
A Semantic Framework for the Security Analysis of
Ethereum smart contracts

Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind

TU Wien
{ilya.grishchenko,matteo.maffei,clara.schneidewind}@tuwien.ac.at

Abstract. Smart contracts are programs running on cryptocurrency (e.g., Ethe-
reum) blockchains, whose popularity stem from the possibility to perform finan-
cial transactions, such as payments and auctions, in a distributed environment
without need for any trusted third party. Given their financial nature, bugs or
vulnerabilities in these programs may lead to catastrophic consequences, as wit-
nessed by recent attacks. Unfortunately, programming smart contracts is a del-
icate task that requires strong expertise: Ethereum smart contracts are written
in Solidity, a dedicated language resembling JavaScript, and shipped over the
blockchain in the EVM bytecode format. In order to rigorously verify the secu-
rity of smart contracts, it is of paramount importance to formalize their semantics
as well as the security properties of interest, in particular at the level of the byte-
code being executed.
In this paper, we present the first complete small-step semantics of EVM byte-
code, which we formalize in the F* proof assistant, obtaining executable code
that we successfully validate against the official Ethereum test suite. Furthermore,
we formally define for the first time a number of central security properties for
smart contracts, such as call integrity, atomicity, and independence from miner
controlled parameters. This formalization relies on a combination of hyper- and
safety properties. Along this work, we identified various mistakes and impreci-
sions in existing semantics and verification tools for Ethereum smart contracts,
thereby demonstrating once more the importance of rigorous semantic founda-
tions for the design of security verification techniques.

1 Introduction

One of the determining factors for the growing interest in blockchain technologies is the
groundbreaking promise of secure distributed computations even in absence of trusted
third parties. Building on a distributed ledger that keeps track of previous transactions
and the state of each account, whose functionality and security is ensured by a deli-
cate combination of incentives and cryptography, software developers can implement
sophisticated distributed, transactions-based computations by leveraging the scripting
language offered by the underlying cryptocurrency. While many of these cryptocurren-
cies have an intentionally limited scripting language (e.g., Bitcoin [1]), Ethereum was
designed from the ground up with a quasi Turing-complete language1. Ethereum pro-

1 While the language itself is Turing complete, computations are associated with a bounded
computational budget (called gas), which gets consumed by each instruction thereby enforcing
termination.

grams, called smart contracts, have thus found a variety of appealing use cases, such as
financial contracts [2], auctions [3], elections [4], data management systems [5], trad-
ing platforms [6,7], permission management [8] and verifiable cloud computing [9],
just to mention a few. Given their financial nature, bugs and vulnerabilities in smart
contracts may lead to catastrophic consequences. For instance, the infamous DAO vul-
nerability [10] recently led to a 60M$ financial loss and similar vulnerabilities occur on
a regular basis [11,12]. Furthermore, many smart contracts in the wild are intentionally
fraudulent, as highlighted in a recent survey [13].

A rigorous security analysis of smart contracts is thus crucial for the trust of the so-
ciety in blockchain technologies and their widespread deployment. Unfortunately, this
task is a quite challenging for various reasons. First, Ethereum smart contracts are de-
veloped in an ad-hoc language, called Solidity, which resembles JavaScript but features
specific transaction-oriented mechanisms and a number of non-standard semantic be-
haviours, as further described in this paper. Second, smart contracts are uploaded on the
blockchain in the form of Ethereum Virtual Machine (EVM) bytecode, a stack-based
low-level code featuring dynamic code creation and invocation and, in general, very
little static information, which makes it extremely difficult to analyze.

Related Work Recognizing the importance of solid semantic foundations for smart
contracts, the Ethereum foundation published a yellow paper [14] to describe the in-
tended behaviour of smart contracts. This semantics, however, exhibits several under-
specifications and does not follow any standard approach for the specification of pro-
gram semantics, thereby hindering program verification. In order to provide a more
precise characterization, Hirai formalizes the EVM semantics in the proof assistant Is-
abelle/HOL and uses it for manually proving safety properties for concrete programs [15].
This semantics, however, constitutes just a sound over-approximation of the original se-
mantics [14]. More specifically, once a contract performs a call that is not a self-call, it
is assumed that arbitrary code gets executed and consequently arbitrary changes to the
account’s state and to the global state can be performed. Consequently, this semantics
can not serve as a general-purpose basis for static analysis techniques that might not
rely on the same over-approximation.

In a concurrent, unpublished work, Hildebrandt et al. [16] define the EVM seman-
tics in the K framework [17] – a language independent verification framework based on
reachability logics. The authors leverage the power of the K framework in order to au-
tomatically derive analysis tools for the specified semantics, presenting as an example
a gas analysis tool, a semantic debugger, and a program verifier based on reachabil-
ity logics. The underlying semantics relies on non-standard local rewriting rules on the
system configuration. Since parts of the execution are treated in separation such as the
exception behavior and the gas calculations, one small-step consists of several rewrit-
ing steps, which makes this semantics harder to use as a basis for new static analysis
techniques. This is relevant whenever the static analysis tools derivable by the K frame-
work are not sufficient for the desired purposes: for instance, their analysis requires the
user to manually specify loop invariants, which is hardly doable for EVM bytecode and
clearly does not scale to large programs. Furthermore, all these works concentrate on
the semantics of EVM bytecode but do not study security properties for smart contracts.

Sergey et al. [18] compare smart contracts on the blockchain with concurrent ob-
jects using shared memory and use this analogy to explain typical problems that arise
when programming smart contracts in terms of concepts known from concurrency the-
ory. They encourage the application of state-of-the art verification techniques for con-
current programs to smart contracts, but do not describe any specific analysis method
applied to smart contracts themselves. Mavridou et al. [19] define a high-level seman-
tics for smart contracts that is based on finite state machines and aims at simplifying
the development of smart contracts. They provide a translation of their state machine
specification language to Solidity, a higher-order language for writing Ethereum smart
contracts, and present design patterns that should help users to improve the security of
their contracts. The translation to Solidity is not backed up by a correctness proof and
the design patterns are not claimed to provide any security guarantees.

Bhargavan et al. [20] introduce a framework to analyze Ethereum contracts by trans-
lation into F*, a functional programming language aimed at program verification and
equipped with an interactive proof assistant. The translation supports only a fragment
of the EVM bytecode and does not come with a justifying semantic argument.

Luu et al. have recently presented Oyente [21], a state-of-the-art static analysis tool
for EVM bytecode that relies on symbolic execution. Oyente comes with a semantics of
a simplified fragment of the EVM bytecode and, in particular, misses several important
commands related to contract calls and contract creation. Furthermore, it is affected by
a major bug related to calls as well as several other minor ones which we discovered
while formalizing our semantics, which is inspired by theirs. Oyente supports a variety
of security properties, such as transaction order dependency, timestamp dependency,
and reentrancy, but the security definitions are rather syntactic and described informally.
As we show in this paper, the lack of solid semantic foundations causes several sources
of unsoundness in Oyente.

Our Contributions This work lays the semantic foundations for Ethereum smart con-
tracts. Specifically, we introduce

– The first complete small-step semantics for EVM bytecode;
– A formalization in F* of a large fragment of our semantics, which can serve as a

foundation for verification techniques based on encoding into this language [20]
as well as machine-checked proofs for other analysis techniques (e.g., [21]). By
compiling F* in OCaml, we could successfully validate our semantics against the
official Ethereum test suite;

– The first formal definitions of crucial security properties for smart contracts, such
as call integrity, for which we devise a dedicated proof technique, atomicity, and
independence from miner controlled parameters. Interestingly enough, the formal-
ization of these properties requires hyper-properties, while existing static analysis
techniques for smart contracts rely on reachability properties and syntactic condi-
tions;

– A collection of examples showing how the syntactic conditions employed in current
analysis techniques are imprecise and, in several cases, unsound, thereby further
motivating the need for solid semantic foundations and rigorous security definitions
for smart contracts.

The complete semantics as well as the formalization in F* are publicly available [22].

Outline The remainder of this paper is organized as follows. § 2 briefly overviews the
Ethereum architecture, § 3 introduces the Ethereum semantics and our formalization in
F*, § 4 formally defines various security properties for Ethereum smart contracts, and
§ 5 concludes highlighting interesting research directions.

2 Background on Ethereum

Ethereum Ethereum is a cryptographic currency system built on top of a blockchain.
Similar to Bitcoin, network participants publish transactions to the network that are
then grouped into blocks by distinct nodes (the so called miners) and appended to the
blockchain using a proof of work (PoW) consensus mechanism. The state of the system
– that we will also refer to as global state – consists of the state of the different accounts
populating it. An account can either be an external account (belonging to a user of the
system) that carries information on its current balance or it can be a contract account that
additionally obtains persistent storage and the contract’s code. The account’s balances
are given in the subunit wei of the virtual currency Ether.2

Transactions can alter the state of the system by either creating new contract ac-
counts or by calling an existing account. Calls to external accounts can only transfer
Ether to this account, but calls to contract accounts additionally execute the code asso-
ciated to the contract. The contract execution might alter the storage of the account or
might again perform transactions – in this case we talk about internal transactions.

The execution model underlying the execution of contract code is described by a
virtual state machine, the Ethereum Virtual Machine (EVM). This is quasi Turing com-
plete as the otherwise Turing complete execution is restricted by the upfront defined
resource gas that effectively limits the number of execution steps. The originator of the
transaction can specify the maximal gas that should be spent for the contract execution
and also determines the gas prize (the amount of wei to pay for a unit of gas). Upfront,
the originator pays for the gas limit according to the gas prize and in case of successful
contract execution that did not spend the whole amount of gas dedicated to it, the orig-
inator gets reimbursed with gas that is left. The remaining wei paid for the used gas are
given as a fee to a beneficiary address specified by the miner.

EVM Bytecode The code of contracts is written in EVM bytecode – an Assembler
like bytecode language. As the core of the EVM is a stack-based machine, the set of
instructions in EVM bytecode consists mainly of standard instructions for stack oper-
ations, arithmetics, jumps and local memory access. The classical set of instructions
is enriched with an opcode for the SHA3 hash and several opcodes for accessing the
environment that the contract was called in. In addition, there are opcodes for access-
ing and modifying the storage of the account currently running the code and distinct
opcodes for performing internal call and create transactions. Another instruction partic-
ular to the blockchain setting is the SELFDESTRUCT code that deletes the currently
executed contract - but only after the successful execution of the external transaction.

2 One Ether is equivalent to 1018 wei.

Gas and Exceptions The execution of each instruction consumes a positive amount of
gas. There is a gas limit set by the sender of the transaction. Exceeding the gas limit
results in an exception that reverts the effects of the current transaction on the global
state. In the case of nested transactions, the occurrence of an exception only reverts its
own effects, but not those of the calling transaction. Instead, the failure of an internal
transaction is only indicated by writing zero to the caller’s stack.

Solidity In practice, most Ethereum smart contracts are not written in EVM bytecode
directly, but in the high-level language Solidity which is developed by the Ethereum
Foundation [23]. For understanding the typical problems that arise when writing smart
contracts, it is important to consider the design of this high-level language.

Solidity is a so called “contract-oriented” programming language that uses the con-
cept of class from object-oriented languages for the representation of contracts. Similar
to classes in object-oriented programming, contracts specify fields and methods for
contract instances. Fields can be seen as persistent storage of a contract (instance) and
contract methods can by default be invoked by any internal or external transaction. For
interacting with another contract one either needs to create a new instance of this con-
tract (in which case a new contract account with the functionality described in the con-
tract class is created) or one can directly make transactions to a known contract address
holding a contract of the required shape. The syntax of Solidity resembles JavaScript,
enriched with additional primitives accounting for the distributed setting of Ethereum.
In particular, Solidity provides primitives for accessing the transaction and the block in-
formation, like msg.sender for accessing the address of the account invoking the method
or msg.value for accessing the amount of wei transferred by the transaction that invoked
the method.

Solidity shows some particularities when it comes to transferring money to another
contract especially using the provided low level functions send and call. A value trans-
fer initiated using these functions is finally translated to an internal call transaction
which implies that calling a contract might also execute code and in particular it can
fail because the available gas is not sufficient for executing the code. In addition – as in
the EVM – these kinds of calls do not enable exception propagation, so that the caller
manually needs to checks for the return result. Another special feature of Solidity is
that it allows for defining so called fallback functions for contracts that get executed
when a call via the send function was performed or (using the call function) an address
is called that however does not properly specifies the concrete function of the contract
to be called.

3 Small-Step Semantics

We introduce a small-step semantics covering the full EVM bytecode, inspired by the
one presented by Luu et al. [21], which we substantially revise in order to handle the
missing instructions, in particular contract calls and call creation. In addition, while
formalizing our semantics, we found a major flaw related to calls and several minor
ones (cf. § 3.7), which we fixed and reported to the authors. Due to space constraints,

we refer the interested reader to Appendix A and Appendix B for a formal account of
the semantic rules and present below the most significant ones.

3.1 Preliminaries

In the following, we will use B to denote the set {0, 1} of bits and accordingly Bx for
sets of bitstrings of size x. We further let Nx denote the set of non-negative integers
representable by x bits and allow for implicit conversion between those two represen-
tations. In addition, we will use the notation [X] (resp. L(X)) for arrays (resp. lists) of
elements from the set X . We use standard notations for operations on arrays and lists.

3.2 Global state

As mentioned before, the global state is a (partial) mapping from account addresses
(that are bitstrings of size 160) to accounts. In the case that an account does not exist,
we assume it to map to ⊥. Accounts, irrespectively of their type, are tuples of the form
(n, b, stor, code), with n ∈ N256 being the account’s nonce that is incremented with
every other account that the account creates, b ∈ N256 being the account’s balance in
wei, stor ∈ B256 → B256 being the accounts persistent storage that is represented as a
mapping from 256-bit words to 256-bit words and finally code ∈ [B8] being the contract
that is an array of bytes. In contrast to contract accounts, external accounts have the
empty bytearray as code. As only the execution of code in the context of the account
can access and modify the account’s storage, the fact that formally external accounts
have persistent storage does not have any effect. In the following, we will denote the set
of addresses withA and the set of global states with Σ and we will assume that σ ∈ Σ.

3.3 Small-Step Relation

In order to define the small-step semantics, we give a small-step relation Γ � S → S′

that specifies how a call stack S ∈ S representing the state of the execution evolves
within one step under the transaction environment Γ ∈ Tenv.

In Figure 1 we give a full grammar for call stacks and transaction environments:

Transaction Environments The transaction environment represents the static infor-
mation of the block that the transaction is executed in and the immutable parameters
given to the transaction as the gas prize or the gas limit. More specifically, the transac-
tion environment Γ ∈ Tenv = A × N256 × H is a tuple of the form (o, prize, H) with
o ∈ A being the address of the account that made the transaction, prize ∈ N256 denot-
ing amount of wei that needs to paid for a unit of gas in this transaction and H ∈ H
being the header of the block that the transaction is part of. We do not specify the format
of block headers here, but just assume a setH of block headers.

Call stacks S 3 S := EXC :: Splain | HALT(σ, d, g, η) :: Splain | Splain

Plain call stacks Splain 3 Splain := (µ, ι, σ, η) :: Splain

Machine states M 3 µ := (gas, pc,m, i, s)
Execution environments I 3 ι := (actor, input, sender, value, code)

Global states Σ 3 σ
Account states A 3 acc := (n, b, code, stor) | ⊥

Transaction effects N 3 η := (b, L, S†)
Transaction environments Tenv 3 Γ := (o, prize, H)

Notations: d ∈ [B8], g ∈ N256, η ∈ N, o ∈ A, prize ∈ N256, H ∈ H
gas ∈ N256, pc ∈ N256, m ∈ B256,→ B8 i ∈ N256, s ∈ L(B256)

sender ∈ A input ∈ [B8] sender ∈ A value ∈ N256 code ∈ [B8]
b ∈ N256 L ∈ L(Evlog) S† ⊆ A Σ = A → A

Fig. 1: Grammar for call stacks and transaction environments

Callstacks A call stack S is a stack of execution states which represents the state of
the execution within one internal transaction. We give a formal definition of the set of
possible callstacks S as follows:

S := {EXC :: Splain, HALT(σ, gas, d, η) :: Splain, Splain

| σ ∈ Σ, gas ∈ N, d ∈ [B8], η ∈ N ,Splain ∈ L(M × I ×Σ ×N)}

Syntactically, a call stack is a stack of regular execution states of the form (µ, ι, σ, η)
that can optionally be topped with a halting state HALT(σ, gas, d, η) or an exception
state EXC. We summarize these three types of states as execution states S. Semanti-
cally, halting states indicate regular halting of an internal transaction, exception states
indicate exceptional halting, and regular execution states describe the state of internal
transactions in progress. Halting and exception states can only occur as top elements
of the call stack as they represent terminated internal transactions. Exception states of
the form EXC do not carry any information as in the case of an exception all effects of
the terminated internal transaction are reverted and the caller state therefore stays unaf-
fected, except for the gas. Halting states instead are of the form HALT(σ, gas, d, η)
specifying the global state σ the execution halted in, the gas gas ∈ N256 remain-
ing from the execution, the return data d ∈ [B8] and the additional transaction ef-
fects η ∈ N of the internal transaction. The additional transaction effects carry in-
formation that are accumulated during execution, but do not influence the small-step
execution itself. Formally, the additional transaction effects are a triple of the form
(b, L, S†) ∈ N = N256 × L(Evlog) × P(A) with b ∈ N256 being the refund balance
that is increased by account storage operations and will finally be paid to the transac-
tion’s beneficiary, L ∈ L(Evlog) being the sequence of log events that the bytecode
execution invoked during execution and S† ⊆ A being the so called suicide set – the
set of account addresses that executed the SELFDESTRUCT command and therefore
registered their account for deletion. The information held by the halting state is carried
over to the calling state.

The state of a non-terminated internal transaction is described by a regular execution
state of the form (µ, ι, σ, η). The state is determined by the current global state σ of the
system as well as the execution environment ι ∈ I that specifies the parameters of the
current transaction (including inputs and the code to be executed), the local state µ ∈M
of the stack machine, and the transaction effects η ∈ N collected during execution so
far.

Execution Environment The execution environment ι of an internal transaction spec-
ifies the static parameters of the transaction. It is a tuple of the form (actor, input,
sender, value, code) ∈ I = A × [B8] × A × N256 × [B8] with the following com-
ponents:

– actor ∈ A is the address of the account currently executing;
– input ∈ [B8] is the data given as an input to the internal transaction;
– sender ∈ A is the address of the account that initiated the internal transaction;
– value ∈ N256 is the value transferred by the internal transaction;
– code ∈ [B8] is the code currently executed.

This information is determined at the beginning of an internal transaction execution and
it can be accessed, but not altered during the execution.

Machine State The local machine state µ represents the state of the underlying state
machine used for execution and is a tuple of the form (gas, pc,m, i, s) where

– gas ∈ N256 is the current amount of gas still available for execution;
– pc ∈ N256 is the current program counter;
– m ∈ B256 → B8 is a mapping from 256-bit words to bytes that represents the local

memory;
– i ∈ N256 is the current number of active words in memory;
– s ∈ L(B256) is the local 256-bit word stack of the stack machine.

The execution of each internal transaction starts in a fresh machine state, with an empty
stack, memory initialized to all zeros, and program counter and active words in memory
set to zero. Only the gas is instantiated with the gas value available for the execution.

3.4 Small-Step Rules

In the following, we will present a selection of interesting small-step rules in order to
illustrate the most important features of the semantics.

For demonstrating the overall design of the semantics, we start with the example
of the arithmetic expression ADD performing addition of two values on the machine
stack. Note that as the word size of the stack machine is 256, all arithmetic operations
are performed modulo 2256.

ι.code [µ.pc] = ADD
µ.s = a :: b :: s µ.gas ≥ 3 µ′ = µ[s→ (a+ b) :: s][pc += 1][gas −= 3]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ι.code [µ.pc] = ADD (|µ.s| < 2 ∨ µ.gas < 3)

Γ � (µ, ι, σ, η) :: S → EXC :: S

We use a dot notation, in order to access components of the different state parameters.
We name the components with the variable names introduced for these components in
the last section written in sans-serif-style. In addition, we use the usual notation for
updating components: t[c→ v] denotes that the component c of tuple t is updated with
value v. For expressing incremental updates in a simpler way, we additionally use the
notation t[c += v] to denote that the (numerical) component of c is incremented by v
and similarly t[c −= v] for decrementing a component c of t.

The execution of the arithmetic instruction ADD only performs local changes in
the machine state affecting the local stack, the program counter, and the gas budget. For
deciding upon the correct instruction to execute, the currently executed code (that is part
of the execution environment) is accessed at the position of the current program counter.
The cost of an ADD instruction is constantly three units of gas that get subtracted from
the gas budget in the machine state. As every other instruction, ADD can fail due to
lacking gas or due to underflows on the machine stack. In this case, the exception state
is entered and the execution of the current internal transaction is terminated. For better
readability, we use here the slightly sloppy ∨ notation for combining the two error cases
in one inference rule.

A more interesting example of a semantic rule is the one of the CALL instruction
that initiates an internal call transaction. In the case of calling, several corner cases need
to be treated which results in several inference rules for this case. Here, we only present
one rule for illustrating the main functionality. More precisely, we present the case in
that the account that should be called exists, the call stack limit of 1024 is not reached
yet, and the account initiating the transaction has a sufficiently large balance for sending
the specified amount of wei to the called account.

ι.code [µ.pc] = CALL µ.s = g :: to :: va :: io :: is :: oo :: os :: s
σ(to) 6= ⊥ |A|+ 1 < 1024 σ(ι.actor).b ≥ va aw =M (M (µ.i, io, is), oo, os)

ccall = Cgascap (va, 1, g, µ.gas) c = Cbase (va, 1) + Cmem (µ.i, aw) + ccall

µ.gas ≥ c σ′ = σ
〈
to→ σ(to)[b += va]

〉〈
ι.actor→ σ(ι.actor)[b −= va]

〉
d = µ.m [io, io + is− 1] µ′ = (ccall, 0, λx. 0, 0, ε)

ι′ = ι[sender→ ι.actor][actor→ to][value→ va][input→ d][code→ σ(to).code]
Γ � (µ, ι, σ, η) :: S → (µ′, ι′, σ′, η) :: (µ, ι, σ, η) :: S

For performing a call, the parameters to this call need to be specified on the machine
stack. These are the amount of gas g that should be given as budget to the call, the recip-
ient to of the call and the amount va of wei to be transferred with the call. In addition,
the caller needs to specify the input data that should be given to the transaction and the
place in memory where the return data of the call should be written after successful ex-
ecution. To this end, the remaining arguments specify the offset and size of the memory
fragment that input data should be read from (determined by io and is) and return data
should be written to (determined by oo and os).

Calculating the cost in terms of gas for the execution is quite complicated in the
case of CALL as it is influenced by several factors including the arguments given to the
call and the current machine state. First of all, the gas that should be given to the call
(here denoted by ccall) needs to be determined. This value is not necessarily equal to
the value g specified on the stack, but also depends on the value va transferred by the
call and the currently available gas. In addition, as the memory needs to be accessed

for reading the input value and writing the return value, the number of active words in
memory might be increased. This effect is captured by the memory extension function
M . As accessing additional words in memory costs gas, this cost needs to be taken into
account in the overall cost. The costs resulting from an increase in the number of active
words is calculated by the function Cmem. Finally, there is also a base cost charged for
the call that depends on the value va. As the cost also depends on the specific case
for calling that is considered, the cost calculation functions receive a flag (here 1) as
arguments. These technical details are spelled out in Appendix B.

The call itself then has several effects: First, it transfers the balance from the exe-
cuting state (actor in the execution environment) to the recipient (to). To this end, the
global state is updated. Here we use a special notation for the functional update on the
global state using 〈〉 instead of []. Second, for initializing the execution of the initiated
internal transaction, a new regular execution state is placed on top of the execution
stack. The internal transaction starts in a fresh machine state at program counter zero.
This means that the initial memory is initialized to all zeros and consequently the num-
ber of active words in memory is zero as well and additionally the initial stack is empty.
The gas budget given to the internal transaction is ccall calculated before. The transac-
tion environment of the new call records the call parameters. This includes the sender
that is the currently executing account actor, the new active account that is now the
called account to as well as the value va sent and the input data given to the call. To this
end the input data is extracted from the memory using the offset io and the size is. We
use an interval notation here to denote that a part of the memory is extracted. Finally,
the code in the execution environment of the new internal transaction is the code of the
called account.

Note that the execution state of the caller stays completely unaffected at this stage
of the execution. This is a conscious design decision in order to simplify the expression
of security properties and to make the semantics more suitable to abstractions.

Besides CALL there are two different instructions for initiating internal call transac-
tions that implement slight variations of the simple CALL instruction. These variations
are called CALLCODE and DELEGATECALL, which both allow for executing an-
other’s account code in the context of the caller. The difference is that in the case of
CALLCODE a new internal transaction is started and the currently executed account
is registered as the sender of this transaction while in the case of DELEGATECALL
an existing call is really forwarded in the sense that the sender and the value of the
initiating transaction are propagated to the new internal transaction.

Analogously to the instructions for initiating internal call transactions, there is also
one instruction CREATE that allows for the creation of a new account. The semantics
of this instruction is similar to the one of CALL, with the exception that a fresh account
is created, which gets the specified transferred value, and that the input provided to this
internal transaction, which is again specified in the local memory, is interpreted as the
initialization code to be executed in order to produce the newly created account’s code
as output. In contrast to the call transaction, a create transaction does not await a return
value, but only an indication of success or failure.

For discussing how to return from an internal transaction, we show the rule for
returning from a successful internal call transaction.

ι.code [µ.pc] = CALL µ.s = g :: to :: va :: io :: is :: oo :: os :: s
flag = σ(to) = ⊥ ? 0 : 1 aw =M (M (µ.i, io, is), oo, os)

ccall = Cgascap (va, flag, g, µ.gas) c = Cbase (va, flag) + Cmem (µ.i, aw) + ccall

µ′ = µ[i→ aw][s→ 1 :: s][pc += 1][gas += gas− c][m→ µ.m[[oo, oo + s− 1]→ d]]

Γ � HALT(σ′, gas, d, η′) :: (µ, ι, σ, η) :: S → (µ′, ι, σ′, η′) :: S

Leaving the caller state unchanged at the point of calling has the negative side effect
that the cost calculation needs to be redone at this point in order to determine the new
gas value of the caller state. But besides this, the rule is straightforward: the program
counter is incremented as usual and the number of active words in memory is adjusted
as memory accesses for reading the input and return data have been made. The gas
is decreased, meaning that the overall amount of gas c allocated for the execution is
subtracted. However, as this cost already includes the gas budget given to the internal
transaction, the gas gas that is left after the execution is refunded again. In addition,
the return data d is written to the local memory of the caller at the place specified by
oo and os. Finally, the value one is written to the caller’s stack in order to indicate the
success of the internal call transaction. As the execution was successful, as indicated by
the halting state, the global state and the transaction effects of the callee are adopted by
the caller.

EVM bytecode offers several instructions for explicitly halting (internal) transac-
tion execution. Besides the standard instructions STOP and RETURN, there is the
SELFDESTRUCT instruction that is very particular to the blockchain setting. The
STOP instruction causes regular halting of the internal transaction without returning
data to the caller. In contrast, the RETURN instruction allows one to specify the mem-
ory fragment containing the return data that will be handed to the caller.

Finally, the SELFDESTRUCT instruction halts the execution and lists the currently
execution account for later deletion. More precisely, this means that this account will
be deleted when finalizing the external transaction, but its behavior during the ongo-
ing small-step execution is not affected. Additionally, the whole balance of the deleted
account is transferred to some beneficiary specified on the machine stack.

We show the small-step rules depicting the main functionality of SELFDESTRUCT.
As for CALL, capturing the whole functionality of SELFDESTRUCT would require
to consider several corner cases. Here we consider the case where the beneficiary exists,
the stack does not underflow and the available amount of gas is sufficient.

ωµ,ι = SELFDESTRUCT µ.s = aben :: s

a = aben mod 2160 σ(a) 6= ⊥ µ.gas ≥ 5000 g = µ.gas− 5000
σ′ = σ

〈
ι.actor→ σ(ι.actor)[balance→ 0]

〉〈
a→ σ(a)[balance += σ.(ι.actor).balance]

〉
r = (ι.actor ∈ Γ.S†) ? 0 : 24000 η′ = η[S† → η.S† ∪ {ι.actor}][balance += r]

Γ � (µ, ι, σ, η) :: S → HALT(σ′, g, ε, η′) :: S

The SELFDESTRUCT command takes one argument aben from the stack spec-
ifying the address of the beneficiary that should get the balance of the account that

is destructed. If all preconditions are satisfied, the balance of the executing account
(ι.actor) is transferred to the beneficiary address and the current internal transaction
execution enters a halting state. Additionally, the transaction effects are extended by
adding ι.actor to the suicide set and by possibly increasing the refund balance. The re-
fund balance is only increased in case that ι.actor is not already scheduled for deletion.
The halting state captures the global state σ after the money transfer, the remaining gas
g after executing the SELFDESTRUCT and the updated transaction effects η′. As no
return data is handed to the caller, the empty bytearray ε is specified as return data in
the halting state.

Note that SELFDESTRUCT deletes the currently executing account ι.actor which
is not necessarily the same account as the one owning the code ι.code. This might be
due a previous execution of DELEGATECALL or CALLCODE.

3.5 Transaction Execution

The outcome of an external transaction execution does not only consist of the result of
the EVM bytecode execution. Before executing the bytecode, the transaction environ-
ment and the execution environment are determined from the transaction information
and the block header. In the following we assume T to denote the set of transactions. An
(external) transaction T ∈ T , similar to the internal transactions, specifies a gas limit,
a recipient and a value to be transferred. In addition, it also contains the originator and
the gas prize that will be recorded in the transaction environment. Finally, it specifies
an input to the transaction and the transaction type that can either be a call or a create
transaction. The transaction type determines whether the input will be interpreted as in-
put data to a call transaction or as initialization code for a create transaction. In addition
to the transaction of the environment initialization, some initial changes on the global
state and validity checks are performed. For the sake of presentation we assume in the
following a function initialize (·, ·, ·) ∈ T × H × Σ → (Tenv × S) ∪ {⊥} performing
the initialization phase and returning a transaction environment and initial execution
state in the case of a valid transaction and⊥ otherwise. Similarly, we assume a function
finalize (·, ·, ·) ∈ T × S ×N ×Σ that given the final global state of the execution, the
accumulated transaction effects and the transaction, computes the final effects on the
global state. These include for example the deletion of the contracts from the suicide
set and the payout to the beneficiary of the transaction.

Formally we can define the execution of a transaction T ∈ T in a block with header
H ∈ H as follows:

(Γ, s) = initialize (T,H, σ)
Γ � s :: ε →∗ s′ :: ε final (s′) σ′ = finalize (s′, η′, T)

σ
T,H−−−→ σ′

where→∗ denotes the reflexive and transitive closure of the small-step relation and the
predicate final (·) characterizes a state that cannot be further reduced using the small-
step relation.

3.6 Formalization in F*

We provide a formalization of a large fragment of our small-step semantics in the proof
assistant F* [24]. At the time of writing, we are formalizing the remaining part, which
only consists of straightforward local operations, such as bitwise operators and opcodes
to write code to (resp. read code from) the memory. F* is an ML-dialect that is op-
timized for program verification and allows for performing manual proofs as well as
automated proofs leveraging the power of SMT solvers.

Our formalization strictly follows the small-step semantics as presented in this pa-
per. The core functionality is implemented by the function step that describes how an
execution stack evolves within one execution state. To this end it has two possible out-
comes: either it performs an execution step and returns the new callstack or – in the case
that a final configuration is reached (which is a stack containing only one element that
is either a halting or an exception state) – it reports the final state. In order to provide
a total function for the step relation, we needed to introduce a third execution outcome
that signalizes that a problem occurred due to an inconsistent state. When running the
semantics from a valid initial configuration this result, however, should never be pro-
duced. For running the semantics, the function execution is defined that subsequently
performs execution steps using step until reaching the final state and reports it.

The current implementation encompasses approximately thousand lines of code.
Since F* code can be compiled into OCaml, we validate our semantics against the
official EVM test suite [25]. Our semantics passes 304 out of 624 tests, failing only in
those involving any of the missing functionalities.

We make the formalization in F* publicly available [22] in order to facilitate the
design of static analysis techniques for EVM bytecode as well as their soundness proofs.

3.7 Comparison with the Semantics by Luu et al. [21]

The small-step semantics defined by Luu et al. [21] encompasses only a variation of
a subset of EVM bytecode instructions (called EtherLite) and assumes a heavily sim-
plified execution configuration. The instructions covered span simple stack operations
for pushing and popping values, conditional branches, binary operations, instructions
for accessing and altering local memory and account storage, as well as as the ones
for calling, returning and destructing the account. Essential instructions as CREATE
and those for accessing the transaction and block information are omitted. The authors
represent a configuration as a tuple of a call stack of activation records and the global
state. An activation record contains the code to be executed, the program counter, the
local memory and the machine stack. The global state is modelled as mapping from
addresses to accounts, with the latter consisting of code, balance and persistent storage.

The overall abstraction contains a conceptual flaw, as not including the global state
in the activation records of the call stack does not allow for modelling that, in the case
of an exception in the execution of the callee, the global state is rolled back to the one
of the caller at the point of calling. In addition, the model cannot be easily extended
with further instructions – such as further call instructions or instructions accessing
the environment – without major changes in the abstraction as a lot of information,
e.g., the one captured in our small-step semantics in the transaction and the execution
environment, are missing.

4 Security Definitions

In the following, we introduce the semantic characterization of the most significant
security properties for smart contracts, motivating them with typical vulnerabilities re-
curring in the wild.

For selecting those properties, we inspected the classification of bugs performed
in [21] and [13]. To our knowledge, these are the only works published so far that aim
at systematically summarizing bugs in Ethereum smart contracts.

For the presented bugs, we synthesized the semantic security properties that were
violated. In this process we realized that some bugs share the same underlying property
violation and that other bugs can not be captured by such generic properties – either
because they are of a purely syntactic nature or because they constitute a derivation
from a desired behavior that is particular to a specific contract.

Preliminary Notations Formally, we represent a contract as a tuple of the form (a, code)
where a ∈ A denotes the address of the contract and code ∈ [B] denotes the contract’s
code. We denote the set of contracts by C and assume functions address (·) and code (·)
that extract the contract address and code respectively.

As we will argue about contracts being called in an arbitrary setting, we additionally
introduce the notion of reachable configuration. Intuitively, a pair (Γ, S) of a transac-
tion environment Γ and a call stack S is reachable if there exists a state s such that S, s
are the result of initialize (T , H , σ), for some transaction T , block header H , a global
state σ, and S is reachable from s.

Definition 1 (Reachable Configuration). The pair (Γ,A) ∈ Tenv × S is a reachable
configuration if for some transaction T ∈ T , some block header H ∈ H and some
global state σ ∈ A → A of the blockchain it holds that

(Γ, s) = initialize (T,H, σ) ∧ Γ � s :: ε →∗ S

In order to give concise security definitions, we further introduce, and assume through-
out the paper, an annotation to the small step semantics in order to highlight the contract
c that is currently executed. In the case of initialization code being executed, we use ⊥.
Specifically, we let

Sn := {EXCc :: Splain, HALT(σ, gas, η, d)c :: Splain, Splain

| σ ∈ Σ, gas ∈ N, d ∈ [B8], η ∈ N, Splain ∈ L((M × I ×Σ ×N)× C)}

where c ∈ C ∪ {⊥} = C⊥.
Next, we introduce the notion of execution trace for smart contract execution. In-

tuitively, a trace is a sequence of actions. In our setting, the actions to be recorded are
composed of an opcode, the address of the executing contract, and a sequence of argu-
ments to the opcode. We denote the set of actions with Act. Accordingly, every small
step produces a trace consisting of a single action. Again, we lift the resulting trace se-
mantics to multiple execution steps that then produce sequences of actions π ∈ L(Act).
We only report the trace semantics definition for the CALL case here, referring to Ap-
pendix B for further details.

ι.code [µ.pc] = CALL
µ.s = g :: to :: va :: io :: is :: oo :: os :: s · · · µ′ = · · · ι′ = · · · σ′ = · · ·

Γ � (µ, ι, σ)c :: S
CALLc(g,to,io,is,oo,os)−−−−−−−−−−−−→ (µ′, ι′, σ′)to :: (µ, ι, σ)c :: S

We will write π ↓callsc to denote the projection of π to calls performed by contract c,
i.e., actions of the form CALLc(g, to, va, io, is, oo, os), CREATEc(va, io, is),
CALLCODEc(g, to, va, io, is, oo, os), and DELEGATECALLc(g, to, io, is, oo, os).

4.1 Call Integrity

Dependency on Attacker Code One of the most famous bugs of Ethereum’s history
is the so called DAO bug that led to a loss of 60 million dollars in June 2016 [10].
This bug is in the literature classified as reentrancy bug [13,21] as the affected contract
was drained out of money by subsequently reentering it and performing transactions to
the attacker on behalf of the contract. More generally, the problem of this contract was
that malicious code was able to affect the outgoing money flows of the contract. The
cause of such bugs mostly roots in the developer’s misunderstanding of the semantics of
Solidity’s call primitives. In general, calling a contract can invoke two kinds of actions:
Transferring Ether to the contract’s account or Executing (parts of) a contracts code.
In particular, the call construct invokes the called contract’s fallback function when
no particular function of the contract is specified (2). Consequently, the developer may
expect an atomic value transfer where potentially another contract’s code is executed.
For illustrating how to exploit this sort of bug, we consider the following contracts:

1 contract Bob{
2 bool sent = false;
3 function ping(address c){
4 if (!sent) { c.call.value(2)();
5 sent = true; }}}

1 contract Mallory{
2 function(){
3 Bob(msg.sender).ping(this);}}

The function ping of contract Bob sends an amount of 2 wei to the address specified in
the argument. However, this should only be possible once, which is potentially ensured
by the sent variable that is set after the successful money transfer. Instead, it turns
out that invoking the call.value function on a contract’s address invokes the contract’s
fallback function as well.

Given a second contract Mallory, it is possible to transfer more money than the in-
tended 2 wei to the account of Mallory. By invoking Bob’s function ping with the address
of Mallory’s account, 2 wei are transferred to Mallory’s account and additionally the
fallback function of Mallory is invoked. As the fallback function again calls the ping

function with Mallory’s address another 2 wei are transferred before the variable sent of
contract Bob was set. This looping goes on until all gas of the initial call is consumed
or the callstack limit is reached. In this case, only the last transfer of wei is reverted
and the effects of all former calls stay in place. Consequently the intended restriction
on contract Bob’s ping function (namely to only transfer 2 wei once) is circumvented.

Call Integrity In order to protect from this class of bugs, it is crucial to secure the
code against being reentered before regaining control over the control flow. From a

security perspective, the fundamental problem is that the contract behaviour depends
on untrusted code, even though this was not intended by the developer. We capture this
intuition through a hyperproperty, which we name call integrity. The idea is that no
matter how the attacker can schedule c (callstacks S and S′ in the definition), the calls
of c (traces π, π′) cannot be controlled by the attacker, even if c hands over the control
to the attacker.

Definition 2 (Call Integrity). A contract c ∈ C satisfies call integrity for a set of ad-
dresses AC ⊆ A if for all reachable configurations (Γ, sc :: S), (Γ, s′c :: S′) with s, s′

differing only in the code with address in AC , it holds that for all t, t′

Γ � sc :: S
π−→
∗
tc :: S ∧ final (tc) ∧ Γ � s′c :: S

′ π′

−→
∗
t′c :: S

′ ∧ final (t′c)

=⇒ π ↓callsc= π′ ↓callsc

4.2 Proof Technique for Call Integrity

We now establish a proof technique for call integrity, based on local properties that are
arguably easier to verify and that we show to imply call integrity. As a first observation,
we identify the different ways in which external contracts can influence the execution
of a smart contract c and introduce corresponding security properties :

Code Dependency The contract c might access (information on) the untrusted con-
tracts code via the EXTCODECOPY or the EXTCODESIZE instructions and
make his behaviour depend on those values;

Effect Dependency The contract c might call the untrusted contract and might depend
on its execution effects and return value;

Re-entrancy The contract c might call the untrusted contract, with the latter influenc-
ing the behaviour of the former by performing changes to the global state itself or
“on behalf” of c by reentering it and thereby potentially decreasing the balance of
c.

The first two of these properties can be seen as value dependencies and therefore
can be formalized as hyperproperties. The first property says that the calls performed
by a contract should not be affected by the effects on the execution state produced
by adversarial contracts. Technically, we consider a contract c calling an adversarial
contract c′ (captured as Γ � sc :: S → s′′c′ :: sc :: S in the premise), which we let
terminate in two arbitrary states s′, t′: we require that c’s continuation code performs
the same calls in both states.

Definition 3 (AC-effect Independence). A contract c ∈ C isAC-effect independent of
for a set of addresses AC ⊆ A if for all reachable configurations (Γ, sc :: S) such that
Γ � sc :: S → s′′c′ :: sc :: S for some s′′ and address (c′) ∈ AC , it holds that for all
final states s′, t′ whose global state might differ in all components but the code from the
global state of s,

Γinit � s
′
c′ :: sc :: S

π−→
∗
s′′c :: S ∧ final (s′′)

∧ Γinit � t
′
c′ :: sc :: S

π′

−→
∗
t′′c :: S ∧ final (t′′)

=⇒ π ↓callsc= π′ ↓callsc

The second property says that the calls of a contract should not be affected by the
code read from the blockchain (e.g., the code does not branch on code read from the
blockchain). To this end we introduce the notation Γ ` s :: S π−→

f

∗
s′ :: S to denote that

the local small-step execution of state s on stack S under Γ results in several steps in
state s′ producing trace π given that in the local execution steps of EXTCODECOPY
and EXTCODESIZE, which are the operations used to access the code on the global
state, the code returned by these functions is determined by the partial function f ∈
A 7→ [B] as opposed to the global state. In other words, we consider in the premise a
contract c reading two different codes from the blockchain and terminating in both runs

(captured as Γ ` sc :: S
π−→
f

∗
s′c :: S and Γ ` sc :: S

π′

−→
f ′

∗
s′′c :: S), and we require

that c performs the same calls in both runs.

Definition 4 (AC-code Independence). A contract c ∈ C is AC-code independent for
a set of addresses AC ⊆ A if for all reachable configurations (Γ, sc :: S) it holds for
all local code updates f, f ′ ∈ A 7→ [B] on AC that

Γ ` sc :: S
π−→
f

∗
s′c :: S ∧ final (s′) ∧ Γ ` sc :: S

π′

−→
f ′

∗
s′′c :: S ∧ final (s′′)

=⇒ π ↓callsc= π′ ↓callsc

Both these independence properties can be overapproximated by static analysis
techniques based on program dependence graphs [26], as done by Joana to verify non-
interference in Java [27]. The idea is to traverse the dependence graph in order to detect
dependencies between the sensitive sources, in our case the data controlled by the ad-
versary and returned to the contract, and the observable sinks, in our case the local
contract calls.

The last property constitutes a safety property. Specifically, single-entrancy states
that it cannot happen that when reentering the contract c another call is performed before
returning (i.e., after reentrancy, which we capture in the call stack as two distinct states
with the same running contract c, the call stack cannot further increase).

Definition 5 (Single-entrancy). A contract c ∈ C is single-entrant if for all reachable
configurations (Γ, sc :: S), it holds for all s′, s′′, S′ that

Γ � sc :: S →∗ s′c :: S′ ++sc :: S

=⇒ ¬∃s′′ ∈ S, c′ ∈ C⊥. Γ � s′c :: S
′ ++sc :: S →∗ s′′c′ :: s′c :: S′ ++sc :: S

This safety property can be easily overapproximated by syntactic conditions, as for
instance done in the Oyente analyzer [21].

Finally, the next theorem proves the soundness of our proof technique, i.e., the two
independence properties and the single-entrancy property together entail call integrity.

Theorem 1. Let c ∈ C be a contract and AC ⊆ A be a set of untrusted addresses. If
c is AC-local independent, c is AC-effect independent, and c is single-entrant then c
provides call integrity for AC .

Proof Sketch. Let (Γ, sc :: S), (Γ, s′c :: S′) be reachable configurations such that s, s′

differ only in the code with address inAC . We now compare the two small-step runs of
those configurations. Due toAC-code independence, the execution until the first call to
an address a ∈ AC produces the same partial trace until the call to a. Indeed, we can
express the runs under different address mappings through the code update from the
AC-code independence property, as long as no call to one of the updated addresses is
performed. When a first call to a ∈ AC is performed, we know due to single-entrancy
that the following call cannot produce any partial execution trace for any of the runs as
this would imply that contract c is reentered and a call out of the contract is performed.
Due to AC-code independence and AC-effect independence , the traces after returning
must coincide till the next call to an address in AC . This argument can be iteratively
applied until reaching the final state of the execution of c.

4.3 Atomicity

Exception Handling As discussed in section 2, the way exceptions are propagated
varies with the way contracts are called. In particular, in the case of call and send, ex-
ceptions are not propagated, but a manual check for the successful completion of the
called function’s execution is required. This behavior reflects the way exceptions are
reported during bytecode execution: Instead of propagating up through the call stack,
the callee reports the exception to the caller by writing zero to the stack. In the context
of Ethereum, the issue of exception handling is particularly delicate as due to the gas
restriction, it might always happen that a call fails simply because it ran out of gas.
Intuitively, a user would expect a contract not to depend on the concrete gas value that
is given to it, with the exception that a contract might always fail completely (and con-
sequently does not perform any changes on the global state). Such a behavior would
prevent contracts from entering an inconsistent state as the one presented in the follow-
ing excerpt of a simple banking contract:

1 contract SimpleBank{mapping(address => uint) balances;
2 function withdraw(){ msg.sender.send(balances[msg.sender]));
3 balances[msg.sender] = 0;}}

The contract keeps a record of the user balances and provides a function that al-
lows a user to withdraw its own balance – which results in an update of the record. A
developer might not expect that the send might fail, but as it is on the bytecode level
represented by a CALL instruction, additional to the Ether transfer, code might be exe-
cuted that runs out of gas. As a consequence, the contract would end up in a state where
the money was not transferred (as all effects of the call are reverted in case of an excep-
tion), but still the internal balance record of the contract was updated and consequently
the money cannot be withdrawn by the owner anymore.

Inspired by such situations where an inconsistent state is entered by a contract due
to mishandled gas exceptions, we introduce the notion of atomicity of a contract. In-
tuitively, atomicity requires that the effects of the execution on the global state do not
depend on the amount of gas available – except when an exception is triggered, in which
case the overall execution should have no effect at all. The last condition is captured by
requiring that the final global state is the same as the initial one for at least one of the
two executions (intuitively, the one causing the exception).

Definition 6. A contract c ∈ C satisfies atomicity if for all reachable configurations
(Γ, S′) such that Γ � S′ → sc :: S, it holds for all gas values g, g′ ∈ N256 that

Γ � sc[µ.gas→ g] :: S →∗ s′c :: S ∧ final (s′)

∧ Γ � sc[µ.gas→ g′] :: S →∗ s′′c :: S ∧ final (s′′)

=⇒ s′.σ = s′′.σ ∨ s.σ = s′.σ ∨ s.σ = s′′.σ

4.4 Independence of Miner controlled Parameters

Another particularity of the distributed blockchain environment is that users while per-
forming transactions cannot make assumptions on large parts of the context their trans-
action will be executed in. A part of this is due to the asynchronous nature of the sys-
tem: it can always be that another transaction that alters the context was performed first.
Actually, the situation is even more delicate as transactions are not processed in a first-
come-first-serve manner, but miners have a big influence on the execution context of
transactions. They can decide upon the order of the transactions in a block (and also
sneak their own transactions in first) and in addition they can even control some pa-
rameters as the block timestamp within a certain range. Consequently, contracts whose
(outgoing) money flows depend either on miner controlled block information or on state
information (as the state of their storage or their balance) that might be changed by other
transactions are prone to manipulations by miners. A typical example adduced in the
literature is the use of block timestamps as source of randomness [13,21]. In a classical
lottery implementation that randomly pays out to one of the participants and uses the
block timestamp as source of randomness, a malicious miner can easily influence the
result in his favor by selecting a beneficial timestamp.

We capture the absence of the miner’s influence by two definitions, one saying that
the outgoing Ether flows of a contract should not be influenced by components of the
transaction environment that can be (within a certain range) set by miners and the other
one saying that the Ether flows should not depend on those parts of the contract state
that might have been influenced by previously executed transactions. The first definition
rules out what is in the literature often described as timestamp dependency [13,21].

First, we define independence of (parts of) the transaction environment. To this
end, we assume CΓ to be the set of components of the transaction environment and
write Γ =/cΓ Γ ′ to denote that the transaction environments Γ, Γ ′ are equal up to
component cΓ .

Definition 7 (Independence of the Transaction Environment). A contract c ∈ C is
independent of a subset I ⊆ CΓ of components of the transaction environment if for all
cΓ ∈ I and all reachable configurations (Γ, sc :: S) it holds for all Γ ′ that

cΓ (Γ) 6= cΓ (Γ
′) ∧ Γ =/cΓ Γ

′

∧ Γ � sc :: S
π−→
∗
s′c :: S ∧ final (s′) ∧ Γ ′ � sc :: S

π′

−→
∗
s′′c :: S ∧ final (s′′)

=⇒ π ↓callsc= π′ ↓callsc

Next, we define the notion of independence of the account state. Formally, we cap-
ture this property by requiring that the outgoing Ether flows of the contract under con-
sideration should not be affected by those parameters of the contract that might have

been changed by previous executions which are the balance, the account’s nonce, and
the account’s persistent storage.

Definition 8 (Independence of Mutable Account State). A contract c ∈ C is inde-
pendent of the account state if for all reachable configurations (Γ, sc :: S), (Γ, sc :: S′)
with s, s′ differing only in the nonce, balance and storage for address (c), it holds that

Γ � sc :: S
π−→
∗
s′c :: S ∧ final (s′c) ∧ Γ � sc :: S

′ π′

−→
∗
s′′c :: S ∧ final (s′′c)

=⇒ π ↓callsc= π′ ↓callsc

As far the other independence properties, both these properties can be statically
verified using program dependence graphs.

4.5 Classification of Bugs

The previously presented security definitions are motivated by the bugs that were ob-
served in real Ethereum smart contracts and studied in [21] and [13]. Table 1 gives an
overview on the bugs from the literature that are ruled out by our security properties.

Our security properties do not cover all bugs described by Atzei et al. [13], as some
of the bugs do not constitute violations of general security properties, i.e., properties
that are not specific to the particular contract implementation. There are two classes of
bugs that we do not consider: The first class deals with the occurrence of unexpected
exceptions (such as the Gasless Send and the Call stack Limit bug) and the second class
encompasses bugs caused by the Solidity semantics deviating from the programmer’s
intuitions (such as the Keeping Secrets, Type Cast and Exception Disorders bugs).

The first class of bugs encompasses runtime exceptions that are hard to predict for
the developer and that are consequently not handled correctly. Of course, it would
be possible to formalize the absence of those particular kinds of exceptions as sim-
ple reachability properties using the small-step semantics. Still, such properties would
not give any insight about the security of a contract: the fact that a particular excep-
tion occurs can be unproblematic in the case that proper exception handling is in place.

Table 1: Bugs from [21] and [13] ruled out by the security properties
Security Property Bug

Call Integrity Reentrancy [13,21]
Call to the Unknown [13]

Atomicity Mishandled Exceptions [13,21]

Independence of Mutable
Account State

Transaction Order Dependency [21]
Unpredictable State [13]

Independence of Transaction
Environment

Timestamp Dependancy [21]
Time Constraints [13]
Generating Randomness [13]

In general, the notion of a correct exception handling highly depends on the specific
contract’s intended behavior. For the special case of out-of-gas exceptions, we could
introduce the notion of atomicity in order to capture a generic goal of proper exception
handling. But such a notion is not necessarily sufficient for characterizing reasonable
ways of dealing with other kinds of runtime exceptions.

The second class of bugs are introduced on the Solidity level and are similarly hard
to account for by using generic security properties. Even though these bugs might all
originate from similar idiosyncrasies of the Solidity semantics, the impact of the bugs
on the contract’s semantics might deviate a lot. This might result in violations of the
security properties discussed before, but also in violating the contract’s functional cor-
rectness. Consequently, catching those bugs might require the introduction of contract-
specific correctness properties.

Finally, Atzei et al. [13] discuss the Ether Lost in Transfer bug. This bug is intro-
duced by sending Ether to addresses that do not belong to any contract or user, so called
orphan addresses. We could easily formalize a reachability property stating that no valid
contract execution should ever send Ether to such an address. We omit such a definition
here as it is quite straightforward and at the same time it is not a property that directly
affects the security of an individual contract: Sending Ether to such an orphan address
might have negative impacts on the overall system as money is effectively lost. For the
specific contract sending this money, this bug can be seen as a corner case of sending
Ether to an unintended address which rather constitutes a correctness violation.

4.6 Discussion

As previously discussed, we are not aware of any prior formal security definitions of
smart contracts. Nevertheless, we compared our definitions with the verification con-
ditions used in Oyente [21]. Our investigation shows that the verification conditions
adopted in this tool are neither sound nor complete.

For detecting mishandled exceptions, it is checked whether each CALL instruction
in the contract code is directly followed by the ISZERO instruction that checks whether
the top element of the stack is zero. Unfortunately, Oyente (although stated in the paper)
does not implement this check, so that we needed to manually inspect the bytecodes
for determining the outcomes of the syntactic check. As shown in Figure 2a a check
for the caller returning zero does not necessarily imply a proper exception handling
and therefore atomicity of the contract. This excerpt of a simple banking contract that
keeps track of the users’ balances and allows users to withdraw their balances using the
function withdraw checks for the success of the performed call, but still does not react
accordingly. It only makes sure that the number of successes is updated consistently, but
does not perform the update on the user’s balance record according to the call outcome.

On the other hand, not performing the desired check does not imply the absence
of atomicity as illustrated in Figure 2b. Writing the outcome in some variable before
checking it, satisfies the negative pattern, but still correct exception handling is per-
formed. For detecting timestamp dependency, Oyente checks whether the contract has
a symbolic execution path with the timestamp (that is represented as own symbolic vari-
able) being included in one of its constraints. This definition however, does not capture
the case shown in Figure 2c.

1 contract SimpleBank{
2 mapping(address => uint) bal;
3 uint successes;
4 function withdraw(){
5 if (msg.sender.send(bal[msg.sender]))
6 { successes++; }
7 bal[msg.sender] = 0;}}

2.a: Exception handling: False negative

1 contract SimpleBank{
2 mapping(address => uint) bal;
3 function withdraw(){
4 bool b =
5 msg.sender.send(bal[msg.sender]);
6 if (b) bal[msg.sender] = 0;}}

2.b: Exception handling: False positive

1 contract Test{
2 uint time = block.timestamp;
3 function pay (){
4 if (time % 2 == 1){
5 msg.sender.send(100);}}}

2.c: Timestamp dependency: False negative

1 contract Test {
2 function pay (){
3 if (block.timestamp % 2 == 1 ||
4 block.timestamp % 2 == 0){
5 msg.sender.send(100);}}}

2.d: Timestamp dependency: False positive

1 contract Fund{
2 mapping(address => uint) shares;
3 function withdraw(){
4 if (msg.sender.send(shares[msg.sender]))
5 shares[msg.sender] = 0;}}

2.e: Reentrancy: False negative

1 contract Bob{
2 bool sent = false;
3 function ping(address c){
4 if (!sent) {
5 sent = true;
6 c.call.value(2)();}}}

2.f: Reentrancy: False positive

This contract is clearly timestamp dependent as whether or not the function pay pays
out some money to the sender depends on the timestamp set when creating the contract.
A malicious miner could consequently manipulate the block timestamp for a transaction
that creates such a contract in a way that money is paid out and then subsequently
query it for draining it out. This is however, not captured by the characterization of the
property in Oyente as they only capture the local execution paths of the contract.

On the other hand, using the block timestamp in path constraints does not imply a
dependency as can easily be seen by the example in Figure 2d.

For the transaction order dependency and the reentrancy property, we were unfortu-
nately not able to reconcile the property characterization provided in the paper with the
implementation of Oyente.

For checking reentrancy according to the paper, it should be checked whether the
constraints on the path leading to a CALL instruction can still be satisfied after perform-
ing the updates on the path (e.g. changing the storage). If so, the contract is flagged as
reentrant. According to our understanding, this approach should not flag contracts that
correctly guard their calls as reentrant. Still, by the version of Oyente provided with the
paper the contract in Figure 2f is tagged as reentrant.

There exists an updated version of Oyente [28] that is able to precisely tag this con-
tract as not reentrant, but we could not find any concrete information on the criteria used
for checking this property. Still, we found out that the underlying characterization can
not be sufficient for detecting reentrancy as the contract in Figure 2e is classified not
to exhibit a reentrancy vulnerability even though it should as the send command also

executes the recipient’s callback function (even though with limited gas). The example
is taken from the Solidity documentation [23] where it is listed as negative example.
For transaction order dependency, Oyente should check whether execution traces ex-
hibiting different Ether flows exists. But it turned out that not even a simple example of
a transaction dependent contract can be detected by any of the versions of Oyente.

5 Conclusions

We presented the first complete small-step semantics of EVM bytecode and formalized
a large fragment thereof in the F* proof assistant, successfully validating it against the
official Ethereum test suite. We further defined for the first time a number of salient
security properties for smart contracts, relying on a combination of hyper- and safety
properties. Our framework is available to the academic community in order to facilitate
future research on rigorous security analysis of smart contracts.

In particular, this work opens up a number of interesting research directions. First,
it would be interesting to formalize in F* the semantics of Solidity code and a compiler
from Solidity into EVM, formally proving its soundness against our semantics. This
would allow us to provide software developers with a tool to verify the security of their
code, from which they could obtain bytecode that is secure by construction. Second, we
intend to design an efficient static analysis technique for EVM bytecode and to formally
prove its soundness against our semantics.

Acknowledgments. This work has been partially supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 research (grant agreement
No 771527-BROWSEC).

References

1. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008) Available at http:
//bitcoin.org/bitcoin.pdf.

2. Biryukov, A., Khovratovich, D., Tikhomirov, S.: Findel: Secure derivative contracts
for ethereum. (2017) Available at http://orbilu.uni.lu/bitstream/10993/
30975/1/Findel_2017-03-08-CR.pdf.

3. Hahn, A., Singh, R., Liu, C.C., Chen, S.: Smart contract-based campus demonstration of
decentralized transactive energy auctions. In: Power & Energy Society Innovative Smart
Grid Technologies Conference (ISGT), 2017 IEEE, IEEE (2017) 1–5

4. McCorry, P., F. Shahandashti, S., Hao, F.: A smart contract for boardroom voting with max-
imum voter privacy. Proceedings of the Financial Cryptography and Data Security Confer-
ence 2017

5. Adhikari, C.: Secure framework for healthcare data management using ethereum-based
blockchain technology. (2017)

6. Notheisen, B., Gödde, M., Weinhardt, C.: Trading stocks on blocks-engineering decentral-
ized markets. In: International Conference on Design Science Research in Information Sys-
tems, Springer (2017) 474–478

7. Mathieu, F., Mathee, R.: Blocktix: Decentralized event hosting and ticket dis-
tribution network. (2017) Available at https://blocktix.io/public/doc/
blocktix-wp-draft.pdf.

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://orbilu.uni.lu/bitstream/10993/30975/1/Findel_2017-03-08-CR.pdf
http://orbilu.uni.lu/bitstream/10993/30975/1/Findel_2017-03-08-CR.pdf
https://blocktix.io/public/doc/blocktix-wp-draft.pdf
https://blocktix.io/public/doc/blocktix-wp-draft.pdf

8. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: Medrec: Using blockchain for medical data
access and permission management. In: Open and Big Data (OBD), International Conference
on, IEEE (2016) 25–30

9. Dong, C., Wang, Y., Aldweesh, A., McCorry, P., van Moorsel, A.: Betrayal, distrust, and
rationality: Smart counter-collusion contracts for verifiable cloud computing. (2017)

10. : The DAO smart contract (2016) Available at http://etherscan.io/address/
0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code.

11. : The parity wallet breach (2017) Available at https://www.coindesk.com/
30-million-ether-reported-stolen-parity-wallet-breach/.

12. : The parity wallet vulnerability (2017) Available at https://paritytech.io/blog/
security-alert.html.

13. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart contracts (sok).
In: International Conference on Principles of Security and Trust, Springer (2017) 164–186

14. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger. Ethereum
Project Yellow Paper 151 (2014) Available at https://ethereum.github.io/
yellowpaper/paper.pdf.

15. Hirai, Y.: Defining the ethereum virtual machine for interactive theorem provers. In: 1st
Workshop on Trusted Smart Contracts. (2017)

16. Hildenbrandt, E., Saxena, M., Zhu, X., Rodrigues, N., Daian, P., Guth, D., Rosu, G.: Kevm: A
complete semantics of the ethereum virtual machine. Available at http://hdl.handle.
net/2142/97207

17. Stefănescu, A., Park, D., Yuwen, S., Li, Y., Roşu, G.: Semantics-based program verifiers
for all languages. In: Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, ACM (2016) 74–91

18. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. arXiv preprint
arXiv:1702.05511 (2017)

19. Mavridou, A., Laszka, A.: Designing secure ethereum smart contracts: A finite
state machine based approach. Available at http://aronlaszka.com/papers/
mavridou2018designing.pdf.

20. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G., Kobeissi,
N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Zanella-Béguelin, S.: Formal
verification of smart contracts: Short paper. In: Proceedings of the 2016 ACM Workshop on
Programming Languages and Analysis for Security, ACM (2016) 91–96

21. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ACM (2016) 254–269

22. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the secu-
rity analysis of ethereum smart contracts - technical report (2018) Available at https:
//secpriv.tuwien.ac.at/tools/ethsemantics.

23. : Solidity documentation Available at http://solidity.readthedocs.io/en/
develop/.

24. : F* Available at https://fstar-lang.org.
25. : Consensus test suite Available at https://github.com/ethereum/tests.
26. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive information

flow control based on program dependence graphs. International Journal on Information
Security 8(6) (2009) 399–422

27. Snelting, G., Giffhorn, D., Graf, J., Hammer, C., Hecker, M., Mohr, M., Wasserrab, D.:
Checking probabilistic noninterference using joana. it - Information Technology 56 (Novem-
ber 2014) 280–287

28. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: An analysis tool for smart contracts
Available at https://github.com/melonproject/oyente.

http://etherscan.io/address/ 0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
http://etherscan.io/address/ 0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/
https://paritytech.io/blog/security-alert.html
https://paritytech.io/blog/security-alert.html
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
http://hdl.handle.net/2142/97207
http://hdl.handle.net/2142/97207
http://aronlaszka.com/papers/mavridou2018designing.pdf
http://aronlaszka.com/papers/mavridou2018designing.pdf
https://secpriv.tuwien.ac.at/tools/ethsemantics
https://secpriv.tuwien.ac.at/tools/ethsemantics
http://solidity.readthedocs.io/en/develop/
http://solidity.readthedocs.io/en/develop/
https://fstar-lang.org
https://github.com/ethereum/tests
https://github.com/melonproject/oyente

A Formalization

A.1 Notations

In the following, we will use B to denote the set {0, 1} of bits and accordingly Bx for
sets of bitstrings of size x. We further let Nx denote the set of non-negative integers
representable by x bits and allow for implicit conversion between those two represen-
tations (assuming bitstrings to represent a big-endian encoding of natural numbers). In
addition, we will use the notation [X] (resp. L(X)) for arrays (resp. lists) of elements
from the set X . We use standard notations for operations on arrays and lists. In par-
ticular we write a [pos] to access position pos ∈ [1, |a| − 1] of array a ∈ [X] and
a[down, up] to access the subarray of size up− down from position down ∈ [1, |a| − 1]
to up ∈ [1, |a| − 1]. In case that down > up this operation results in the empty array ε.
In addition, we write a1 · a2 for the concatenation of two arrays a1, a2 ∈ [X].

In the following formalization, we will make use of bytearrays b ∈ [B8]. To this
end, we will assume functions (·)[B8] ∈ Bx → [B8] and (·)B ∈ [B8] → Bx to chunk
bitstrings with size dividable by 8 to bytearrays and vice versa. To denote the zero byte,
we write 08 and accordingly for an array of zero bytes of size n, we write 08·n.

For lists, we denote the empty list by ε and write x :: xs for placing element x ∈ X
on top of list xs ∈ L(X). In addition, we write xs ++ys for concatenating lists xs, ys ∈
L(X).

We let A denote the set of 160-bit addresses (B160).

A.2 Configurations

The global state of the system is defined by the accounts that are existing and their
current state, including their balances and their codes. Formally, the global state is a
(partial) mapping from account addresses to accounts:

σ ∈ Σ = A → (N256 × N256 × (B256 → B256)× [B8]) ∪ {⊥}

An account (nonce, balance, stor, code) is described by the account’s balance balance ∈
N256, the state of its persistent storage stor ∈ B256 → B256, its nonce nonce ∈ N256

and the account’s code code ∈ [B8].
A configuration S of the execution consists of the stack S of execution states . The

call stack S keeps track of the calls made during execution. To this end it consists of
execution states of one of the following forms:

– EXC denotes an exceptional halting state and can only occur as top element. It
expresses that the execution of the current call ended with an exception.

– HALT(σ, gas, d, η) denotes regular halting and can only occur as top element. It
expresses that the execution of the current call halted in global state σ ∈ σ with
transaction effects η ∈ N and with an amount gas ∈ N256 of remaining gas and
return data d ∈ [B8]

– (µ, ι, σ, η) denotes a regular execution state and represents the state of the execution
of the current call. A regular execution state includes the local state of the stack
machine µ ∈ M , the execution environment ι ∈ I that contains the parameters

given to the call and the current global state σ ∈ Σ and the transaction effects
η ∈ N

The reason to make the global state part of the call stack is that it does not change
linearly during the execution. In the case of an exception, all effects of the call’s exe-
cution on the global state are reverted and the execution continues in the global state of
the caller. The same holds for the transaction effects.

Formally, we give the syntax of call stacks as follows:

S := {EXC :: Splain, HALT(σ, gas, d, η) :: Splain, Splain

| σ ∈ Σ, gas ∈ N, d ∈ [B8], η ∈ N ,Splain ∈ L(M × I ×Σ ×N)}

In Figure 3 we give a full grammar for call stacks:

Call stacks S 3 S := EXC :: Splain | HALT(σ, d, g, η) :: Splain | Splain

Plain call stacks Splain 3 Splain := (µ, ι, σ, η) :: Splain

Machine states M 3 µ := (gas, pc,m, i, s)
Execution environments I 3 ι := (actor, input, sender, value, code)

Global states Σ 3 σ
Account states A 3 acc := (n, b, code, stor) | ⊥

Transaction effects N 3 η := (b, L, S†)
Transaction environments Tenv 3 Γ := (o, prize, H)

Notations: d ∈ [B8], g ∈ N256, η ∈ N, o ∈ A, prize ∈ N256, H ∈ H
gas ∈ N256, pc ∈ N256, m ∈ B256,→ B8 i ∈ N256, s ∈ L(B256)

sender ∈ A input ∈ [B8] sender ∈ A value ∈ N256 code ∈ [B8]
b ∈ N256 L ∈ L(Evlog) S† ⊆ A Σ = A → A

Fig. 3: Grammar for calls stacks and transaction environments

Regular execution states In the following we give a detailed description of the com-
ponents of regular executions state.

Local machine state The local machine state µ ∈ M = N256 × N256 × (B256 →
B8) × N256 × L(B256) represents the state of the underlying state machine used for
execution consists of the following components:

– gas ∈ N256 is the current amount of gas still available for execution;
– pc ∈ N256 is the current program counter;
– m ∈ B256 → B8 is a mapping from 256-bit words to bytes that represents the local

memory;
– i ∈ N256 is the current number of active words in memory;
– s ∈ L(B256) is the local 256-bit word stack of the stack machine.

The execution of each internal transaction starts in a fresh machine state, with an empty
stack, memory initialized to all zeros, and program counter and active words in memory
set to zero. Only the gas is instantiated with the gas value available for the execution.

Execution environment The execution environment ι of an internal transaction spec-
ifies the static parameters of the transaction. It is a tuple of the form (actor, input,
sender, value, code) ∈ I = A × [B8] × A × N256 × [B8] with the following com-
ponents:

– actor ∈ A is the address of the account currently executing;
– input ∈ [B8] is the data given as an input to the internal transaction;
– sender ∈ A is the address of the account that initiated the internal transaction;
– value ∈ N256 is the value transferred by the internal transaction;
– code ∈ [B8] is the code currently executed.

This information is determined at the beginning of an internal transaction execution and
it can be accessed, but not altered during the execution.

Transaction effects The transaction effects η ∈ N = N256 × L(Evlog)× P(A) collect
information on changes that will be applied to the global state after the transaction’s
execution. They do not effect the code execution itself. In particular, the transaction
effects contain the following components:

– balr ∈ N256 is the refund balance that is increased by memory operations and will
finally be paid to the transaction’s beneficiary

– L ∈ L(Evlog) is the sequence of log events performed during executions. A log
event is a tuple of the address of the currently executing a count, a tuple with zero
to four components specified when executing a logging instruction and finally a
fraction of the local memory. Consequently, Evlog = A× ({()}∪B256 ∪ (B256)2 ∪
(B256)3 ∪ (B256)4)× [B8].

– S† ⊆ A is the suicide set that keeps track of the contracts that destroyed them-
selves (using the SELFDESTRUCT command) during the execution (of the ex-
ternal transaction). These contracts are recorded in S† and only removed from the
global state after the end of the execution.

A.3 Transaction environment

The transaction environment represents the static information of the block that the trans-
action is executed in and the immutable parameters given to the transaction as the
gas prize or the gas limit. More specifically, the transaction environment Γ ∈ Tenv =
A× N256 ×H is a tuple of the form (o, prize, H) with the following components:

– o ∈ A is the address of the account that made the transaction
– prize ∈ N256 denotes the amount of wei that needs to paid for a unit of gas in this

transaction

– H ∈ H = N256 × A × N256 × N256 × N256 × N256 is the header of the block
that the transaction is part. A block header is of the form (parent, beneficiary,
difficulty, number, gaslimit, timestamp). Where parent ∈ N256 identifies the header
of the block’s parent block, beneficiary ∈ A is the address of the beneficiary of the
transaction, difficulty ∈ N256 is a measure of the difficulty of solving the proof
of work puzzle required to mine the block, numberN256 is the number of ancestor
blocks, gaslimit ∈ N256 is the maximum amount of gas that might be consumed
when executing the blocks transactions and timestamp ∈ N256 is the Unix time
stamp at the block’s inception. Note that this is a simplified version of the block
header described in the yellow paper [14] that only contains those components
needed for transaction execution.

B Small step semantics

We define a small step relation→. We write Γ � S → S′ to denote that the call stack
S ∈ S evolves under the transaction environment Γ ∈ Tenv to the call stack S′ ∈ S. The
transaction environment contains information concerning the block or transaction the
current code is executed in and that does not change over code execution.

B.1 Notations

In order to present the small-step rules in a concise fashion we introduce some notations
for accessing and updating state.

For the global state we use a slightly different notation for accessing and updating.
As the global state is a mapping from addresses to account, the account’s state can
be accessed by applying the address to the global state. For updating we introduce a
simplifying notation:

σ
〈
addr→ s

〉
:= λa. a = addr ? s : σ(a)

For accessing memory fragments we use the following notation:

m [o, s] := [m(o),m(o+ 1), . . . ,m(o+ s− 1)]

Correspondingly, we define updates for memory fragments. Let o, s ∈ N256 and v ∈
[B8]:

m[[o, s]→ v] := λx. (x ≥ o ∧ x < o+ min (s, |v|)) ? v [x− o] : m(x)

Similarly to accessing arrays, we write v[down, up] to extract the bitvector’s bits from
position down until position up (where we require down ≤ up). Additionally, we as-
sume a concatenation function for bitvectors and write b1 · b2 for concatenating bit
vectors b1 and b2.

Most of the state components used in the formalization of the EVM execution con-
figurations consist of tuples. For sake of better readability, instead of accessing tuple
components using projection, we name the components according to the variable names

we used in the description in Section A and use a dot notation for accessing them. To dif-
ferentiate component names from variable names, we typeset components in sans serifs
font. For example, given µ ∈ M , we write µ.gas to access the first component of the
tuple µ. Similarly, we use a simple update notation for components. E.g., instead of writ-
ing let µ = (gas, pc,m, i, s) in (gas, pc + 1,m, i, s), we write µ[pc → µ.pc + 1]. For
the case of incrementing or decrementing numerical values we use the usual short cuts
+ = and − = and would for example write the example shown before as µ[pc += 1].

As mentioned in section A.1, we use the notions of Bx and Nx interchangeably
as we interpret bitvectos usually as unsigned integers. As some operations however
are performed on the signed interpretation of the machine words, we assume functions
(·)− : Bx → Intx and (·)− : Nx → Intx that output the signed interpretation of a bitvec-
tor or unsigned integer respectively. Note the that Intx denotes the set of unsigned inte-
gers re presentable with x bits. Accordingly, we assume a functions (·)+ : Intx → Bx
and (·)+ : Intx → Nx for converting signed integers back to their unsigned interpreta-
tion.

B.2 Auxiliary definitions

Accessing bytecode For extracting the command that is currently executed, the instruc-
tion at position µ.pc of the code code provided in the execution environment needs to
be accessed. For sake of presentation, we define a function doing so:

Definition 9 (Currently executed command). The currently executed command in the
machine state µ and execution environment ι is denoted by ωµ,ι and defined as follows:

ωµ,ι :=

{
ι.code [µ.pc] µ.pc < |ι.code|
STOP otherwise

All EVM instructions have in common that running out of gas as well as over
and under flows of the local machine stack cause an exception. We define a function
valid (·, ·, ·) : N256 × N256 × N → B that given the available gas, the instruction cost
and the new stack size determines whether one of the conditions mentioned above is
satisfied. We do not check for stack underflows as this is realized by pattern matching
in the individual small step rules.

valid (g, c, s) :=

{
1 g ≥ c ∧ s < 1024

0 otherwise

We also write valid (g, c, s) for valid (g, c, s) = 1 and¬valid (g, c, s) for valid (g, c, s) =
0.

In EVM bytecode jump potential destinations are explicitly marked by the distinct
JUMPDEST instruction. Jumps to other destination cause an exception. For simplify-
ing this check, we define the set of valid jump destinations as follows:

Definition 10. Valid jump destinations [14]. D (·) : [B8] → P(N) determines the set
of valid jump destinations given the code code ∈ [B8], that is being run. It is defined

as any position in the code occupied by a JUMPDEST instruction. Formally D (c) =
DH (c, 0), where:

DH (·, ·) : [B8]× N→ P(N)

DH (c, i) :=


∅ i ≥ |c|
{i} ∪DH (c,N (i, c[i])) c [i] = JUMPDEST
DH (c,N (i, c [i])) otherwise

where N (·, ·) : N × B8 → N is the next valid instruction position in the code,
skipping the data of a PUSHn instruction, if any:

N (i, ω) :=

{
i+ n+ 1 ω = PUSHn
i+ n otherwise

Memory Consumption The execution tracks the number of active words in memory and
charges fees for memory that is used. The active words in memory are those words that
are accessed either for reading or writing. If a command increases the number of active
words, it needs to pay accordingly to the amount of words that became active.

To model the increasing number of active words in memory we define a memory
expansion function as done in [14] that determines the number of active words in mem-
ory given the number of active memory words so far as well as the offset and the size
of the memory fraction accessed.

M (i, o, s) :=

{
i if s = 0

max(i,
⌈
(o+s)
32

⌉
) otherwise

According to the amount of additional words in memory that are used by the exe-
cution of an instruction, additional execution costs are charged. For describing the cost
that occur due to memory consumption, we use a function Cmem (·, ·) : N×N→ Z that
given the number of active words in memory before and after the command execution,
outputs the corresponding costs.

Cmem (aw, aw′) := 3 · (aw′ − aw) +
⌊
aw′2

512

⌋
−
⌊
aw2

512

⌋
Creating new account addresses We define a function newAddress (·, ·) : A× N→ A
that given an address and a nonce provides a fresh address.

newAddress (a, n) = Keccak(rlp ((a, n− 1)))[96, 255]

where rlp (·) is the RLP encoding function. The RLP encoding is a canonical way
of transforming different structures such as tuples to a sequence of bytes. We will not
comment on this in detail, but refer to the reader to the Ethereum yellow paper [14].

Note that the newAddress (·, ·) function is assumed to be collision resistant.

B.3 Small-step rules

Binary stack operations We start by giving the rules for arithmetic operations. As all
of these instructions alter only the local stack and gas and their only difference consists
of the operations performed and the (constant) amount of gas computed, we assume
assume a set Instbin of binary operations and functions costbin(·) : Instbin → N256 and
funbin(·) : Instbin → (B256×B256 → B256) that map the binary operations to their costs
and functionality.

For all binary operations ibin ∈ Instbin, we create rules of the following form

ωµ,ι = ibin valid (µ.gas, costbin(ibin), |s|+ 1)
µ.s = a :: b :: s µ′ = µ[s→ (funbin(ibin)) :: s][pc += 1][gas −= costbin(ibin)]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = ibin (¬valid (µ.gas, costbin(ibin), |s|+ 1) ∨ |µ.s| < 2)

Γ � (µ, ι, σ, η) :: S → EXC :: S

We define

Instbin := {ADD,SUB,LT,GT,EQ,AND,OR,XOR,SLT,SGT,MUL,DIV,SDIV,
MOD,SMOD,SIGNEXTEND,BYTE}

and

costbin(ibin) =

{
3 ibin ∈ {ADD,SUB,LT,GT,SLT,SGT,EQ,AND,OR,XOR,BYTE}
5 ibin ∈ {MUL,DIV,SDIV,MOD,SMOD,SIGNEXTEND}

and

funbin(ibin) =



λ(a, b). a+ b mod 2256 ibin = ADD
λ(a, b). a− b mod 2256 ibin = SUB
λ(a, b). a < b ? 1 : 0 ibin = LT
λ(a, b). a > b ? 1 : 0 ibin = GT
λ(a, b). a− < b− ? 1 : 0 ibin = SLT
λ(a, b). a− > b− ? 1 : 0 ibin = SGT
λ(a, b). a = b ? 1 : 0 ibin = EQ
λ(a, b). a&b ibin = AND
λ(a, b). a‖b ibin = OR
λ(a, b). a⊕ b ibin = XOR
λ(a, b). a · b mod 2256 ibin = MUL
λ(a, b). (b = 0) ? 0 : ba÷ bc ibin = DIV
λ(a, b). (b = 0) ? 0 : a mod b ibin = MOD
λ(a, b). (b = 0)? 0 : (a = 2255 ∧ b− = −1)? 2256 :

let x = a− ÷ b− in (sign(x) · b|x|c)+ ibin = SDIV
λ(a, b). (b = 0) ? 0 : (sign(a) · |a| mod |b|)+ ibin = SMOD
λ(o, b). (o ≥ 32) ? 0 : b[8 · o, 8 · o+ 7] · 0248 ibin = BYTE
λ(a, b). let x = 256− 8(a+ 1) in
let s = b [x] in sx · b[x, 255] ibin = SIGNEXTEND

where sign(·) : Intx → {−1, 1} is defined as

sign(x) =

{
1 x ≥ 0

0 otherwise

and &, ‖ and ⊕ are bitwise and, or and xor, respectively.
Exceptions to the normal binary operations are the exponentiation as this instruction

uses non-constant costs and the computation of the Keccack-256 hash.

ωµ,ι = EXP valid (µ.gas, c, |s|+ 1)
µ.s = a :: b :: s c = (b = 0) ? 10 : 10 + 10 ∗ (1 + blog256 bc)
x = (ab) mod 2256 µ′ = µ[s→ x :: s][pc += 1][gas −= c]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = EXP c = (b = 0) ? 10 : 10 + 10 ∗ (1 + blog256 bc)
µ.s = a :: b :: s ¬valid (µ.gas, c, |s|+ 1)

Γ � (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = SHA3
valid (µ.gas, c, |s|+ 1) µ.s = pos :: size :: s aw =M (µ.i, pos, size)

c = Cmem (µ.i, aw) + 30 + 6 ·
⌈

size
32

⌉
v = µ.m [pos, pos + size− 1]

h = Keccak(v) µ′ = µ[s→ h :: s][pc += 1][gas −= c][i→ aw]
Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

where Keccak(x) is the Keccak-256 hash of x. ()

ωµ,ι = SHA3 µ.s = pos :: size :: s µ.s = pos :: size :: s

aw =M (µ.i, pos, size) c = Cmem (µ.i, aw) + 30 + 6 ·
⌈

size
32

⌉
µ.s = a :: b :: s ¬valid (µ.gas, c, |s|+ 1)

Γ � (µ, ι, σ, η) :: S → EXC :: S

(ωµ,ι = EXP ∨ ωµ,ι = SHA3) |µ.s| < 2

Γ � (µ, ι, σ, η) :: S → EXC :: S

Unary stack operations

ωµ,ι = ISZERO valid (µ.gas, 3, |s|+ 1)
µ.s = a :: s x = (a = 0) ? 1 : 0 µ′ = µ[s→ x :: s][pc += 1][gas −= 3]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = NOT valid (µ.gas, 3, |s|+ 1)
µ.s = a :: s x = ¬a µ′ = µ[s→ x :: s][pc += 1][gas −= 3]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

where ¬ is bitwise negation.

(ωµ,ι = ISZERO ∨ ωµ,ι = NOT) (¬valid (µ.gas, 3, |s|+ 1) ∨ |µ.s| < 1)

Γ � (µ, ι, σ, η) :: S → EXC :: S

Ternary stack operations

ωµ,ι = ADDMOD valid (µ.gas, 8, |s|+ 1) µ.s = a :: b :: c :: s
x = (c = 0) ? 0 : (a+ b) mod c µ′ = µ[s→ x :: s][pc += 1][gas −= 8]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = MULMOD valid (µ.gas, 8, |s|+ 1) µ.s = a :: b :: c :: s
x = (c = 0) ? 0 : (a · b) mod c µ′ = µ[s→ x :: s][pc += 1][gas −= 8]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

(ωµ,ι = ADDMOD ∨ ωµ,ι = MULMOD)
(¬valid (µ.gas, 8, |µ.s| − 2) ∨ |µ.s| < 3)

Γ � (µ, ι, σ, η) :: S → EXC :: S

Accessing the execution environment There are some simple access operations for ac-
cessing parts of the execution environment such as the addresses of the executing ac-
count and the caller, the value given to the internal transaction and the sizes of the
executed code and the data given as input to the call.

ωµ,ι = ADDRESS
valid (µ.gas, 2, |µ.s|+ 1) µ′ = µ[s→ ι.actor :: µ.s][pc += 1][gas −= 2]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = CALLER
valid (µ.gas, 2, |µ.s|+ 1) µ′ = µ[s→ ι.sender :: µ.s][pc += 1][gas −= 2]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = CALLVALUE
valid (µ.gas, 2, |µ.s|+ 1) µ′ = µ[s→ ι.value :: µ.s][pc += 1][gas −= 2]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = CODESIZE
valid (µ.gas, 2, |µ.s|+ 1) µ′ = µ[s→ |ι.code| :: µ.s][pc += 1][gas −= 2]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = CALLDATASIZE
valid (µ.gas, 2, |µ.s|+ 1) µ′ = µ[s→ |ι.input| :: µ.s][pc += 1][gas −= 2]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

(ωµ,ι = ADDRESS ∨ ωµ,ι = CALLER ∨ ωµ,ι = CALLVALUE
∨ωµ,ι = CODESIZE ∨ ωµ,ι = CALLDATASIZE) ¬valid (µ.gas, 2, |µ.s|+ 1)

Γ � (µ, ι, σ, η) :: S → EXC :: S

Accessing the code and the input data in the execution environment is more in-
volved.

The CALLDATALOAD instruction writes the (first 256 bit of) data given as input to
the current call to the stack.

ωµ,ι = CALLDATALOAD µ.s = a :: s valid (µ.gas, 3, |µ.s|)
k = (|ι.d| − a < 0) ? 0 : min (|ι.d| − a, 32) v′ = ι.d [a, a+ k − 1]

v = v′ · 0256−k·8 µ′ = µ[s→ v :: s][pc += 1][gas −= 3]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = CALLDATALOAD ¬valid (µ.gas, 3, |µ.s|)
Γ � (µ, ι, σ, η) :: S → EXC :: S

The CALLDATACOPY instruction copies the data that was given as input to the
current call to the memory.

ωµ,ι = CALLDATACOPY
µ.s = posm :: posd :: size :: s aw =M (µ.i, posm, size)

c = Cmem (µ.i, aw) + 3 + 3 ·
⌈

size
32

⌉
valid (µ.gas, c, |µ.s|)

k = (|ι.input)| − posd < 0 ? 0 : min (|ι.input| − posd, size)
d′ = ι.input [posd, posd + k − 1] d = d′ · 08·(size−k)

µ′ = µ[s→ s][pc += 1][gas −= c][m→ m[[posm, posm + size− 1]→ d]][i→ aw]
Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

The CODECOPY instruction copies the code that is currently executed to the mem-
ory.

ωµ,ι = CODECOPY
µ.s = posm :: poscode :: size :: s aw =M (µ.i, posm, size)

c = Cmem (µ.i, aw) + 3 + 3 ·
⌈

size
32

⌉
valid (µ.gas, c, |µ.s|)

k = (|ι.code)| − poscode < 0 ? 0 : min (|ι.code| − poscode, size)
d′ = ι.code [poscode, poscode + k − 1] d = d′ · STOPsize−k

µ′ = µ[s→ s][pc += 1][gas −= c][m→ m[[posm, posm + size− 1]→ d]][i→ aw]
Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

(ωµ,ι = CODECOPY ∨ ωµ,ι = CALLDATACOPY) |µ.s| < 3

Γ � (µ, ι, σ, η) :: S → EXC :: S

(ωµ,ι = CODECOPY ∨ ωµ,ι = CALLDATACOPY)
µ.s = posm :: size :: poscode :: s aw =M (µ.i, posm, poscode)

c = Cmem (µ.i, aw) + 3 + 3 ·
⌈poscode

32

⌉
¬valid (µ.gas, c, |µ.s|)

Γ � (µ, ι, σ, η) :: S → EXC :: S

Accessing the transaction environment

ωµ,ι = ORIGIN
valid (µ.gas, 2, |µ.s|+ 1) µ′ = µ[s→ Γ.o :: µ.s][pc += 1][gas −= 2]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = GASPRICE
valid (µ.gas, 2, |µ.s|+ 1) µ′ = µ[s→ Γ.price :: µ.s][pc += 1][gas −= 2]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

(ωµ,ι = ORIGIN ∨ ωµ,ι = GASPRICE) ¬valid (µ.gas, 2, |µ.s|+ 1)

Γ � (µ, ι, σ, η) :: S → EXC :: S

The BLOCKHASH command writes the hash of one of the 256 most recently com-
pleted block (that is specified on the stack) to the stack:

ωµ,ι = BLOCKHASH valid (µ.gas, 20, |µ.s|) µ.s = n :: s
h = P (ι.parent, n, 0) µ′ = µ[s→ h :: µ.s][pc += 1][gas −= 20]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = BLOCKHASH (¬valid (µ.gas, 20, |µ.s|) ∨ |µ.s| < 1)

Γ � (µ, ι, σ, η) :: S → EXC :: S

where the function P (h, n, a) tries to access the block with number n by traversing
the block chain starting from h until the counter a reaches the limit of 256 or the genesis
block is reached.

P (h, n, a) :=


0 n > h.number ∨ a = 256 ∨ h = 0

h n = h.number
P (h.parent, n, a+ 1) otherwise

ωµ,ι = COINBASE valid (µ.gas, 2, |µ.s|+ 1)
µ′ = µ[s→ (Γ.H).beneficiary :: µ.s][pc += 1][gas −= 2]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = TIMESTAMP valid (µ.gas, 2, |µ.s|+ 1)
µ′ = µ[s→ (Γ.H).timestamp :: µ.s][pc += 1][gas −= 2]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = NUMBER valid (µ.gas, 2, |µ.s|+ 1)
µ′ = µ[s→ (Γ.H).number :: µ.s][pc += 1][gas −= 2]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = DIFFICULTY valid (µ.gas, 2, |µ.s|+ 1)
µ′ = µ[s→ (Γ.H).difficulty :: µ.s][pc += 1][gas −= 2]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = GASLIMIT valid (µ.gas, 2, |µ.s|+ 1)
µ′ = µ[s→ (Γ.H).gaslimit :: µ.s][pc += 1][gas −= 2]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

(ωµ,ι = COINBASE ∨ ωµ,ι = TIMESTAMP ∨ ωµ,ι = NUMBER
∨ωµ,ι = DIFFICULTY ∨ ωµ,ι = GASLIMIT) ¬valid (µ.gas, 2, |µ.s|+ 1)

Γ � (µ, ι, σ, η) :: S → EXC :: S

Accessing the global state

ωµ,ι = BALANCE µ.s = a :: s valid (µ.gas, 400, |s|+ 1)
b = (σ(a mod 2160) = (nonce, balance, stor, code)) ? balance : 0

µ′ = µ[s→ b :: µ.s][pc += 1][gas −= 400]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = BALANCE (¬valid (µ.gas, 400, |µ.s|) ∨ |µ.s| < 1)

Γ � (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = EXTCODESIZE µ.s = a :: s valid (µ.gas, 700, |s|+ 1)
size = |σ(a mod 2160).code| µ′ = µ[s→ s :: µ.s][pc += 1][gas −= 700]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = EXTCODESIZE (¬valid (µ.gas, 700, |µ.s|) ∨ |µ.s| < 1)

Γ � (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = EXTCODECOPY µ.s = a :: posm :: poscode :: size :: s
code = σ(a mod 2160).code aw =M (µ.i, posm, size)

c = Cmem (µ.i, aw) + 700 + 3 ·
⌈

size
32

⌉
valid (µ.gas, c, |µ.s|)

k = (|code)| − poscode < 0 ? 0 : min (|ι.code| − poscode, size)
d′ = code [poscode, poscode + k − 1] d = d′ · STOPsize−k

µ′ = µ[s→ s][pc += 1][gas −= c][m→ m[[posm, posm + size− 1]→ d]][i→ aw]
Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = EXTCODECOPY |µ.s| < 4

Γ � (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = EXTCODECOPY
µ.s = a :: posm :: size :: poscode :: s aw =M (µ.i, posm, poscode)

c = Cmem (µ.i, aw) + 700 + 3 ·
⌈poscode

32

⌉
¬valid (µ.gas, c, |µ.s|)

Γ � (µ, ι, σ, η) :: S → EXC :: S

Stack operations

ωµ,ι = POP
valid (µ.gas, 2, |s|) µ.s = a :: s µ′ = µ[s→ s][pc += 1][gas −= 2]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = POP (¬valid (µ.gas, 2, |s|) ∨ |µ.s| < 1)

Γ � (µ, ι, σ, η) :: S → EXC :: S

There are 32 instructions for pushing values to the stack. We summarize the behav-
ior of all these instructions with the following rules by parameterising the instruction
with number of following bytecodes that are pushed to the stack. The PUSHn (with
m ∈ [1, 32]) command pushes the bytecodes at the next n program counter position to
the stack.

ωµ,ι = PUSHn k = min (|ι.code|, µ.pc + x)
valid (µ.gas, 3, |µ.s|+ 1) d = ι.code [µ.pc + 1, k]

d′ = d · 08·(32−(k−µ.pc)) µ′ = µ[s→ d′ :: µ.s][pc += (x+ 1)][gas −= 3]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = PUSHn ¬valid (µ.gas, 3, |s|+ 1)

Γ � (µ, ι, σ, η) :: S → EXC :: S

The DUPn instructions (with n ∈ [1, 16]) duplicate the nth stack element:

ωµ,ι = DUPn valid (µ.gas, 3, |µ.s|+ 1) µ.s = s1 ++(xn :: s2)
|s1| = n− 1 µ′ = µ[s→ xn :: µ.s][pc += 1][gas −= 3]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = DUPn (¬valid (µ.gas, 3, |µ.s|+ 1) ∨ |µ.s| < n)

Γ � (µ, ι, σ, η) :: S → EXC :: S

The SWAPn instructions (with n ∈ [1, 16]) swap the first and the nth stack element:

ωµ,ι = SWAPn valid (µ.gas, 3, |µ.s|) µ.s = y :: (s1 ++(xn :: s2))
|s1| = n− 1 µ′ = µ[s→ xn :: (s1 ++(y :: s2))][pc += 1][gas −= 3]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = SWAPn (¬valid (µ.gas, 3, |µ.s|) ∨ |µ.s| < n+ 1)

Γ � (µ, ι, σ, η) :: S → EXC :: S

Jumps The JUMP command updates the program counter to i (specified in the stack)
if i is a valid jump destination.

ωµ,ι = JUMP valid (µ.gas, 8, |s|)
µ.s = i :: s i ∈ D (ι.code) µ′ = µ[s→ s][pc→ i][gas −= 8]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = JUMP µ.s = i :: s (i 6∈ D (ι.code) ∨ ¬valid (µ.gas, 8, |s|))
Γ � (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = JUMP |µ.s| < 1

Γ � (µ, ι, σ, η) :: S → EXC :: S

The conditional jump command JUMPI conditionally jumps to position i depending
on b.

ωµ,ι = JUMPI valid (µ.gas, 10, |s|) µ.s = i :: b :: s i ∈ D (ι.code)
j = (b = 0) ?µ.pc + 1 : i µ′ = µ[s→ s][pc→ j][gas −= 10]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = JUMPI µ.s = i :: b :: s (i 6∈ D (ι.code) ∨ ¬valid (µ.gas, 10, |s|))
Γ � (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = JUMPI |µ.s| < 2

Γ � (µ, ι, σ, η) :: S → EXC :: S

The JUMPDEST command marks a valid jump destination. It does not trigger any
execution and consequently the only effect of the command is the increasing of the
program counter and charging the fee for the command execution.

ωµ,ι = JUMPDEST valid (µ.gas, 1, |µ.s|) µ′ = µ[pc += 1][gas −= 1]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = JUMPDEST ¬valid (µ.gas, 1, |µ.s|)
Γ � (µ, ι, σ, η) :: S → EXC :: S

Local memory operations The MLOAD command reads a fraction of the local memory
specified by a and pushes it to the stack. Note that this increases the number of active
words in memory and therefore causes additional cost.

ωµ,ι = MLOAD c = Cmem (µ.i, aw) + 3
valid (µ.gas, c, |s|+ 1) µ.s = a :: s v = µ.m[a, a+ 31]

aw =M (µ.i, a, 32) µ′ = µ[i→ aw][s→ v :: s][pc += 1][gas −= c]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = MLOAD |µ.s| < 1

Γ � (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = MLOAD µ.s = a :: s
aw =M (µ.i, a, 32) c = Cmem (µ.i, aw) + 3 ¬valid (µ.gas, c, |s|+ 1)

Γ � (µ, ι, σ, η) :: S → EXC :: S

The MSTORE command writes a value b given at the stack to address a in the
local memory. Notice that we abuse the update-notation here slightly to update whole
intervals of the local memory

ωµ,ι = MSTORE c = Cmem (µ.i, aw) + 3 µ.s = a :: b :: s
valid (µ.gas, c, |s|) aw =M (µ.i, a, 32)

µ′ = µ[m→ µ.m[[a, a+ 31]→ b[B8]]][i→ aw][s→ s][pc += 1][gas −= c]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = MSTORE µ.s = a :: b :: s
aw =M (µ.i, a, 32) c = Cmem (µ.i, aw) + 3 ¬valid (µ.gas, c, |s|)

Γ � (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = MSTORE8 c = Cmem (µ.i, aw) + 3 µ.s = a :: b :: s
valid (µ.gas, c, |s|) aw =M (µ.i, a, 1)

µ′ = µ[m→ µ.m[a→ b mod 256]][i→ aw][s→ s][pc += 1][gas −= c]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = MSTORE8 µ.s = a :: b :: s
aw =M (µ.i, a, 1) c = Cmem (µ.i, aw) + 3 ¬valid (µ.gas, c, |s|)

Γ � (µ, ι, σ, η) :: S → EXC :: S

(ωµ,ι = MSTORE ∨ ωµ,ι = MSTORE8) |µ.s| < 2

Γ � (µ, ι, σ, η) :: S → EXC :: S

Persistent storage operations The SLOAD command reads the executing account’s
persistent storage at position a.

ωµ,ι = SLOAD valid (µ.gas, 200, |s|+ 1)
µ.s = a :: s µ′ = µ[s→ (σ(ι.addr).stor)(a) :: s][pc += 1][gas −= 200]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = SLOAD (¬valid (µ.gas, 200, |s|+ 1) ∨ |µ.s| < 1)

Γ � (µ, ι, σ, η) :: S → EXC :: S

The SSTORE command stores the value b in the executing account’s persistent
storage at position a.

ωµ,ι = SSTORE c = (b 6= 0 ∧ (σ(ι.addr).stor)(a) = 0) ? 20000 : 5000
valid (µ.gas, c, |s|) µ.s = a :: b :: s µ′ = µ[s→ s][pc += 1][gas −= c]

σ′ = σ
〈
ι.addr→ ι.addr[stor→ σ(ι.addr).stor[a→ b]]

〉
r = (b = 0 ∧ (σ(ι.addr).stor)(a) 6= 0) ? 15000 : 0 η′ = η[balance += r]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ′, η′) :: S

ωµ,ι = SSTORE µ.s = a :: b :: s
c = (b 6= 0 ∧ (σ(ι.addr).stor)(a) = 0) ? 20000 : 5000 ¬valid (µ.gas, c, |s|)

Γ � (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = SSTORE |µ.s| < 2

Γ � (µ, ι, σ, η) :: S → EXC :: S

Accessing the machine state

ωµ,ι = PC
valid (µ.gas, 2, |µ.s|+ 1) µ′ = µ[s→ µ.pc :: µ.s][pc += 1][gas −= 2]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = MSIZE
valid (µ.gas, 2, |µ.s|+ 1) µ′ = µ[s→ 32 · µ.i :: µ.s][pc += 1][gas −= 2]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

ωµ,ι = GAS
valid (µ.gas, 2, |µ.s|+ 1) µ′ = µ[s→ µ.gas :: µ.s][pc += 1][gas −= 2]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

(ωµ,ι = PC ∨ ωµ,ι = MSIZE ∨ ωµ,ι = GAS) ¬valid (µ.gas, 2, |µ.s|+ 1)

Γ � (µ, ι, σ, η) :: S → EXC :: S

Logging instructions The logging operation allows to append a new log entry to the log
series. The log series keeps track of archived and indexable checkpoints in the execution
of Ethereum byte code. The motivation of the log series is to allow external observers
to track the program execution. A log entry consists of the address of the currently
executing account, up to for ’topics’ (specified on stack) and a fraction of the memory.
There are four logging instructions, but as seen before we describe their effects using
common rules parameterising the instruction by the amount of log information read
from the stack.

ωµ,ι = LOGn µ.s = posm :: size :: (s1 ++s2) |s1| = n
aw =M (µ.i, posm, size) c = Cmem (µ.i, aw) + 375 + 8 · size + n · 375

valid (µ.gas, c, |µ.s|) µ′ = µ[s→ s][pc += 1][gas −= c][i→ aw]
d = µ.m[posm, posm + size− 1] η′ = η[L→ η.L ++[(ι.actor, s1, d)]]

Γ � (µ, ι, σ, η) :: S → (µ′, ι, σ, η′) :: S

ωµ,ι = LOGn
µ.s = posm :: size :: (s1 ++s2) |s1| = n aw =M (µ.i, posm, size)
c = Cmem (µ.i, aw) + 375 + 8 · size + n · 375 ¬valid (µ.gas, c, |µ.s|)

Γ � (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = LOGn |µ.s| < n+ 2

Γ � (µ, ι, σ, η) :: S → EXC :: S

Halting instructions The execution of a RETURN command requires to read data from
the local memory. Consequently the cost for memory consumption is charged. Addi-
tionally the read data is recorded in the halting state in order to potentially propagate it
to the caller.

ωµ,ι = RETURN
µ.s = io :: is :: s aw =M (µ.i, io, is) c = Cmem (µ.i, aw)

valid (µ.gas, c, |s|) d = µ.m[io, io + is + 1] g = µ.gas− c
Γ � (µ, ι, σ, η) :: S → HALT(σ, g, d, η) :: S

ωµ,ι = RETURN µ.s = io :: is :: s
aw =M (µ.i, io, is) c = Cmem (µ.i, aw) ¬valid (µ.gas, c, |s|)

Γ � (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = RETURN |µ.s| < 2

Γ � (µ, ι, σ, η) :: S → EXC :: S

The execution of a STOP command halts execution without propagating any data
to the caller.

ωµ,ι = STOP g = µ.gas
Γ � (µ, ι, σ, η) :: S → HALT(σ, g, ε, η) :: S

The SELFDESTRUCT instruction deletes the currently executing account. The
SELFDESTRUCT command takes one argument from the stack specifying aben the
address of the beneficiary that should get the balance of the suiciding account.

We distinguish the cases where the beneficiary is an existing account and where it
still needs to be created. In the latter an additional fee is charged.

ωµ,ι = SELFDESTRUCT µ.s = aben :: s a = aben mod 2160

σ(a) 6= ⊥ valid (µ.gas, 5000, |s|) g = µ.gas− 5000
σ′ = σ

〈
ι.actor→ σ(ι.actor)[balance→ 0]

〉〈
a→ σ(a)[balance += σ.(ι.actor).balance]

〉
r = (ι.actor ∈ Γ.S†) ? 24000 : 0

η′ = η[S† → η.S† ∪ {ι.actor}][balance += r]

Γ � (µ, ι, σ, η) :: S → HALT(σ′, g, ε, η′) :: S

ωµ,ι = SELFDESTRUCT µ.s = aben :: s a = aben mod 2160

σ(a) = ⊥ valid (µ.gas, 37000, |s|) g = µ.gas− 37000
σ′ = σ

〈
ι.actor→ σ(ι.actor)[balance→ 0]

〉〈
a→ (0, σ(actor).balance, λx. 0, ε)

〉
r = (ι.actor ∈ Γ.S†) ? 0 : 24000

η′ = η[S† → η.S† ∪ {ι.actor}][balance += r]

Γ � (µ, ι, σ, η) :: S → HALT(σ′, g, ε, η′) :: S

ωµ,ι = SELFDESTRUCT µ.s = aben :: s
a = aben mod 2160 c = (σ(a) = ⊥) ? 37000 : 5000 ¬valid (µ.gas, c, |s|)

Γ � (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = SELFDESTRUCT |µ.s| < 1

Γ � (µ, ι, σ, η) :: S → EXC :: S

There is a designated invalid instruction that always causes an exception

ωµ,ι = INVALID
Γ � (µ, ι, σ, η) :: S → EXC :: S

Calling The CALL command initiates a the execution of a (potentially different) ac-
count’s code. To this end, it gets as parameters the gas g to be spent on the execution,
the address to of the destination account, the value va to be transferred to the destina-
tion account. Additionally a fragment in the local memory containing input data for the
called code is specified (by io and is) and another fragment where the return values of

the call are expected (specified by oo and os). If the recipient to exists, the balance of the
calling account ι.actor is sufficient to transfer va and the call stack limit is not reached
yet, the recipient to gets the value va transferred from the calling account ι.actor. The
input data input to the call are read from the local memory and written to the execution
environment. Additionally the execution environment is updated with the information
on the originator sender, the owner of the currently executed code actor and the code
to be executed (that is the code of the called account). The execution of the called code
then starts in the updated execution environment and with an empty machine state.

We introduce some functions for simplifying the cost calculations. First, we intro-
duce a function that calculates the base costs for executing a CALL command (not
including costs for memory consumption and the amount of gas given to the callee).

Cbase (va, flag) = 700 + (va = 0? 0 : 6500) + (flag = 0? 25000 : 0)

The base costs include a fixed amount (700 wei) for calling and additional fees
depending on whether ether is transferred or a new account needs to get created.

Next, we introduce the function computing the amount of wei given to a call. This
value depends on the amount of ether transferred during the call, on the amount of gas
specified on the stack that should be given to the call as well as on the amount of local
gas still available to the caller and the fact whether a new contract needs to be created
or not.

Cgascap (va, flag, g, gas) =

let cex = 700 + (va = 0? 0 : 9000) + (flag = 0? 25000 : 0)

in (cex > gas ? g : min (g,L (gas− cex))) + (va = 0? 0 : 2300)

The information on the transfer value and the existence of the called account influence
the amount of fixed costs the caller needs to pay for the call independent of the execution
of the callee contract. Actually the amount of gas specified on the stack should be given
to the callee, but if the local gas runs too low (namely if the fixed amount to pay already
uses too much of the callee’s local gas) instead only a predefined fraction of the local
gas is given to the call.

We distinguish the cases where a new account needs to get created as the called
address does not belong to an existing account and the one where the called account is
existing.

First we consider the case where the called account already exists:

ωµ,ι = CALL µ.s = g :: to :: va :: io :: is :: oo :: os :: s
toa = to mod 2160 σ(toa) 6= ⊥ |A|+ 1 ≤ 1024 σ(ι.actor).b ≥ va

aw =M (M (µ.i, io, is), oo, os) ccall = Cgascap (va, 1, g, µ.gas)
c = Cbase (va, 1) + Cmem (µ.i, aw) + ccall valid (µ.gas, c, |s|+ 1)
σ′ = σ

〈
toa → σ(toa)[b += va]

〉〈
ι.actor→ σ(ι.actor)[b −= va]

〉
d = µ.m [io, io + is− 1] µ′ = (ccall, 0, λx. 0, 0, ε)

ι′ = ι[sender→ ι.actor][actor→ toa][value→ va][input→ d][code→ σ(toa).code]
Γ � (µ, ι, σ, η) :: S → (µ′, ι′, σ′, η) :: (µ, ι, σ, η) :: S

Next, we consider the case where the called account does not exist. In this case an
account with the called address (and the empty code) gets created in executed.

ωµ,ι = CALL µ.s = g :: to :: va :: io :: is :: oo :: os :: s
toa = to mod 2160 σ(toa) = ⊥ |A|+ 1 ≤ 1024 σ(ι.actor).b ≥ va

aw =M (M (µ.i, io, is), oo, os) ccall = Cgascap (va, 0, g, µ.gas)
c = Cbase (va, 0) + Cmem (µ.i, aw) + ccall valid (µ.gas, c, |s|+ 1)
σ′ = σ

〈
toa → (0, va, λx. 0, ε)

〉〈
ι.actor→ σ(ι.actor)[b −= va]

〉
d = µ.m [io, io + is− 1] µ′ = (ccall, 0, λx. 0, 0, ε)

ι′ = ι[sender→ ι.actor][actor→ toa][value→ va][input→ d][code→ ε]

Γ � (µ, ι, σ, η) :: S → (µ′, ι′, σ′, η) :: (µ, ι, σ, η) :: S

If the executing account ι.actor does not hold the amount of wei specified to be
transferred by the CALL instruction (va) or if the call stack limit of 1024 would be
reached by performing the call, the call does not get executed. In the small step seman-
tics this is modelled by throwing an exception on the callee level.

ωµ,ι = CALL
µ.s = g :: to :: va :: io :: is :: oo :: os :: s toa = to mod 2160

flag = (σ(toa) = ⊥) ? 0 : 1 aw =M (M (µ.i, io, is), oo, os)
ccall = Cgascap (va, flag, g, µ.gas) c = Cbase (va, flag) + Cmem (µ.i, aw) + ccall

valid (µ.gas, c, |s|+ 1) (va > σ((ι.actor)).balance ∨ |A|+ 1 ≥ 1024)

Γ � (µ, ι, σ, η) :: S → EXC :: (µ, ι, σ, η) :: S

If the execution runs out of gas or the stack limit is exceeded, an exception is thrown:

ωµ,ι = CALL µ.s = g :: to :: va :: io :: is :: oo :: os :: s
toa = to mod 2160 flag = (σ(toa) = ⊥) ? 0 : 1

aw =M (M (µ.i, io, is), oo, os) ccall = Cgascap (va, flag, g, µ.gas)
c = Cbase (va, flag) + Cmem (µ.i, aw) + ccall ¬valid (µ.gas, c, |µ.s| − 6)

Γ � (µ, ι, σ, η) :: S → EXC :: S

(ωµ,ι = CALL ∨ ωµ,ι = CALLCODE) |µ.s| < 7

Γ � (µ, ι, σ, η) :: S → EXC :: S

For returning from a call, there are several options:

1. The execution of the called code ends with RETURN. In this case the call was suc-
cessful. The current stack specifies the fragment of the local memory that contains
the return value. The return value is copied to the caller’s local memory as specified
on the caller’s stack and the execution proceeds in the global state left by the callee.
The caller gets the remaining gas of the caller’s execution refunded. To indicate
success 1 is written to the caller’s stack.

2. The execution of the called code ends with STOP or SELFDESTRUCT. In this
case the return value of the execution is the empty data ε that is written to the local
memory. This essentially means that nothing is written to the caller’s local memory.

3. The execution of the called code ends with an exception. In this case the remaining
arguments are removed from the caller’s stack and instead 0 is written to the caller’s
stack. The caller does not get the remaining gas refunded

As the first two cases can be treated analogously, we just need two rules for returning
from a call.

ωµ,ι = CALL
µ.s = g :: to :: va :: io :: is :: oo :: os :: s toa = to mod 2160

flag = σ.toa = ⊥ ? 0 : 1 aw =M (M (µ.i, io, is), oo, os)
ccall = Cgascap (va, flag, g, µ.gas) c = Cbase (va, flag) + Cmem (µ.i, aw) + ccall

µ′ = µ[i→ aw][s→ 1 :: s][pc += 1][gas += gas− c][m→ µ.m[[oo, oo + s− 1]→ d]]

Γ � HALT(σ′, η′, gas, d) :: (µ, ι, σ, η) :: S → (µ′, ι, σ′, η′) :: S

ωµ,ι = CALL
µ.s = g :: to :: va :: io :: is :: oo :: os :: s toa = to mod 2160

flag = σ(toa) = ⊥ ? 0 : 1 aw =M (M (µ.i, io, is), oo, os)
ccall = Cgascap (va, flag, g, µ.gas) c = Cbase (va, flag) + Cmem (µ.i, aw) + ccall

µ′ = µ[i→ aw][s→ 0 :: s][pc += 1][gas −= c]

Γ � EXC :: (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

The two other instructions for calling (CALLCODE and DELEGATECALL) are
similar to CALL.

The CALLCODE instruction only differs in the fact that the control flow is not
handed over to the called contract, but only its code is executed in the environment of
the calling account. This means in particular that the amount of money transferred is
only relevant as a guard for the call, but does not need to be actually transferred. In
addition, in case that the account whose code should be executed does not exists, this
account is not created, but only the empty code is run. However, still the amount of
Ether specified on the stack influences the execution cost.

ωµ,ι = CALLCODE
µ.s = g :: to :: va :: io :: is :: oo :: os :: s toa = to mod 2160 σ(toa) 6= ⊥
|A|+ 1 ≤ 1024 σ(ι.actor).b ≥ va aw =M (M (µ.i, io, is), oo, os)
ccall = Cgascap (va, 1, g, µ.gas) c = Cbase (va, 1) + Cmem (µ.i, aw) + ccall

valid (µ.gas, c, |s|+ 1) d = µ.m [io, io + is− 1] µ′ = (ccall, 0, λx. 0, 0, ε)
ι′ = ι[sender→ ι.actor][value→ va][input→ d][code→ σ(toa).code]

Γ � (µ, ι, σ, η) :: S → (µ′, ι′, σ, η) :: (µ, ι, σ, η) :: S

ωµ,ι = CALLCODE
µ.s = g :: to :: va :: io :: is :: oo :: os :: s toa = to mod 2160 σ(toa) = ⊥
|A|+ 1 ≤ 1024 σ(ι.actor).b ≥ va aw =M (M (µ.i, io, is), oo, os)
ccall = Cgascap (va, 1, g, µ.gas) c = Cbase (va, 1) + Cmem (µ.i, aw) + ccall

valid (µ.gas, c, |s|+ 1) d = µ.m [io, io + is− 1] µ′ = (ccall, 0, λx. 0, 0, ε)
ι′ = ι[sender→ ι.actor][value→ va][input→ d][code→ ε]

Γ � (µ, ι, σ, η) :: S → (µ′, ι′, σ, η) :: (µ, ι, σ, η) :: S

ωµ,ι = CALLCODE µ.s = g :: to :: va :: io :: is :: oo :: os :: s
toa = to mod 2160 aw =M (M (µ.i, io, is), oo, os)

ccall = Cgascap (va, 1, g, µ.gas) c = Cbase (va, 1) + Cmem (µ.i, aw) + ccall

valid (µ.gas, c, |s|+ 1) (va > σ((ι.actor)).balance ∨ |A|+ 1 ≥ 1024)

Γ � (µ, ι, σ, η) :: S → EXC :: (µ, ι, σ, η) :: S

ωµ,ι = CALLCODE
µ.s = g :: to :: va :: io :: is :: oo :: os :: s toa = to mod 2160

aw =M (M (µ.i, io, is), oo, os) ccall = Cgascap (va, 1, g, µ.gas)
c = Cbase (va, 1) + Cmem (µ.i, aw) + ccall ¬valid (µ.gas, c, |µ.s| − 6)

Γ � (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = CALLCODE µ.s = g :: to :: va :: io :: is :: oo :: os :: s
toa = to mod 2160 aw =M (M (µ.i, io, is), oo, os)

ccall = Cgascap (va, 1, g, µ.gas) c = Cbase (va, 1) + Cmem (µ.i, aw) + ccall

µ′ = µ[i→ aw][s→ 1 :: s][pc += 1][gas += gas− c][m→ µ.m[[oo, oo + s− 1]→ d]]

Γ � HALT(σ′, η′, gas, d) :: (µ, ι, σ, η) :: S → (µ′, ι, σ′, η′) :: S

ωµ,ι = CALLCODE µ.s = g :: to :: va :: io :: is :: oo :: os :: s
toa = to mod 2160 aw =M (M (µ.i, io, is), oo, os)

ccall = Cgascap (va, 1, g, µ.gas) c = Cbase (va, 1) + Cmem (µ.i, aw) + ccall

µ′ = µ[i→ aw][s→ 0 :: s][pc += 1][gas −= c]

Γ � EXC :: (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

The DELEGATECALL instruction does not only keep the executing account of
the current call, but also the transferred value and and the sender information. For this
reason the value to be transferred does not need to be specified in the argument in this
case. For this reason and because the cost calculation differs (not using the argument
value, but the one from the environment) all rules from CALL needs to be replicated.
Still, the general idea is very similar.

ωµ,ι = DELEGATECALL
µ.s = g :: to :: io :: is :: oo :: os :: s toa = to mod 2160

σ(toa) 6= ⊥ |A|+ 1 ≤ 1024 aw =M (M (µ.i, io, is), oo, os)
ccall = Cgascap (0, 1, g, µ.gas) c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall

valid (µ.gas, c, |s|+ 1) d = µ.m [io, io + is− 1]
µ′ = (ccall, 0, λx. 0, 0, ε) ι′ = ι[input→ d][code→ σ(toa).code]

Γ � (µ, ι, σ, η) :: S → (µ′, ι′, σ, η) :: (µ, ι, σ, η) :: S

ωµ,ι = DELEGATECALL
µ.s = g :: to :: io :: is :: oo :: os :: s toa = to mod 2160

σ(toa) = ⊥ |A|+ 1 ≤ 1024 aw =M (M (µ.i, io, is), oo, os)
ccall = Cgascap (0, 1, g, µ.gas) c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall

valid (µ.gas, c, |s|+ 1) d = µ.m [io, io + is− 1]
µ′ = (ccall, 0, λx. 0, 0, ε) ι′ = ι[input→ d][code→ ε]

Γ � (µ, ι, σ, η) :: S → (µ′, ι′, σ, η) :: (µ, ι, σ, η) :: S

ωµ,ι = DELEGATECALL µ.s = g :: to :: io :: is :: oo :: os :: s
toa = to mod 2160 aw =M (M (µ.i, io, is), oo, os)

ccall = Cgascap (0, 1, g, µ.gas) c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall

valid (µ.gas, c, |s|+ 1) |A|+ 1 ≥ 1024

Γ � (µ, ι, σ, η) :: S → EXC :: (µ, ι, σ, η) :: S

ωµ,ι = DELEGATECALL
µ.s = g :: to :: io :: is :: oo :: os :: s toa = to mod 2160

aw =M (M (µ.i, io, is), oo, os) ccall = Cgascap (0, 1, g, µ.gas)
c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall ¬valid (µ.gas, c, |µ.s| − 6)

Γ � (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = DELEGATECALL |µ.s| < 6

Γ � (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = DELEGATECALL µ.s = g :: to :: io :: is :: oo :: os :: s
toa = to mod 2160 aw =M (M (µ.i, io, is), oo, os)

ccall = Cgascap (0, 1, g, µ.gas) c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall

µ′ = µ[i→ aw][s→ 1 :: s][pc += 1][gas += gas− c][m→ µ.m[[oo, oo + s− 1]→ d]]

Γ � HALT(σ′, η′, gas, d) :: (µ, ι, σ, η) :: S → (µ′, ι, σ′, η′) :: S

ωµ,ι = DELEGATECALL µ.s = g :: to :: io :: is :: oo :: os :: s
toa = to mod 2160 aw =M (M (µ.i, io, is), oo, os)

ccall = Cgascap (0, 1, g, µ.gas) c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall

µ′ = µ[i→ aw][s→ 0 :: s][pc += 1][gas −= c]

Γ � EXC :: (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

Contract creation The CREATE command initiates the creation of a new contract. The
creation of a new contract is initiated if the call stack limit is not reached yet and if the
initial balance va that should be initially transferred to the new account does not exceed
the balance of the sender (the account owning the currently executed code). In this case
address ρ of the new account is created in dependence of the sender’s address ι.actor
and the sender’s addresses current nonce incremented by one. If there already exists an
account with the address, the balance of this account is transferred to the newly created
one. Additionally, the new account gets the specified amount va of ether transferred
from the sender.

Finally the execution of the contract starts by executing the initialization code i (i
can be found in the local memory µ.m, its location is specified by the arguments io
and is on the stack). The owner of the initialization code is the newly created account
ρ. The owner ι.addr of the calling code will be recorded as the initiator ι.sender of
the initialization code execution. The value va transferred to the new account is given
in the environment parameter ι.value. The execution starts in the empty machine state
with the program counter and the number of active words set to 0, in the empty memory
λx. 0 (the function mapping each number to 0256) and the empty stack ε. The original
global state σ is recorded in the caller state in order to be able to restore it in the case of
an exception in the initiation code execution.

ωµ,ι = CREATE
µ.s = va :: io :: is :: s aw =M (µ.i, io, is) c = Cmem (µ.i, aw) + 32000

valid (µ.gas, c, |s|+ 1) va ≤ σ(ι.actor).balance
|S|+ 1 ≤ 1024 ρ = newAddress (ι.actor, σ(ι.actor).nonce) σ(ρ) = ⊥

σ′ = σ
〈
ρ→ (0, va, λx. 0, ε)

〉〈
ι.actor→ σ(ι.actor)[balance −= va][nonce += 1]

〉
i = µ.m [io, io + is− 1]

ι′ = ι[sender→ ι.actor][actor→ ρ][value→ va][code→ i][input→ ε]
µ′ = (L (µ.gas− c), 0, λx. 0, 0, ε)

Γ � (µ, ι, σ)η :: S → (µ′, ι′, σ′)η :: (µ, ι, σ)η :: S

Actually it should not happen that the newly created address ρ already exists. By
making ρ dependent on the active account’s address and it’s nonce (which can be seen
as an internal counter on the number of new accounts already created by this account), it
should be ensured that the resulting address is unique. However, in practice, the function
newAddress (·, ·) is realized by a hash function which requires to deal with collisions.
For the cases where accidentally an existing address is created, the balance of the cor-
responding account is saved in the newly created one.

ωµ,ι = CREATE
µ.s = va :: io :: is :: s aw =M (µ.i, io, is) c = Cmem (µ.i, aw) + 32000

valid (µ.gas, c, |s|+ 1) va ≤ σ(ι.actor).balance
|S|+ 1 ≤ 1024 ρ = newAddress (ι.actor, σ(ι.actor).nonce)

σ(ρ) 6= ⊥ b = σ(ρ).balance + va
σ′ = σ

〈
ρ→ (0, b, λx. 0, ε)

〉〈
ι.actor→ σ(ι.actor)[balance −= va][nonce += 1]

〉
i = µ.m [io, io + is− 1]

ι′ = ι[sender→ ι.actor][actor→ ρ][value→ va][code→ i][input→ ε]
µ′ = (L (µ.gas− c), 0, λx. 0, 0, ε)

Γ � (µ, ι, σ, η) :: S → (µ′, ι′, σ′, η) :: (µ, ι, σ, η) :: S

Similarly to the CALL case, the execution of the CREATE instruction can fail at call
time in the case that either the value va to be transferred to the newly created account
exceeds the calling account’s balance or if the call stack limit is reached.

ωµ,ι = CREATE
µ.s = va :: io :: is :: s aw =M (µ.i, io, is) c = Cmem (µ.i, aw) + 32000

valid (µ.gas, c, |s|+ 1) (va > σ(ι.actor).balance ∨ |S|+ 1 > 1024)

Γ � (µ, ι, σ, η) :: S → EXC :: (µ, ι, σ, η) :: S

In addition the usual out-of-gas exception and violations of the stack limits need to
be considered:

ωµ,ι = CREATE µ.s = va :: io :: is :: s
aw =M (µ.i, io, is) c = Cmem (µ.i, aw) + 32000 ¬valid (µ.gas, c, |s|+ 1)

Γ � (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = CREATE µ.s < 3

Γ � (µ, ι, σ, η) :: S → EXC :: S

To return from contract creation we need to consider different cases:

1. The initialization code ends with a RETURN. In this case contract creation was
successful. The return value specifies the code of the new contract. This code will
be executed when the contract is called later on. To indicate success and to make
the newly created contract accessible to the caller, the address of the new contract
account is written to the stack. The caller of the contract creation needs to proceed
with the remaining gas from the contract creation and additionally needs to pay a
final contract creation cost depending on the length of the contract body code.

2. The initialization code ends with STOP or SELFDESTRUCT. In this case con-
tract creation was theoretically successful, but no practical usable contract was cre-
ated as calls to this contract do not cause code to be executed. Nevertheless the final
contract creation cost needs to be paid.

3. The initialization code causes an exception. In this case the contract creation was
not successful. The former global state is restored and therefore all side effects of
the contract creation are deleted. To indicate the failure of the contract creation the
number 0 is written to the stack of the caller. Additionally all gas of the caller state
is deleted.

Cases one and two result in regular halting of the callee. The command specific
changes affecting the global state, the remaining gas and the output data are recorded in
the halting state. In the case of contract creation, a final fee is charged that depends on
the size of the return data. If the gas remaining from the execution of the initialization
code is not sufficient to pay the additional fee, an exception occurs.

ωµ,ι = CREATE
µ.s = va :: io :: is :: s aw =M (µ.i, io, is) c = Cmem (µ.i, aw) + 32000
cfinal = 200 · |d| gas ≥ cfinal ρ = newAddress (ι.actor, σ(ι.actor).nonce)

µ′ = µ[s→ ρ :: s][pc += 1][gas += gas− c− cfinal][i→ aw]
σ′′ = σ′

〈
ρ→ σ′(ρ)[code→ d]

〉
Γ � HALT(σ′, η′, gas, d) :: (µ, ι, σ, η) :: S → (µ′, ι, σ′′, η′) :: S

ωµ,ι = CREATE cfinal = 200 · |d| gas < cfinal

Γ � HALT(σ′, η′, gas, d) :: (µ, ι, σ, η) :: S → EXC :: S

In the case of exceptional halting of the callee, as in the CALL case, the remaining
gas is not refunded and the global state as well as the transaction effects are reverted.

ωµ,ι = CREATE
µ.s = va :: io :: is :: s aw =M (µ.i, io, is) c = Cmem (µ.i, aw) + 32000

µ′ = µ[s→ 0 :: s][pc −= 1][gas += c][i→ aw]
Γ � EXC :: (µ, ι, σ, η) :: S → (µ′, ι, σ, η) :: S

	A Semantic Framework for the Security Analysis of Ethereum smart contracts

