int | . . .
τ ::= c | τprim | array[τ ]
fld ::= f : τ

mtd ::= m : τ∗
n−→ τ {st∗}

lhs ::= r | r[r] | r.f | c.f
prim ::= true | false | . . .
rhs ::= lhs | prim

TABLE V
BASIC SYNTACTIC CATEGORIES

Table VI reports the syntax of selected statements, along
with a brief intuitive explanation of their semantics. Observe
that statements do not operate directly on values, but rather on
the content of the registers of the Dalvik virtual machine. The
extensions with respect to [7] are in bold and are discussed
in more detail in the following. Some of the next definitions
are dependent on a program P , but we do not make this
dependency explicit to keep the notation more concise.

B. Local Reduction

a) Notation: Table VII shows the main semantic domains
used in the present section. We let p range over pointers from a
countable set Pointers. A program point pp is a triple c,m, pc
including a class name c, a method name m and a program

counter pc (a natural number identifying a specific statement
of the method). Annotations λ are auxiliary information with
no semantic import, their use in the static analysis is discussed
in Section IV. A location ` is an annotated pointer pλ and a
value v is either a primitive value or a location.

A local state L = 〈pp · u∗ · st∗ · R〉 stores the state
information of an invoked method, run by a given thread or
activity. It is composed of a program point pp, identifying the
currently executed statement; the method calling context u∗,
which keeps track of the method arguments and is only used in
the static analysis; the method body st∗, defining the method
implementation; and a register state R, mapping registers to
their content. Registers are local to a given method invocation.

A local state list L# is a list of local states. It is used to keep
track of the state information of all the methods invoked by a
given thread or activity. The call stack α is modeled as a local
state list L#, possibly qualified by the AbNormal(·) modifier
if the thread or activity is recovering from an exception.

Coming to memory, we define the heap H as a partial map
from locations to memory blocks. There are three types of
memory blocks in the formalism: objects, arrays and intents.
An object o = {|c; (fτ 7→ v)∗|} stores its class c and a mapping
between fields and values. Fields are annotated with their type,
which is typically omitted when unneeded. An array a = τ [v∗]
contains the type τ of its elements and the sequence of the
values v∗ stored into it. An intent i = {|@c; (k 7→ v)∗|} is
composed by a class name c, identifying the intent recipient,
and a sequence of key-value bindings (k 7→ v)∗, defining the
intent payload (a dictionary). The static heap S is a partial
map from static fields to values.

Finally, we have local configurations Σ = ` ·α ·π ·γ ·H ·S,
representing the full state of a specific activity or thread. They
include a location `, pointing to the corresponding activity
or thread object; a call stack α; a pending activity stack π,
which is a list of intents keeping track of all the activities that
have been started; a pending thread stack γ, which is a list
of pointers to the threads which have been started; a heap H ,
storing memory blocks; and a static heap S, storing the values
of static fields.

We use several substitution notations in the reduction rules,
with an obvious meaning. The only non-standard notations are
Σ+, which stands for Σ where the value of pc is replaced by
pc + 1 in the top-most local state of the call stack, and the
substitution of registers Σ[rd 7→ u], which sets the value of
the register rd to u in the top-most local state of the call stack.
This reflects the idea that the computation is performed on the
local state of the last invoked method.

b) Local Reduction Relation: The local reduction rela-
tion Σ Σ′ models the evolution of a local configuration Σ
into a new local configuration Σ′ as the result of a computation
step. The definition of the local reduction relation uses two
auxiliary relations:
• ΣJrhsK, which evaluates a right-hand side expression rhs

in the local configuration Σ;
• Σ, st ⇓ Σ′, which executes the statement st on the local

configuration Σ to produce Σ′.
The simplest rule defining a local reduction step Σ Σ′ just
fetches the next statement st to run and performs a look-up
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st ::=
goto pc unconditionally jump to program counter pc invoke ro m r∗ invoke method m of the object in ro with args r∗
if4 r1 r2 then pc jump to program counter pc if r1 4 r2 return get the value of the special return register rres
move lhs rhs move rhs into lhs newintent ri c put a pointer to a new intent for class c in ri
unop� rd rs compute �rs and put the result in rd put-extra ri rk rv bind the value of rv to key rk of the intent in ri
binop⊕ rd r1 r2 compute r1 ⊕ r2 and put the result in rd get-extra ri rk τ get the τ -value bound to key rk of the intent in ri
new rd c put a pointer to a new object of class c in rd start-act ri start a new activity by sending the intent in ri
newarray rd rl τ put a pointer to a new τ -array of length rl in rd start-thread rt start the thread in rt
throw re throw the exception stored in re interrupt rt interrupt the thread in rt
move-except re store a pointer to the last thrown exception in re join rt join the current thread with the thread in rt

TABLE VI
SYNTAX AND INFORMAL SEMANTICS OF SELECTED STATEMENTS

Pointers p ∈ Pointers
Program counters pc ∈ N
Program points pp ::= c,m, pc
Annotations λ ::= pp | c | in(c)
Locations ` ::= pλ
Values u, v ::= prim | `
Register states R ::= (r 7→ v)∗

Local states L ::= 〈pp · u∗ · st∗ ·R〉
Local state lists L# ::= ε | L :: L#

Call stacks α ::= L# | AbNormal(L#)
Objects o ::= {|c; (fτ 7→ v)∗|}
Arrays a ::= τ [v∗]
Intents i ::= {|@c; (k 7→ v)∗|}
Memory blocks b ::= o | a | i
Heaps H ::= (` 7→ b)∗

Static heaps S ::= (c.f 7→ v)∗

Pending activity stacks π ::= ε | i :: π
Pending thread stacks γ ::= ε | ` :: γ
Local configurations Σ ::= ` · α · π · γ ·H · S

TABLE VII
SEMANTIC DOMAINS FOR LOCAL REDUCTION

on the auxiliary relation Σ, st ⇓ Σ′. Formally, assuming a
function get-stm(Σ) fetching the next statement based on the
program counter of the top-most local state in Σ, we have:

(R-NEXTSTM)
Σ, get-stm(Σ) ⇓ Σ′

Σ Σ′

We show a subset of the new local reduction rules added to
µ-DalvikA in Table VIII and we explain them below.

c) Exception Rules: In Dalvik, method bodies can con-
tain special annotations for exception handling, specifying
which exceptions are caught and where, as well as the program
counter of the corresponding exception handler (handlers are
part of the method body). In our formalism, we assume the
existence of a partial map ExcptTable(pp, c) = pc which
provides, for all program points pp where exceptions can be
thrown and for all classes c extending the Throwable inter-
face, the program counter pc of the corresponding exception
handler. If no handler exists, then ExcptTable(pp, c) = ⊥.
Moreover, all local states contain a special register rexcpt that
is only accessed by the exception handling rules: this stores
the location of the last thrown exception.

An exception object stored in re can be thrown by the
statement throw re using rule (R-THROW): it checks that
re contains the location of a (throwable) object, stores this lo-
cation into the register rexcpt and moves the local configuration
into an abnormal state. After entering an abnormal state, there

are two possibilities: if there exists an handler for the thrown
exception, we exit the abnormal state and jump to the program
counter of the exception handler using rule (R-CAUGHT);
otherwise, the exception is thrown back to the method caller
using rule (R-UNCAUGHT). Finally, the location of the last
thrown exception object can be copied from the register rexcpt
into the register re by the statement move-except re, as
formalized by rule (R-MOVEEXCEPTION)

d) Thread Rules: Our formalism covers the core methods
of the Java Thread API [18]: they enable thread spawning
and thread communication by means of interruptions and
synchronizations. Rule (R-STARTTHREAD) models the state-
ment start-thread rt: it allows a thread to be started
by simply pushing the location of the thread object stored in
rt on the pending thread stack. The actual execution of the
thread is left to the virtual machine, which will spawn it at an
unpredictable point in time, as we discuss in the next section.
The statement interrupt rt sets the interrupt field (named
inte) of the thread object whose location is stored in rt to
true , as formalized by rule (R-INTERRUPTTHREAD). We now
describe the semantics of thread synchronizations. If the thread
t′ calling join rt was not interrupted at some point, rule (R-
JOINTHREAD) checks whether the thread whose location is
stored in rt has finished; if this is the case, it resumes the
execution of t′, otherwise t′ remains stuck. If instead t′ was
interrupted before calling join rt, rule (R-INTERRUPTJOIN)
performs the following operations: the inte field of t′ is
reset to false , an IntExcpt exception is thrown (this creates
a new exception object) and the local configuration enters an
abnormal state.

C. Global Reduction

a) Notation: Table IX introduces the main semantic
domains used in the present section. First, we assume the
existence of a set of activity states ActStates, which is used
to model the Android activity life-cycle (see [31]). Then we
have two kinds of frames, modeling running processes. An
activity frame ϕ = 〈`, s, π, γ, α〉 describes the state of an
activity: it includes a location `, pointing to the activity object;
the activity state s; a pending activity stack π, representing
other activities started by the activity; a pending thread stack
γ, representing threads spawned by the activity; and a call
stack α. A thread frame ψ = ⟪`, `′, π, γ, α⟫ describes a
running thread: it includes a location `, pointing to the activity
object that started the thread; a location `′ pointing to the
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(R-THROW)
` = ΣJreK H(`) = {|c′; (f 7→ v)∗|}

Σ,throw re ⇓ Σ[α 7→ AbNormal(α)][rexcpt 7→ `]

(R-CAUGHT)
` = ΣAJrexcptK H(`) = {|c′; (f 7→ v)∗|}

ExcptTable(c,m, pc, c′) = pc′ αc = 〈c,m, pc′ · u∗ · st∗ ·R〉 :: α′

ΣA  ΣA[αA 7→ αc]

(R-UNCAUGHT)
` = ΣAJrexcptK H(`) = {|c′; (f 7→ v)∗|}

ExcptTable(c,m, pc, c′) = ⊥
ΣA  ΣA[αA 7→ AbNormal(α′)][rexcpt 7→ `]

(R-MOVEEXCEPTION)
` = ΣJrexcptK

Σ,move-except re ⇓ Σ+[re 7→ `]

(R-STARTTHREAD)
` = ΣJrtK

H(`) = {|c′; (f 7→ v)∗|} γ′ = ` :: γ

Σ,start-thread rt ⇓ Σ+[γ 7→ γ′]

(R-INTERRUPTTHREAD)
` = ΣJrtK H(`) = {|c′; (f 7→ v)∗, inte 7→ _|}
H′ = H[` 7→ {|c′; (f 7→ v)∗, inte 7→ true|}]

Σ,interrupt rt ⇓ Σ+[H 7→ H′]

(R-JOINTHREAD)
H(`r) = {|cr; (fr 7→ vr)

∗, inte 7→ false|}
` = ΣJrtK H(`) = {|c′; (f 7→ v)∗, finished 7→ true|}

Σ,join rt ⇓ Σ+

(R-INTERRUPTJOIN)
H(`r) = {|cr; (fr 7→ vr)

∗, inte 7→ true|}
o = {|cr; (fr 7→ vr)

∗, inte 7→ false|} pc,m,pc 6∈ dom(H)
H′ = H, pc,m,pc 7→ {|IntExcpt; |} αc = AbNormal(α[rexcpt 7→ pc,m,pc ])

Σ,join rt ⇓ Σ[α 7→ αc, H 7→ H′[`r 7→ o]]

Convention: let Σ = `r ·α·π·γ ·H ·S with α = 〈c,m, pc ·u∗ ·st∗ ·R〉 :: α′ and ΣA = `r ·αA ·π·γ ·H ·S with αA = AbNormal(〈c,m, pc ·u∗ ·st∗ ·R〉 :: α′).

TABLE VIII
SMALL STEP SEMANTICS OF EXTENDED µ-DALVIKA - EXCERPT

thread object; a pending activity stack π, representing activities
started by the thread; a pending thread stack γ, representing
other threads spawned by the thread; and a call stack α.

Activity frames are organized in an activity stack Ω, con-
taining all the running activities; one of the activities may be
singled out as active, represented by an underline, and it is
scheduled for execution. We assume that each Ω contains at
most one underlined activity frame. Thread frames, instead,
are organized in a thread pool Ξ, containing all the running
threads. A configuration Ψ = Ω ·Ξ ·H ·S includes an activity
stack Ω, a thread pool Ξ, a heap H and a static heap S. It
represents the full state of an Android application.

Activity states s ∈ ActStates
Activity frames ϕ ::= 〈`, s, π, γ, α〉 | 〈`, s, π, γ, α〉
Activity stacks Ω ::= ϕ | ϕ :: Ω
Thread frames ψ ::= ⟪`, `′, π, γ, α⟫
Thread pools Ξ ::= ∅ | ψ :: Ξ
Configurations Ψ ::= Ω · Ξ ·H · S

TABLE IX
SEMANTIC DOMAINS FOR GLOBAL REDUCTION

b) Global Reduction Relation: The global reduction re-
lation Ψ⇒ Ψ′ models the evolution of a configuration Ψ into
a new configuration Ψ′, either by executing a statement in a
thread or activity according to the local reduction rules, or as
the result of processing life-cycle events of the Android plat-
form, including user inputs, system callbacks, inter-component
communication, etc.

Before presenting the global reduction rules, we define a
few auxiliary notions. First, we let lookup be the function such
that lookup(c,m) = (c′, st∗) iff c′ is the class obtained when
performing dispatch resolution of the method m on an object
of type c and st∗ is the corresponding method body. Then,
we assume a function sign such that sign(c,m) = τ∗

n−→ τ
iff there exists a class clsi such that clsi = cls c ≤

c′ imp c∗ {fld∗; mtd∗,m : τ∗
n−→ τ {st∗}}. Finally, we let a

successful call stack be the call stack of an activity or thread
which has completed its computation, as formalized by the
following definition.

Definition 1 A call stack α is successful if and only if α =
〈pp · u∗ · return ·R〉 :: ε for some pp, u∗ and R. We let α
range over successful call stacks.

The core of the global reduction rules are taken from [7],
extended with a few simple rules used, e.g., to manage the
thread pool. The main new rules are given in Table X and
the full set can be found in the long version [6]. We start by
describing rule (A-THREADSTART), which models the starting
of a new thread by some activity. Let `′ be a pointer to a
pending thread spawned by an activity identified by the pointer
`, the rule instantiates a new thread frame ψ = ⟪`, `′, ε, ε, α′⟫
with empty pending activity stack and empty pending thread
stack, executing the run method of the thread object refer-
enced by `′. We then have two other rules: rule (T-REDUCE)
allows the reduction of any thread in the thread pool, using
the reduction relation for local configurations; rule (T-KILL)
allows the system to remove a thread which has finished its
computations, by checking that its call stack is successful.

IV. ABSTRACT SEMANTICS

Our analysis takes as input a program P and generates a
set of Horn clauses (|P |) that over-approximate the concrete
semantics of P . We can then use an automated theorem prover
such as Z3 [28] to show that (|P |), together with a set of facts
∆ over-approximating the initial state of the program, does
not entail a formula φ representing the reachability of some
undesirable program state (e.g., leaking sensitive information).
By the over-approximation, the unsatisfiability of the formula
ensures that also P does not reach such a program state.
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(A-THREADSTART)
ϕ = 〈`, s, π, γ :: `′ :: γ′, α〉 ϕ′ = 〈`, s, π, γ :: γ′, α〉 ψ = ⟪`, `′, ε, ε, α′⟫ H(`′) = {|c′; (f 7→ v)∗|}

lookup(c′, run) = (c′′, st∗) sign(c′′, run) = Thread loc−−→ Void α′ = 〈c′′, run, 0 · `′ · st∗ · (rk 7→ 0)k≤loc, rloc+1 7→ `′〉
Ω :: ϕ :: Ω′ · Ξ ·H · S ⇒ Ω :: ϕ′ :: Ω′ · ψ :: Ξ ·H · S

(T-REDUCE)
`t · α · π · γ ·H · S  `t · α′ · π′ · γ′ ·H′ · S′

Ω · Ξ :: ⟪`, `t, π, γ, α⟫ :: Ξ′ ·H · S ⇒ Ω · Ξ :: ⟪`, `t, π′, γ′, α′⟫ :: Ξ′ ·H′ · S′

(T-KILL)
H(`′) = {|c; (f 7→ v)∗, finished 7→ _|} H′ = H[`′ 7→ {|c; (f 7→ v)∗, finished 7→ true|}]

Ω · Ξ :: ⟪`, `′, ε, ε, α⟫ :: Ξ′ ·H · S ⇒ Ω · Ξ :: Ξ′ ·H′ · S

TABLE X
NEW GLOBAL REDUCTION RULES - EXCERPT

A. Syntax of Terms

We assume two disjoint countable sets of variables Vars
and BVars. The syntax of the terms of the abstract semantics
is defined in Table XI and described below.

Boolean variables xb ∈ BVars
Variables x ∈ Vars
Abstract elements d̂ ∈ D̂
Booleans bb ::= 0 | 1 | xb
Abstract locations λ̂ ::= FS(λ) |NFS(λ)

Abstract values û, v̂ ::= d̂ | x | f(v̂∗)
Abstract objects ô ::= {|c; (fτ 7→ v̂)∗|}
Abstract arrays â ::= τ [v̂]

Abstract intents î ::= {|@c; v̂|}
Abstract blocks b̂ ::= ô | â | î
Abstract flow-sensitive blocks l̂ ::= b̂ | ⊥
Abstract flow-sensitive heap ĥ ::= (pp 7→ l̂)∗

Abstract filter k̂ ::= (pp 7→ bb)∗

TABLE XI
SYNTAX OF TERMS

Each location pλ is abstracted by an abstract location λ̂,
which is either an abstract flow-sensitive location FS(λ) or an
abstract flow-insensitive location NFS(λ). Recall the syntax of
annotations: in the concrete semantics, λ = c means that pλ
stores an activity of class c; λ = in(c) means that pλ stores an
intent received by an activity of class c; and λ = pp means that
pλ stores a memory block (object, array or intent) created at
program point pp. Only the latter elements are amenable for a
sound flow-sensitive analysis, since activity objects are shared
by all the activity callbacks and received intents are shared
between at least two activities, but the analysis assumes the
concurrent execution of all callbacks and activities.

The analysis assumes a bounded lattice (D̂,v,t,u,>,⊥)
for approximating concrete values such that the abstract do-
main D̂ contains at least all the abstract locations λ̂ and
the abstractions p̂rim of any primitive value prim . We also
assume a set of interpreted functions f , containing at least
sound over-approximations �̂, ⊕̂, 4̂ of the unary, binary and
comparison operators �,⊕,4. Abstract values v̂ are elements
d̂ of the abstract domain D̂, variables x from Vars or function
applications of the form f(v̂∗).

The abstraction of objects ô is field-sensitive, while the
abstraction of arrays â and intents î is field-insensitive. The

reason is that the structure of objects is statically known thanks
to their type, while array lengths and intent fields (strings)
may only be known at runtime. It would clearly be possible
to use appropriate abstract domains to have a more precise
representation of array lengths and intent fields, but we do not
do it for the sake of simplicity. An abstract block b̂ can be an
abstract object ô, an abstract array â or an abstract intent î.
An abstract flow-sensitive heap ĥ is a total mapping from the
set of allocation sites pp to abstract memory blocks b̂ or the
symbol ⊥, representing the lack of a flow-sensitive abstraction
of the memory blocks created at pp.

There is just one syntactic element in Table XI which we
did not discuss yet: abstract filters. Abstract filters k̂ are total
mappings from the set of allocation sites pp to boolean flags
bb. They are technically needed to keep track of the allocation
sites whose memory blocks must be downgraded to a flow-
insensitive analysis when returning from a method call. The
downgrading mechanism, called lifting of an allocation site, is
explained in Section IV-C.

B. Ingredients of the Analysis
a) Overview: Our analysis is context-sensitive, which

means that the abstraction of the elements in the call stack
keeps track of a representation of their calling context. In this
work, contexts are defined as tuples (λ̂t, û

∗), where λ̂t is an
abstraction of the location storing the thread or activity which
called the method, while û∗ is an abstraction of the method
arguments. Abstracting the calling thread or activity increases
the precision of the analysis, in particular when dealing with
the join rt statement for thread synchronization.

Moreover, our analysis is flow-sensitive and computes a
different over-approximation ĥ of the state of the heap at each
reachable program point, satisfying the following invariant:
for each allocation site pp, if ĥ(pp) = b̂, then b̂ is an over-
approximation of the most-recently allocated memory block
at pp and this memory block is local to the allocating thread
or activity. Otherwise, ĥ(pp) = ⊥ and the memory blocks
allocated at pp, if any, do not admit a flow-sensitive analysis.
These memory blocks are then abstracted by an abstract flow-
insensitive heap, defining an over-approximation of the state
of the heap which is valid at all reachable program points. As
such, the abstract flow-insensitive heap is not indexed by a
program point.
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f ::=

LStatepp((λ̂, v̂∗); v̂∗; ĥ; k̂) Abstract local state
AStatepp((λ̂, v̂∗); v̂∗; ĥ; k̂) Abstract abnormal state
Resc,m((λ̂, v̂∗); v̂; ĥ; k̂) Abstract result of method call
Uncaughtpp((λ̂, v̂∗); v̂; ĥ; k̂) Abstract uncaught exception
RHSpp(v̂) Abstract value of right-hand side
LiftHeap(ĥ; k̂) Abstract heap lifting
Reach(v̂; ĥ; k̂) Abstract heap reachability
GetBlki(v̂∗; ĥ; λ̂; b̂) Abstract heap look-up
H(λ, b̂) Abstract flow-insensitive heap entry
Sc,f(v̂) Abstract static field
Ic (̂i) Abstract pending activity
T(λ, ô) Abstract pending thread
ûv v̂ Partial ordering on abstract values
τ ≤ τ ′ Subtyping fact

TABLE XII
ANALYSIS FACTS

For space reasons, we just present selected excerpts of the
analysis in the remaining of this section: the full analysis
specification can be found in [6].

b) Analysis Facts: The syntax of the analysis facts f is
defined in Table XII. The fact LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂)
is used to abstract local states: it denotes that, if the method
m of the class c is invoked in the context (λ̂t, û

∗), the state
of the registers at the pc-th statement is over-approximated
by v̂∗, while ĥ provides a flow-sensitive abstraction of the
state of the heap and k̂ tracks the set of the allocation sites
which must be lifted after returning from the method. The fact
AStatec,m,pc((λ̂t, û

∗); v̂∗; ĥ; k̂) has an analogous meaning, but
it abstracts local states trying to recover from an exception.
The fact Resc,m((λ̂t, û

∗); v̂; ĥ; k̂) states that, if the method m
of the class c is invoked in the context (λ̂t, û

∗), its return value
is over-approximated by v̂; the information ĥ and k̂ has the
same meaning as before and it is used to update the abstract
state of the caller after returning from the method m. The fact
Uncaughtc,m,pc((λ̂t, û

∗); v̂; ĥ; k̂) ensures that, if the method m
of the class c is invoked in the context (λ̂t, û

∗), it throws an
uncaught exception at the pc-th statement and the location of
the exception object is over-approximated by v̂; here, ĥ and
k̂ are needed to update the abstract state of the caller of m,
which becomes in charge of handling the uncaught exception.
The fact RHSpp(v̂) states that v̂ over-approximates the right-
hand side of a move lhs rhs statement at program point pp.

We then have a few facts used to abstract the heap and lift
the allocation sites. The facts LiftHeap(ĥ; k̂), Reach(v̂; ĥ; k̂)
and GetBlki(v̂

∗; ĥ; λ̂; b̂) are the most complicated and peculiar,
so they are explained in detail later on. The fact H(λ, b̂) models
the abstract flow-insensitive heap: it states that the location pλ
stores a memory block over-approximated by b̂ at some point
of the program execution. The fact Sc,f(v̂) states that the static
field f of class c contains a value over-approximated by v̂ at
some point of the program execution.

Finally, the fact Ic(̂i) tracks that an activity of class c has
sent an intent over-approximated by î. The fact T(λ, ô) tracks
that an activity or thread has started a new thread stored at
some location pλ and over-approximated by ô. We then have
standard partial order facts ûv v̂ and subtyping facts τ ≤ τ ′.

c) Horn Clauses: We define Horn clauses as logical
formulas of the form ∀x1, . . . ,∀xm.f1∧. . .∧fn =⇒ f without
free variables. In order to improve readability, we always
omit the universal quantifiers in front of Horn clauses and we
distinguish constants from universally quantified variables by
using a sans serif font for constants, e.g., we write c to denote
some specific class c. When an element in a Horn clause is
unimportant, we just replace it with an underscore (_). Also,
we write ∀x1, . . . ,∀xm.f1 ∧ . . .∧ fn =⇒ f ′1 ∧ . . .∧ f ′k for the
set {∀x1, . . . ,∀xm.f1 ∧ . . . ∧ fn =⇒ f ′i | i ∈ [1, k]}.

d) Abstract Programs: We define abstract programs ∆
as sets of facts and Horn clauses, where facts over-approximate
program states, while Horn clauses over-approximate the con-
crete semantics of the analysed program.

C. The Lifting Mechanism

The lifting mechanism is the central technical contribution
of the static analysis. It is convenient to abstract for a moment
from the technical details and explain it in terms of three
separate sequential steps, even though in practice these steps
are interleaved together upon Horn clause resolution.

a) Computing the Abstract Filter: Let ppa be the allo-
cation site to lift, i.e., assume that the most-recently-allocated
memory block b at ppa must be downgraded to a flow-
insensitive analysis, for example because it was shared with
another activity or thread. Hence, all the memory blocks which
can be reached by following a chain of locations (pointers)
starting from any location in b must also be downgraded for
soundness. In the analysis, we over-approximate this set of
locations with facts of the form Reach(v̂; ĥ; k̂), meaning that
the abstract filter k̂ represents a subset of the flow-sensitive
abstract locations which are reachable along ĥ from any flow-
sensitive abstract location over-approximated by v̂. The Horn
clauses deriving Reach(v̂; ĥ; k̂) are in Table XIII and should be
read as a recursive computation, whose goal is to find the set of
all the abstract flow-sensitive locations reachable from v̂ and
hence a sound over-approximation of the set of the allocation
sites which need to be lifted. The definition uses the function
k̂ t̂ k̂′, computing the point-wise maximum between k̂ and k̂′.

b) Performing the Lifting: Once Reach(FS(ppa); ĥ; k̂)
has been recursively computed, the analysis introduces a fact
LiftHeap(ĥ; k̂) to force the lifting of the allocation sites pp
such that k̂(pp) = 1, moving their abstract blocks from the
abstract flow-sensitive heap ĥ to the abstract flow-insensitive
heap. The lifting is formalized by the following Horn clause:

LiftHeap(ĥ; k̂) ∧ k̂(pp) = 1 ∧ ĥ(pp) = b̂ =⇒ H(pp; b̂)

c) Housekeeping: Finally, we need to update the data
structures used by the analysis to reflect the lifting, using the
computed abstract filter k̂ to update:

1) the current abstraction of the registers v̂∗. This is done
by using a function lift(v̂∗; k̂), which updates v̂∗ so that
all the abstract flow-sensitive locations FS(pp) such that
k̂(pp) = 1 are changed to NFS(pp). This ensures that the
next abstract heap accesses via the register abstractions
perform a look-up on the abstract flow-insensitive heap
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Reach(p̂rim; ĥ; 0∗) Reach(NFS(λ); ĥ; 0∗) Reach(FS(pp); ĥ; 0∗[pp 7→ 1]) Reach(û; ĥ; k̂) ∧ ûv v̂ =⇒ Reach(v̂; ĥ; k̂)

Reach(v̂; ĥ; k̂) ∧ Reach(v̂; ĥ; k̂′) =⇒ Reach(v̂; ĥ; k̂ t̂ k̂′)
ĥ(pp) = {|c; _, f 7→ v̂|}

ĥ(pp) = τ [v̂]

ĥ(pp) = {|@c; v̂|}

 ∧ Reach(v̂; ĥ; k̂) =⇒ Reach(FS(pp); ĥ; k̂)

TABLE XIII
HORN CLAUSES USED TO DERIVE THE PREDICATE Reach(v̂; ĥ; k̂)

k̂(pp) = 0

lift(FS(pp); k̂) = FS(pp)

k̂(pp) = 1

lift(FS(pp); k̂) = NFS(pp)

lift(NFS(λ); k̂) = NFS(λ) lift(p̂rim; k̂) = p̂rim

ûv v̂
lift(û; k̂)v lift(v̂; k̂)

∀i : lift(v̂i; k̂)) = ûi

lift(v̂∗; k̂) = û∗

TABLE XIV
AXIOMS REQUIRED ON THE FUNCTION lift(v̂∗; k̂)

for lifted allocation sites. Formally, we require the lift
function to satisfy the axioms in Table XIV;

2) the current abstract flow-sensitive heap ĥ. This is done
by the function hlift(ĥ; k̂), which replaces all the entries
of the form pp 7→ b̂ in ĥ with pp 7→ ⊥ if k̂(pp) = 1, thus
invalidating their flow-sensitive abstraction. If k̂(pp) = 0,
instead, the function calls lift(v̂; k̂) on all the abstract
values v̂ occurring in b̂, so that b̂ itself is still analysed
in a flow-sensitive fashion, but it is correctly updated to
reflect the lifting of its sub-components;

3) the current abstract filter k̂′. This is done by the function
k̂ t̂ k̂′, computing the point-wise maximum between k̂
and k̂′. This tracks the allocation sites which must be
lifted upon returning from the current method call, so
that also the caller can correctly update the abstraction
of its registers by using the lift function.

For simplicity, we just say that we lift some abstract value v̂
when we lift all the allocation sites pp such that FS(pp)v v̂.

d) Example: Assume integers are abstracted by their sign
and consider the following abstract flow-sensitive heap:

ĥ = pp1 7→ τ [FS(pp2)], pp2 7→ {|c; g 7→ FS(pp1), g′ 7→ +|}
pp3 7→ {|c′; f 7→ NFS(pp2), f ′ 7→ FS(pp4)|}
pp4 7→ {|c′; f 7→ FS(pp1), f ′ 7→ FS(pp3)|}

Assume we want to lift the allocation site pp1, the computation
of the abstract filter gives: k̂ = pp1 7→ 1, pp2 7→ 1, pp3 7→
0, pp4 7→ 0. The result of the lifting is then the following:

hlift(ĥ; k̂) = pp1 7→ ⊥, pp2 7→ ⊥,
pp3 7→ {|c′; f 7→ NFS(pp2), f ′ 7→ FS(pp4)|}
pp4 7→ {|c′; f 7→ NFS(pp1), f ′ 7→ FS(pp3)|}

D. Abstracting Local Reduction

a) Accessing the Abstract Heaps: We observe that in the
concrete semantics one often needs to read a location stored
in a register and then access the contents of that location
on the heap. In the abstract semantics we rely on a similar

mechanism, adapted to read from the correct abstract heap.
The fact GetBlki(v̂

∗; ĥ; λ̂; b̂) states that if v̂∗ is an over-
approximation of the content of the registers and ĥ is an
abstract flow-sensitive heap, then λ̂ is an abstract location
over-approximated by v̂i and b̂ is an abstract block over-
approximating the memory block that register i is pointing
to. Formally, this fact can be proved by the two Horn clauses
below, discriminating on the flow-sensitivity of λ̂:

FS(λ)v v̂i ∧ ĥ(λ) = b̂ =⇒ GetBlki(v̂
∗; ĥ;FS(λ); b̂)

NFS(λ)v v̂i ∧ H(λ, b̂) =⇒ GetBlki(v̂
∗; ĥ;NFS(λ); b̂)

b) Evaluation of Right-Hand Sides: The abstract se-
mantics needs to be able to over-approximate the evaluation
of right-hand sides. This is done via a translation 〈〈rhs〉〉pp
generating a set of Horn clauses, which over-approximate the
value of rhs at program point pp. For example, the following
translation rule generates one Horn clause which approximates
the content of the register ri at pp, based on the information
stored in the corresponding local state abstraction:

〈〈ri〉〉pp = {LStatepp(_; v̂∗; _; _) =⇒ RHSpp(v̂i)}

c) Standard Statements: The abstract semantics defines,
for each possible form of statement st , a translation (|st |)pp
into a set of Horn clauses which over-approximate the seman-
tics of st at program point pp. We start by discussing the top
part of Table XV, presenting the abstract semantics of some
statements considered in the original HornDroid paper [7]. We
focus in particular on the main additions needed to generalize
their abstraction to implement a flow-sensitive heap analysis:
• (|new rd c′|)pp : When allocating a new object at pp,

the abstraction of the object that was the most-recently
allocated one before the new allocation, if any, must
be downgraded to a flow-insensitive analysis. Therefore,
we lift the allocation site pp by computing an abstract
filter k̂′ via the Reach predicate and using it to perform
the lifting as described in Section IV-C. We then put in
the resulting abstract flow-sensitive heap a new abstract
object {|c′; (f 7→ 0̂τ )∗|} initialized to default values (0̂τ
represents the abstraction of the default value used to
populate fields of type τ ). The abstraction of the register
rd is set to the abstract flow-sensitive location FS(pp) to
enable a flow-sensitive analysis of the new most-recently-
allocated object;

• (|move ro.f rhs|)pp : We first use 〈〈rhs〉〉pp to generate
the Horn clauses over-approximating the value of rhs
at program point pp. Assume then we have the over-
approximation v̂′′ in a RHS fact. We have two possibili-
ties, based on the abstract value v̂o over-approximating
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• (|new rd c′|)c,m,pc =
{LStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ Reach(FS(c,m, pc); ĥ; k̂′)
=⇒ LiftHeap(ĥ; k̂′) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂′)[d 7→ FS(c,m, pc)]; hlift(ĥ; k̂′)[c,m, pc 7→ {|c′; (f 7→ 0̂τ )∗|}]; k̂ t̂ k̂′)}

• (|move ro.f rhs|)c,m,pc =
〈〈rhs〉〉c,m,pc ∪ {RHSc,m,pc(v̂′′) ∧ LStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ;FS(λ); {|c′; (f ′ 7→ û′)∗, f 7→ v̂′|}) =⇒
LStatec,m,pc+1(_; v̂∗; ĥ[λ 7→ {|c′; (f ′ 7→ û′)∗, f 7→ v̂′′|}; k̂)} ∪
{RHSc,m,pc(v̂′′) ∧ LStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ;NFS(λ); {|c′; (f ′ 7→ û′)∗, f 7→ v̂′|}) ∧ Reach(v̂′′; ĥ; k̂′) =⇒
H(λ, {|c′; (f ′ 7→ û′)∗, f 7→ v̂′′)|}) ∧ LiftHeap(ĥ; k̂′) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂′); hlift(ĥ; k̂′); k̂ t̂ k̂′)}

• (|return|)c,m,pc = {LStatec,m,pc((λ̂t, v̂∗call); v̂
∗; ĥ; k̂) =⇒ Resc,m((λ̂t, v̂∗call); v̂res; ĥ; k̂)}

• (|invoke ro m′ (rij )j≤n|)c,m,pc =

{LStatec,m,pc((λ̂t, _); v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ; _; {|c′; (f 7→ û)∗|}) ∧ c′ ≤ c′′ =⇒
LStatec′′,m′,0((λ̂t, (v̂ij )j≤n); (0̂k)k≤loc , (v̂ij )j≤n; ĥ; 0∗) | c′′ ∈ l̂ookup(m′) ∧ sign(c′′,m′) = (τj)

j≤n loc−−→ τ} ∪ (1)

{LStatec,m,pc((λ̂t, _); v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ; _; {|c′; (f 7→ û)∗|}) ∧ c′ ≤ c′′ ∧ Resc′′,m′ ((λ̂′t, ŵ
∗); v̂′res; ĥres; k̂res)

∧ λ̂t = λ̂′t ∧
(∧

j≤n v̂ij u ŵj 6v ⊥
)

=⇒ LStatec,m,pc+1((λ̂t, _); lift(v̂∗; k̂res)[res 7→ v̂′res]; ĥres; k̂ t̂ k̂res) | c′′ ∈ l̂ookup(m′)} ∪ (2)

{LStatec,m,pc((λ̂t, _); v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ; _; {|c′; (f 7→ û)∗|}) ∧ c′ ≤ c′′ ∧ Uncaughtc′′,m′ ((λ̂′t, ŵ
∗)); v̂′excpt; ĥres; k̂res)

∧ λ̂t = λ̂′t ∧
(∧

j≤n v̂ij u ŵj 6v ⊥
)

=⇒ AStatec,m,pc((λ̂t, _); lift(v̂∗; k̂res)[excpt 7→ v̂′excpt]; ĥres; k̂ t̂ k̂res) | c
′′ ∈ l̂ookup(m′)} (3)

• (|throw ri|)c,m,pc = {LStatec,m,pc(_; v̂∗; ĥ; k̂) =⇒ AStatec,m,pc(_; v̂∗[excpt 7→ v̂i]; ĥ; k̂)}
• (|start-thread ri|)c,m,pc =
{LStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ;NFS(λ); {|c′; (f 7→ û)∗|}) ∧ c′ ≤ Thread
=⇒ T(λ, {|c′; (f 7→ û)∗|}) ∧ LStatec,m,pc+1(_; v̂∗; ĥ; k̂)} ∪
{LStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ;FS(λ); {|c′; (f 7→ û)∗|}) ∧ c′ ≤ Thread ∧ Reach(FS(λ); ĥ; k̂′)
=⇒ T(λ, {|c′; (f 7→ û)∗|}) ∧ LiftHeap(ĥ; k̂′) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂′); hlift(ĥ; k̂′); k̂ t̂ k̂′)}

• (|join ri|)c,m,pc =

{LStatec,m,pc((NFS(λt), _); v̂∗; ĥ; k̂) ∧ H(λt, {|c′; (f 7→ û)∗, inte 7→ v̂′|}) ∧ f̂alse v v̂′ =⇒ LStatec,m,pc+1((NFS(λt), _); v̂∗; ĥ; k̂)} ∪
{LStatec,m,pc((NFS(λt), _); v̂∗; ĥ; k̂) ∧ H(λt, {|c′; (f 7→ û)∗, inte 7→ v̂′|}) ∧ t̂rue v v̂′ =⇒
H(c,m, pc; {|IntExcpt; |}) ∧ AStatec,m,pc((NFS(λt), _); v̂∗[excpt 7→ NFS(c,m, pc)]; ĥ; k̂) ∧ H(λt, {|c′; (f 7→ û)∗, inte 7→ f̂alse|})}

TABLE XV
ABSTRACT SEMANTICS OF STATEMENTS - EXCERPT

the content of the register ro. If GetBlko returns an
abstract flow-sensitive location FS(λ), then we perform
a strong update on the corresponding element of the ab-
stract flow-sensitive heap. If GetBlko returns an abstract
flow-insensitive location NFS(λ), we use λ to get an
abstract heap fact H(λ, {|c′; (f ′ 7→ û′)∗, f 7→ v̂′|}) and we
update the field f of this object in a new heap fact: this
implements a weak update, since the old fact is still valid.
The abstract value v̂′′ moved to the flow-insensitive heap
fact may contain abstract flow-sensitive locations, which
must be downgraded by lifting v̂′′ when propagating the
local state abstraction to the next program point;

• (|return|)pp : The callee generates a return fact Res
containing the calling context (λ̂t, v̂

∗
call), the abstract

value v̂res over-approximating the return value, its abstract
flow-sensitive heap ĥ and its abstract filter k̂ recording
which allocation sites were lifted during its computation.
All this information is propagated to the analysis of the
caller, as we explain in the next item;

• (|invoke ro m′ (rij )j≤n|)pp : We statically know the
name m′ of the invoked method, but not the class of
the receiver object in the register ro. In part (1) we over-
approximate dynamic dispatching as follows: we collect
all the abstract objects accessible via the abstraction v̂o
of the content of the register ro, but we only consider as
possible receivers the ones whose type is a subtype of
a class c′′ ∈ l̂ookup(m′), where l̂ookup(m′) just returns
the set of classes which define or inherit a method named
m′. For all of them, we introduce an abstract local state
fact LState over-approximating the local state of the
invoked method, instantiating it with the calling context,

the abstract flow-sensitive heap of the caller and an empty
abstract filter.
Part (2) handles the propagation of the abstraction of the
return value from the callee to the caller. This is done by
using the Res fact generated by the return statement
of the callee: the caller matches appropriate callees by
checking the context of the Res fact. Specifically, the
caller checks that: (i) its own abstraction λ̂t matches the
abstraction λ̂′t in the context of the callee, and (ii) that
the meet of its arguments v̂ij and the context arguments
ŵj is not ⊥. This prevents a callee from returning to a
caller that could not have invoked it, in case (i) because
caller and callee are being executed by different threads,
and in case (ii) because the over-approximation of the
arguments used by the caller and the over-approximation
of the arguments supplied to the callee are disjoint. We
then instantiate the abstract local state of the next program
point by inheriting the abstract flow-sensitive heap of the
callee ĥres, lifting the abstraction of the caller registers,
joining the caller abstract filter k̂ with the callee abstract
filter k̂res, and storing the abstraction of the returned value
v̂′res in the abstraction of the return register.
Finally, part (3) of the rule is used to handle the propaga-
tion of uncaught exceptions from the callee to the caller.
It uses an abstract uncaught exception fact Uncaught,
generated by the exception rules explained below: it tries
to throw back the exceptions to an appropriate caller,
by matching the context of the Uncaught fact with the
abstract local state of the caller.

d) Exceptions and Threads: The bottom part of Ta-
ble XV presents the abstract semantics of some selected new
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statements of the concrete semantics:
• (|throw ri|)pp : We generate an abstract abnormal local

state fact AState from the abstract local state throwing
the exception, and we set the abstraction of the special
exception register accordingly;

• (|start-thread ri|)pp : We create an abstract pending
thread fact T, tracking that a new thread was started.
The actual instantiation of the abstract thread object is
done by the abstract counterpart of the global reduction
rules, which we discuss later. Observe that, if the abstract
location pointing to the abstract thread object has the
form FS(λ), then λ is lifted, since the parent thread can
access the state of the new thread, but the two threads
are concurrently executed;

• (|join ri|)pp : We just check whether the inte field of
the abstract object over-approximating the running thread
or activity is over-approximating t̂rue , in which case
an abstract abnormal local state throwing an IntExcpt

exception is generated, or f̂alse , in which case the abstract
local state is propagated to the next program point.
e) Example: We show in Table XVI a (simplified) byte-

code program corresponding to the code snippet in Table I.
A few comments about the bytecode: the activity constructor
<init> is explicitly defined; by convention, the first register
after the local registers of a method is used to store a pointer
to the activity object and the register ret is used to store the
result of the last invoked method.

We assume that the class Leaky extends Activity and
implements at least the methods send and getDeviceId,
whose code is not shown here. We also use line numbers
to refer to program points, which makes the notation lighter.
Notice that there are only two allocation points, lines 7 and
9, therefore the abstract flow-sensitive heap will contain only
two entries and have the form 7 7→ l̂1, 9 7→ l̂2.

We selected three bytecode instructions and we give for
each of them the Horn clauses generated by our analysis. We
briefly comment on the clauses: the new instruction at line
7 computes all the abstract flow-sensitive locations reachable
from FS(7) with the predicate Reach: bb′1 (resp. bb′2) is set to
1 iff the location 7 (resp. 9) needs to be lifted. These abstract
flow-sensitive locations are then lifted, if needed, using:

LiftHeap(7 7→ l̂1, 9 7→ l̂2; 7 7→ bb′1, 9 7→ bb′2),

and the abstract flow-sensitive heap is updated by putting a
fresh Storage object in 7 and by lifting 9, if needed:

7 7→ {|Storage;s 7→ ””|}, 9 7→ hlift(l̂2; 7 7→ bb′1, 9 7→ bb′2).

The invoke instruction at line 18 has two clauses: the
first clause retrieves the callee’s class c′ and performs an
abstract virtual method dispatch (here there is only one class
implementing getDeviceId, hence this step is trivial); the
second clause gets the result from the called method and
returns it to the caller, checking that the caller’s abstract thread
pointer λ̂t and supplied argument v̂ match the callee’s context
(λ̂′t, v̂

′) with the constraint λ̂t = λ̂′t ∧ v̂u v̂′ 6v⊥. We removed
the exception handling clauses, as they are not relevant here.

Finally, the move instruction at line 20 is abstracted by four
Horn clauses: the first one evaluates the right-hand side of the

move; the two subsequent clauses execute the move in case
the left-hand side is the field s of, respectively, the abstract
flow-sensitive location 7 or 9; finally, the last clause is used if
the left-hand side is the field s of an abstract flow-insensitive
location, in which case a new abstract flow-insensitive heap
entry is created.

E. Abstracting Global Reduction

The abstract counterpart of the global reduction rules is a
set of Horn clauses over-approximating system events and the
Android activity life-cycle. We extended the original rules of
HornDroid [7] with some new rules needed to support our
richer concrete semantics including threads and exceptions.
Table XVII shows two of these rules to exemplify, the other
rules can be found in [6]. Rule Tstart over-approximates
the spawning of new threads by generating an abstract local
state executing the run method of the corresponding thread
object. Rule AbState abstracts the mechanism by which a
method recovers from an exception: part (A) turns an abstract
abnormal state into an abstract local state if the abstraction
of the exception register contains the abstract location of an
object of class c extending the Throwable interface and if
there exists an appropriate entry for exception handling in the
exception table; part (B) is triggered if no such entry exists,
and generates an abstract uncaught exception fact, which is
then used in the abstract semantics of the method invocation
performed by the caller.

Let R denote the set of all the Horn clauses defining the
auxiliary facts, like GetBlki, plus the Horn clauses abstracting
system events and the activity life-cycle. We define the trans-
lation of a program P into Horn clauses, noted as (|P |), by
adding to R the translation of the individual statements of P .

F. Formal Results

The soundness of the analysis is proved by using represen-
tation functions [29]: we define a function βCnf mapping each
concrete configuration Ψ to a set of abstract configurations
over-approximating it. We then define a partial order <:
between abstract configurations, where ∆ <: ∆′ should be
interpreted as: ∆ is no coarser than ∆′. The soundness theorem
can be stated as follows; its proof can be found in [6].

Theorem 1 (Global Preservation) If Ψ ⇒∗ Ψ′ under a
given program P , then for any ∆1 ∈ βCnf(Ψ) and ∆2 :> ∆1

there exist ∆′1 ∈ βCnf(Ψ
′) and ∆′2 :> ∆′1 s.t. (|P |)∪∆2 ` ∆′2.

We now discuss how a sound static taint analysis can be
implemented on top of our formal result. First, we extend the
syntax of concrete values as follows:

Taint t ::= public | secret
Values u, v ::= primt | `

The set of taints is a two-valued lattice, and we use vt and tt

to denote respectively the standard ordering on taints (where
public vt secret) and their join. When performing unary and
binary operations, taints are propagated by having the taint of
the result be the join of the taints of the arguments.
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Bytecode Example:

1 .class public Leaky
2 .super Activity
3 .field st:Storage
4 .field st2:Storage

5 .method constructor <init>()
6 .1 local register
7 new r0 Storage
8 move r1.st r0
9 new r0 Storage

10 move r1.st2 r0
11 .end method

12 .method onRestart()
13 .1 local register
14 move r1.st2 r1.st
15 .end method

16 .method onResume()
17 .1 local register
18 invoke r1 getDeviceId()
19 move r0 r1.st2
20 move r0.s ret
21 .end method

22 .method onPause()
23 .2 local registers
24 move r0 r2.st
25 move r1 r0.s
26 move r0 "http://myapp.com/"
27 invoke r2 send() r1 r0
28 .end method

Generated Horn Clauses for Line 7:
• LState7(_; r0 7→ û, r1 7→ v̂; 7 7→ l̂1, 9 7→ l̂2; 7 7→ bb1, 9 7→ bb2) ∧ Reach(FS(7); 7 7→ l̂1, 9 7→ l̂2; 7 7→ bb′1, 9 7→ bb′2) =⇒

LiftHeap(7 7→ l̂1, 9 7→ l̂2; 7 7→ bb′1, 9 7→ bb′2) ∧ LState8(_; r0 7→ FS(7), r1 7→ lift(û; 7 7→ bb′1, 9 7→ bb′2);

7 7→ {|Storage;s 7→ ””|}, 9 7→ hlift(l̂2; 7 7→ bb′1, 9 7→ bb′2); 7 7→ bb1 t̂ bb′1, 9 7→ bb2 t̂ bb′2)

Generated Horn Clauses for Line 18:
• LState18((λ̂t, _); r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2; 7 7→ bb1, 9 7→ bb2)∧

GetBlk1(r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2; _; {|c′; _|}) ∧ c′ ≤ Leaky =⇒
LState0((λ̂t, v̂); r0 7→ v̂; 7 7→ l̂1, 9 7→ l̂2; 7 7→ 0, 9 7→ 0)

• LState18((λ̂t, _); r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2; 7 7→ bb1, 9 7→ bb2)∧
GetBlk1(r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2; _; {|c′; _|}) ∧ c′ ≤ Leaky∧
ResgetDeviceId((λ̂′t, v̂

′); û′res; 7 7→ l̂′1, 9 7→ l̂′2; 7 7→ bb′1, 9 7→ bb′2) ∧ λ̂t = λ̂′t ∧ v̂ u v̂′ 6v ⊥ =⇒
LState19((λ̂t, _); r0 7→ û, r1 7→ v̂,ret 7→ û′res; 7 7→ l̂′1, 9 7→ l̂′2; 7 7→ bb1 t̂ bb′1, 9 7→ bb2 t̂ bb′2)

Generated Horn Clauses for Line 20:
• LState20(_; r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2; 7 7→ bb1, 9 7→ bb2) =⇒ RHS20(ŵ)

• LState20(_; r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2; 7 7→ bb1, 9 7→ bb2)∧
RHS20(û′) ∧ GetBlk0(r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2;FS(7); {|Storage;s 7→ v̂′|}) =⇒

LState21(_; r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ {|Storage;s 7→ û′|}, 9 7→ l̂2; 7 7→ bb1, 9 7→ bb2)

• LState20(_; r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2; 7 7→ bb1, 9 7→ bb2)∧
RHS20(û′) ∧ GetBlk0(r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2;FS(9); {|Storage;s 7→ v̂′|}) =⇒

LState21(_; r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ {|Storage;s 7→ û′|}; 7 7→ bb1, 9 7→ bb2)

• LState20(_; r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2; 7 7→ bb1, 9 7→ bb2) ∧ RHS20(û′)∧
GetBlk0(r0 7→ û, r1 7→ v̂,ret 7→ ŵ; 7 7→ l̂1, 9 7→ l̂2;NFS(pp); {|Storage;s 7→ v̂′|}) ∧ Reach(û′; 7 7→ l̂1, 9 7→ l̂2; 7 7→ bb′1, 9 7→ bb′2) =⇒

LiftHeap(7 7→ l̂1, 9 7→ l̂2; 7 7→ bb′1, 9 7→ bb′2) ∧ H(pp, {|Storage;s 7→ û′|})∧
LState21(_; r0 7→ lift(û; 7 7→ bb′1, 9 7→ bb′2), r1 7→ lift(v̂; 7 7→ bb′1, 9 7→ bb′2),ret 7→ lift(ŵ; 7 7→ bb′1, 9 7→ bb′2);

7 7→ hlift(l̂1; 7 7→ bb′1, 9 7→ bb′2), 9 7→ hlift(l̂2; 7 7→ bb′1, 9 7→ bb′2); 7 7→ bb1 t̂ bb′1, 9 7→ bb2 t̂ bb′2)

TABLE XVI
EXAMPLE OF DALVIK BYTECODE AND EXCERPT OF THE CORRESPONDING HORN CLAUSES

Tstart = {T(λ, {|c; (f 7→ _)∗|}) ∧ c ≤ c′ ∧ c ≤ Thread =⇒
LStatec′,run,0((NFS(λ),NFS(λ)); (0̂k)k≤loc ,NFS(λ); (⊥)∗; 0∗) | c′ ∈ l̂ookup(run) ∧ sign(c′, run) = Thread loc−−→ Void}

AbState = {AStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlkexcpt(v̂
∗; ĥ; _; {|c′; _|}) ∧ c′ ≤ Throwable =⇒

LStatec,m,pc′ (_; v̂∗; ĥ; k̂) | ExcptTable(c,m, pc, c′) = pc′} ∪ (A)

{AStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlkexcpt(v̂
∗; ĥ; _; {|c′; _|}) ∧ c′ ≤ Throwable =⇒

Uncaughtc,m(_; v̂excpt; ĥ; k̂) | ExcptTable(c,m, pc, c′) = ⊥} (B)

TABLE XVII
GLOBAL RULES OF THE ABSTRACT SEMANTICS - EXCERPT

We then define a taint extraction function taintΨ: informally
it is a function that, given a value v, extracts its taint by doing
a recursive computation: if v is a primitive value, the function
just returns the taint of the value; if v is a location, the function
recursively computes the join of all the taints accessible from
v along the heap of Ψ.

We also define the abstract counter-part Taint of taintΨ:
the analysis fact Taint(v̂, ĥ, t̂) holds when v̂ has taint t̂ in the
abstract flow-sensitive heap ĥ. The rules defining Taint are
similar to the rules defining Reach, since both predicates need
to perform a recursive computation on the abstract heap. The

formal definitions underlying this intuitive description can be
found in the long version [6].

Finally, we assume two sets Sinks and Sources, where Sinks
(resp. Sources) contains a pair (c, m) if and only if a method
m of a class c is a sink (resp. a source). We assume that when
a source returns a value, it always has the secret taint.

Definition 2 A program P leaks starting from a configuration
Ψ if there exists (c,m) ∈ Sinks such that Ψ⇒∗ Ω·Ξ·H ·S and
there exists 〈`, s, π, γ, α〉 ∈ Ω or ⟪`, `′, π, γ, α⟫ ∈ Ξ such that
α = 〈c,m, 0 · u∗ · st∗ · R〉 :: α′, R(rk) = v and taintΨ(v) =
secret for some rk and v.
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We then state the soundness of our taint tracking analysis
in the following lemma: its proof is rather simple and can be
found in [6].

Lemma 1 If for all sinks (c,m) ∈ Sinks, ∆ ∈ βCnf(Ψ):

(|P |) ∪∆ ` LStatec,m,0(_; v̂∗; ĥ; k̂) ∧ Taint(v̂i, ĥ, secret)

is unsatisfiable for each i, then P does not leak from Ψ.

V. EXPERIMENTS

We implemented a prototype of our flow-sensitive analysis
as an extension of an existing taint tracker, HornDroid [7].
Our tool encodes the application to analyse as a set of Horn
clauses, as we detailed in the previous section, and then
uses the SMT solver Z3 [28] to statically detect information
leaks. More specifically, the tool automatically generates a
set of queries for the analysed application based on a public
database of Android sources and sinks [33]; if no query is
satisfiable according to Z3, no information leak may occur by
the soundness results of our analysis.

A. Testing on DroidBench

We tested our flow-sensitive extension of HornDroid (called
fsHornDroid) against DroidBench [3], a common benchmark
of 115 small applications proposed by the research commu-
nity to test information flow analysers for Android3. In our
experiments we compared with the most popular and advanced
static taint trackers for Android applications: FlowDroid [3],
AmanDroid [40], DroidSafe [15] and the original version
of HornDroid [7]. For all the tools, we computed standard
validity measures (sensitivity for soundness and specificity
for precision) and we tracked the analysis times on the 115
applications included in DroidBench: the experimental results
are summarised in Table XVIII.

Like the original version of HornDroid, fsHornDroid detects
all the information leaks in DroidBench, since its sensitivity
is 1. However, fsHornDroid turns out to be the most precise
static analysis tool to date, with a value of specificity which is
strictly higher than the one of all its competitors. In particular,
fsHornDroid produces only 4 false positives on DroidBench: a
leak inside an exception that is never thrown; a leak inside an
unregistered callback which cannot be triggered; a leak inside
an undeclared activity which cannot be started; and a leak of
a public element of a list which contains also a confidential
element. The last two cases should be easy to fix: the former by
parsing the application manifest and the latter by implementing
field-sensitivity for lists.

We also evaluated the analysis times of the applications in
DroidBench for the different tools. In terms of performances,
the original version of HornDroid is better than fsHornDroid
as expected. However, the performances of fsHornDroid are
satisfying: the median analysis time does not change too much
with respect to HornDroid, which is the fastest tool, while the
average analysis time is comparable with other flow-sensitive
analysers like FlowDroid and AmanDroid.

3We removed from DroidBench 4 applications testing implicit information
flows, since none of the available tools aims at supporting them.

B. Testing on Real Applications

In order to test the scalability of fsHornDroid, we picked the
top 4 applications from 16 categories in a publicly available
snapshot of the Google Play market [39]. For each application,
we run fsHornDroid setting a timeout of 3 hours for finding
the first information leak. In the end, we managed to get the
analysis results within the timeout for 62 applications, whose
average and median sizes were 7.4 Mb and 5 Mb respectively.
The tool reported 47 applications as leaky and found no
direct information leaks for 15 applications. Unfortunately, the
absence of a ground truth makes it hard to evaluate the validity
of the reported leaks, which we plan to manually investigate
in the future. To preliminarily assess the improvement in
precision due to flow-sensitivity, however, we sampled 3 of
the potentially leaky applications and we checked all their
possible information leaks. On these applications, fsHornDroid
eliminated 17 false positives with respect to HornDroid, which
amount to the 18% of all the checked flows.

In terms of performances, fsHornDroid spent 17 minutes
on average to perform the analysis, with a median analysis
time of 2 minutes on an Intel Xeon E5-4650L 2.60 GHz. The
constantly updated experimental evaluation is available online,
along with the web version of the tool and its sources [1].
Our results demonstrate that fsHornDroid scales to real ap-
plications, despite the increased performance overhead with
respect to the original HornDroid.

C. Limitations

Our implementation of fsHornDroid does not aim at solving
a few important limitations of HornDroid. First, a comprehen-
sive implementation of analysis stubs for unknown methods is
missing: this issue was thoroughly discussed by the authors of
DroidSafe [15] and we think their research may be very helpful
to improve on this. Moreover, the analysis does not capture
implicit information flows, but only direct information leaks,
and it does not cover native code, but only Dalvik bytecode.
Finally, the analysis has no way of being less conservative
on intended information flows: implementing declassification
mechanisms would be important to analyse real applications
without raising a high number of false alarms.

VI. RELATED WORK

There are several static information flow analysers for
Android applications (see, e.g., [41], [42], [27], [14], [22],
[3], [40], [15], [7]). We thoroughly compared with the current
state of the art in the rest of the paper, so we focus here on
other related works.

a) Sound Analysis of Android Applications: The first
paper proposing a formally sound static analysis of Android
applications is a seminal work by Chaudhuri [8]. The paper
presented a type-based analysis to reason on the data-flow
security properties of Android applications modeled in an
idealised calculus. A variant of the analysis was implemented
in a prototype tool, SCanDroid [13]. Unfortunately, SCanDroid
is in an early prototype phase and it cannot analyse the
applications in DroidBench [3].



14

Validity Measures on DroidBench:

FlowDroid AmanDroid DroidSafe HornDroid fsHornDroid
Sensitivity 0.67 0.74 0.92 1 1
Specificity 0.58 0.74 0.47 0.68 0.79
F-Measure 0.62 0.74 0.62 0.81 0.88

Sensitivity = tp/(tp+ fn) ∼ Soundness
Specificity = tn/(tn+ fp) ∼ Precision
F-Measure = 2 ∗ (sens ∗ spec)/(sens+ spec) ∼ Aggregate

Analysis Times on DroidBench:

FlowDroid AmanDroid DroidSafe HornDroid fsHornDroid
Average 22s 11s 2m92s 1s 14s

1st Quartile 13s 9s 2m38s 1s 1s
2nd Quartile 14s 10s 3m1s 1s 2s
3rd Quartile 15s 11s 3m26s 1s 5s

TABLE XVIII
VALIDITY MEASURES AND ANALYSIS TIMES ON DROIDBENCH

Sound type systems for Android applications have also been
proposed in [25] to prove non-interference and in [5] to prevent
privilege escalation attacks. In both cases, the considered
formal models are significantly less detailed than ours and
the purpose of the static analyses is different. Though the
framework in [25] can be used to prevent implicit information
flows, unlike our approach, the analysis proposed there is not
fully automatic, it does not approximate runtime value, thus
sacrificing precision, and it was not experimentally evaluated.

Julia is a static analysis tool based on abstract interpretation,
first developed for Java and recently extended to Android [30].
It is a commercial product and supports many useful features,
including class analysis, nullness analysis and termination
analysis for Android applications, but it does not track infor-
mation flows. Moreover, Julia does not handle multi-threading
and we are not aware of the existence of a soundness proof
for its extension to Android.

b) Pointer Analysis: Pointer analysis aims at over-
approximating the set of objects that a program variable can
refer to, and it is a well-established and rich research field [20],
[37], [36]. The most prominent techniques in pointer analysis
are variants of the classical Andersen algorithm [2], includ-
ing flow-insensitive analyses [10], [32], [17], [21] and flow-
sensitive analyses [9], [11], [19], [23]; light-weight analyses in
the flavor of the unification-based Steensgaard analysis [38],
which are flow-insensitive and very efficient; and shape anal-
ysis techniques [35], which can be used to prove complex
properties about the heap, often at the price of efficiency.

Although pointer analysis of sequential programs is well-
studied, much less attention has been paid to pointer analysis
of concurrent programs. Most flow-insensitive analyses for se-
quential programs remain sound for concurrent programs [34],
because flow-insensitivity forces a sound analysis to consider
all the possible interleavings of reads and writes to the heap.
Designing a sound flow-sensitive pointer analysis for concur-
rent programs is more complicated and most flow-sensitive
analyses for sequential programs cannot be easily adapted
to concurrent programs. Still, flow-sensitive sound analyses
for concurrent programs exist. The approach of Rugina and
Rinard [34] handles concurrent programs with an unbounded
number of threads, recursion and dynamic allocations, but it

does not allow strong updates on dynamically allocated heap
objects. Gotsman et al. [16] proposed a framework to prove
complex properties about programs with dynamic allocations
by using shape analysis and separation logic, but their ap-
proach requires users or external tools to provide annotations,
and it is restricted to a bounded number of threads.

VII. CONCLUSION

We presented the first static analysis for Android applica-
tions which is both flow-sensitive on the heap abstraction and
provably sound with respect to a rich formal model of the
Android ecosystem. Designing a sound yet precise analysis in
this setting is particularly challenging, due to the complexity
of the control flow of Android applications. In this work, we
adapted ideas from recency abstraction [4] to hit a sweet spot
in the analysis design space: our proposal is sound, precise,
and efficient in practice. We substantiated these claims by
implementing the analysis in HornDroid [7], a state-of-the-art
static information flow analyser for Android applications, and
by performing an experimental evaluation of our extension.
Our work takes HornDroid one step further towards the sound
information flow analysis of real Android applications.
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